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Abstract—As the Internet infrastructure grows to support a is that the configuration of many protocols, such as BGP, is
variety of services (eg: VPNs), its legacy protocols (eg: OSPF, tough, error prone and is likely to get harder as the protocol

BGP) are being overloaded with new functions such as traffic s gyeripaded to serve more functions. Though some tools are
engineering. Today, operators engineer such capabilities through ing to aid t lot ds to be d
clever, but manual parameter tuning. In this paper, we propose emerging 10 ald operators, a ot more needs to be done.

a back-end support tool for large-scale parameter configuration
that is based on efficient parameter state space search techniques
and online simulation. The framework is useful when the network
protocol performance is sensitive to its parameter settings, and
its performance can be reasonably modeled in simulation. In
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particular, our system imports the network topology, relevant Network Optional Direct - Recomended

. . . Information Parameter Setting  Parameters
protocol models and latest monitored traffic patterns into a =
simulation that runs online in a network operations center Network Experiment Tack-box
(NOC). Each simulation evaluates the network performance ‘ Network | Model | Network PAameters oo oo
for a particular setting of protocol parameters. A recursive Monitor Simulator | mane Algorithm
random search (RRS) technique is proposed to explore the - Metric
large-dimensional parameter state space, where each sample On-line Simulation System

point results in a single simulation. In other words, the overall ) _ ' _ _ _
parameter configuration problem is modeled as a‘black-box” Fig. 1. On-line simulation framework for adaptive configuration of network
optimization problem. The goal of RRS is efficiency, i.e., to find Procols

“good” network protocol configurations for the current traffic

conditions quickly. An important feature of the framework is its In this paper. we propose a novel on-line simulation frame-
flexibility: it allows arbitrary choices in terms of the simulation IS paper, we prop V | Imulatl

engines used (eg: ns-2, SSFnet, future scalable simulators etc)WOrk (OLS) to aid generic large-scale network protocol con-
network protocols to be simulated (eg: OSPF, BGP, RED, MPLS figuration. Realistically, the tool may be used as a “recom-

etc), and in the specification of the optimization objectives. We mendation service” to suggest a variety of “good” parameter
demonstrate the flexibility and relevance of this framework in settings and illustrate the resulting impacts of the settings so

three scenarios: joint tuning of the RED buffer management that operators are better informed than their current manual
parameters at multiple bottlenecks, traffic engineering using P : Ir cu u

OSPF link weight tuning, and outbound load-balancing of traffic Procedures. Fig 1 shows the basic idea of this system. We
at peering/transit points using BGP LOCAL_PREF parameter. formulate the network protocol configuration as a “black-box”

The first application (RED) is prototyped and evaluated in a optimization problem over the parameter state space. A sample
Linux-based testbed using SNMP as the configuration interface. point in the state space corresponds to a network simulation
Index Terms—network performance management, network that evaluates the performance in terms of pre-determined met-
prOtOCOI Configuration, black-box Optimization, on-line simulation rics. The simulation also imports the current network top0|ogy
and a digest of latest traffic patterns. We propose a Recursive
Random Search (RRS) algorithm that intelligently searches
l. INTRODUCTION the large-dimensional parameter state space to find “good”
Today’s network protocols like BGP and OSPF were deettings quickly. The “black-box” approach allovigxibility
signed for one primary service: “best effort reachability.” Inin terms of objectives of the desired optimization, and hence
creasingly, network operators want to use the IP infrastructuran be applied to a variety of protocols and configuration
for complex functions like deploying Virtual Private Networkgproblems. The key assumptions of the framework is that the
(VPN), managing traffic within ASes to meet Service Levalnderlying network protocol performance is indeed sensitive to
Agreements(SLA), and between ASes (at peering points) ttee settings of the parameter set chosen; and that the network
optimize on peering agreements. Such operational optimizapology, traffic and protocol can be reasonably modeled in
tion is performed by using “parametric hooks” in protocolsimulation.
that can be “tweaked” appropriately. However, the parameterWhile these assumptions appear to be somewhat restrictive
setting process today is manual and is widely consideredaalay, on the long-term, our framework can leverage improve-
black art. Recent studies [1] and common knowledge [2], [Bents in modeling of topology [4], [5], [6], traffic [7], [8]



and/or improvements in scalable network simulation [9], [10Based on this, for a certain network scenaid and a
[11] technology. To the best of our knowledge, our flexiblgiven parameter space @f an optimization algorithm can
approach is unique and the first of its kind as applied to IP néte employed to search for a good solutiGn which meets
work management. There have been proposed configuratianeertain performance objectiyg. With this black-box op-
support or adaptive protocol techniques for specific problertimization approach, the problem defined in Equation (1)
(eg: BGP [12], OSPF [13],RED [14]). We discuss these relatedn be empirically solved. This idea is the basis of the on-
works in later sections. line simulation framework. Note that for network parameter
A key component of the framework is an efficient parameteptimization problems, traditional experiment design methods,
state space search algorithm. The requirements on suckuah as, factorial design, are not applicable since they normally
“black-box” algorithm are as followsa) it should scale to assume a relatively simple mathematical model and try to fit
large-dimensional parameter state spad®sijt should find the problem into this model. Since littie priori knowledge
“good” solutions quickly;c) it should be robust to noise (eg:is available, to formulate a proper model is very difficult.
minor inaccuracies in modeling) in the function evaluations; Like optimization problems arising in many engineering
andd) it should be able to automatically reject negligible paareas, network parameter optimization can be mathematically
rameters (i.e. to which the protocol is insensitive). Traditiondrmulated as (assume minimization): given a real-valued
search algorithms (eg: genetic algorithms[15], multi-start hilbbjective functionf : R™ — R, find a global minimumx*,
climbing, tabu search[16] and simulated annealing[17]) could N )
not provide the above desired combination of properties as we x" = arg min f(x) ®)

will show in Sectionll. _ , wherex is the parameter vector to be optimizdd,is the pa-
We propose a new search algorithm, Recursive Rand@Qy,eter space, usually a compact sekih In these problems,

Search (RRS), that completely relies on random sampling 8l piective functiony(x) is often analytically unknown and
is a good maich to our search objectives. We demonstrgi@ fnction evaluation can only be achieved through computer

the flexibility and relevance of our overall framework in thre%imulation or other indirect ways. This type of problems are
scenarios: joint tuning of the RED buffer management Parafance called “black-box” optimization problems where the

eters at multiple bottlenecks, traffic engineering using OSRfpiective function is modeled as a black-box. Since litile
link weight tuning, and outbound load-balancing of traffic aljqr knowledge is assumed, these black-box optimization
peerln_g/tran_sn points using BGP LOCAFEREF_attr_|butes_. We problems are considered very hard to solve. In addition, since
use simulations to demonstrate these applications, i.e., Bl opjective functions are often non-linear and multi-modal,
form the on-line S|mulat|on _framework ms@e a “simulation” ;< type of optimization are also callagiobal optimization
Furthermore, the first application (RED) is also prototypegl conirast tolocal optimizationwhich has only one single
and evaluated in a Linux-based testbed using SNMP as {he .o inf(x) and is much easier to solve.

configuration interface. Most of black-box optimization problems are NP-hard and

The rest of this paper is organized as follows: Section Il 4n)y e solved for near-optimal solutions with heuristic

describes the features of network parameter optimization prlic, oy aigorithms. Many heuristic search algorithms have been
lems and presents the overview of the Recursive Random,,,seq and demonstrated to be very successful in practice,
Search(RRS) algorithm. Section Ill investigates the applicatiQych a5, multi-start hill-climbing[19], genetic algorithm[15]
n adaptlve tuning of RED. S_ectlon v presents the app“@“%d simulated annealing[17]. However, there has been no
in traffic engineering by tuning OSPF link weights. Section Yo sistent report on their performance. In faet, Free Lunch
present_s the apph_catlon in outbound I_oad balancing by tun”’r%eorerﬁZO], [21] has theoretically demonstrated that no mat-
BGP. Finally, Section VI concludes this paper. ter what performance metric is used, no single optimization al-
gorithm can consistently perform better in all problem classes

Il. NETWORK PARAMETER OPTIMIZATION PROBLEM than the others. The average performance of any algorithm is
We model the network parameter configuration problem &se same over all classes of problems. In other words, there
solving the following equation: exists no general all-purpose optimization algorithm. For one

C=fWN 1) specific class of problems, its inherent properties have to be
= SN carefully investigated to perform efficient optimization.

where denotes network scenaripthe desired performance
metric andC the parameter configuration of the concernefl. Properties of Network Parameter Optimization Problems

network protocol. G_|ven the d_eswed performance mqiramql The following features are usually present in network pa-
the network scenarigv’, Equation (1) calculates the requwedrameter optimization problems

configurationC. Due to the complexity of the Internet, the High effici , ired for the desired h algorith
analytical derivation of Equation (1) is usually not realistic. 'gh efficiencyis required for the desired search algorithm.
More specifically, the emphasis of the search algorithm

However, with network simulation software, such rag18], 7 . . e
ra518] should be on finding a better operating point within the

SSFNET10], it is possible to empirically examine network > ™ X . . :
performance for a certain network configuration and scenario, I'm'_ted time frame lnstea_o! of seeking _the _St”CtIy global
optimum. Network conditions vary with time and the

€., establish the following empirical equation: search algorithm shoulduickly find better network pa-
p=f"tWN,C) (2) rametersbefore significant changes in the network occur.



Furthermore, network parameter optimization is based on
network simulation which might be very time-consuming.
This also requires a highly efficient search.

High dimensionalityis another feature of these problems.
For example, AT&T’'s network has thousands of routers
and links[6]. If all OSPF link weights of this network
are to be configured, there will be thousands of pa-
rameters present in the optimization. High-dimensional
optimization problems are usually much more difficult to
solve than low-dimensional problems because of “curse of

) . o Fig
dimensionality”[19].

Noiseis often introduced into the evaluation of the objective
function since network simulation may be used for func- ) ] L
tion evaluations. Due to inaccuracies in network modeling, Potential energy from the forces between atoms is mini-
simulation, etc., the obtained empirical objective function mized.
may be distorted from the real one, in other words, affected The issues described above are common in many practical
by small random noises. Fig 2 shows an example of 2ptimization problems[27], [28]. For such class of problems,
dimensional empirical objective function obtained witlgenetic algorithm[29] and simulated annealing[30], controlled
network simulation. It can be seen that there exist matigndom search[31], are the most common algorithms since
irregular small random fluctuations imposed on the overdhey require littlea priori information from the concerned
structure. problem and are generally applicable. However, these algo-

rithms are mainly designed for full-optimization and often

lacking in efficiency. In practice, they are often combined
with local search techniques, such as, deepest descent and
pattern search, to improve their efficiency. However, since
these local search techniques use fixed local structures to guide
the search process, they are usually susceptive to the effect of
noises[32]. For example, in pattern search, the wrong pattern
it Drop Probability may easily be derived if the samples for pattern exploration are
Queue Weight 5050 corrupted by noises. Furthermore, for the objective function
with “globally convex” structures, local methods also perform
inefficiently since there exist a large number of low-quality

Fig. 2. An empirical objective function obtained with network simulatiorjgcal optima_ For examp|e' multistart local search a|gorithms

(RED buffer management) may waste many efforts on examining these low-quality local

optima and essentially work like an inefficient random sam-
Negligible parametersnay also be included in the objectivepling.
function. These parameters contribute little to the objective
function and should be ruled out from the optimization
process. However, in practice, they are normally ve@
difficult to be identified and eliminated effectively. If the Because of the disadvantages described above for traditional
search algorithm is able to automatically excluded thesearch algorithms, we have proposed the Recursive Random
parameters from the optimization process, the efficienSearch algorithm (RRS)[33] to meet the requirements of
of the optimization will be significantly improved. network parameter optimization. RRS is based on the high-
“Globally convex” or “big valley” structure[22], [23] may efficiency feature of random sampling at initial steps. The idea
be present in the objective functions. That is, high-qualig to use initial high-efficiency random samples to identify
local optima tend to center around the global one amomising areas and then start recursive random sampling
be close to each other, whereas low-quality local optin@ocesses in these areas which shrink and re-align sample
tend to distribute far away from the global one. “Globallygpaces to local optima. We have tested this algorithm on a suite
convex” structure appears in many practical optimizatioof difficult benchmark functions and some network parameter
problems, especially in the situations when the objectiaptimization problems. The results have shown that in terms
function is affected by random noises. Boese[24] has quickly locating a good solution, RRS outperforms other
demonstrated the existence of this structure in complsgarch algorithms, such as multi-start pattern search and con-
Traveling Salesman Problem(TSP) and graph bisectitmolled random search. The test results have also demonstrated
problem, and presented amtuitive graph for this struc- that RRS is much more robust to noise than those local-
ture(Fig 3). The same structure has been found in csearch-based method. Furthermore, the inclusion of negligible
cuit/graph partitioning and job-shop scheduling, etc.[25parameters in the objective function has little effect on the
Leary[26] also confirmed that there exist similar “funnel’efficiency of RRS. In the following we will first illustrate the
structures in molecular conformation problems where thaitial high-efficiency feature of random sampling and then

. 3. Big valley structure
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present a concise description of the algorithm. Readers can Convergence Curve of Random Sampling with Probabilty 0.99

1

refer to [33] for more details and the test results. 0.9 |+
1) Initial Efficiency of Random Samplingsiven an mea- or "
surable objective functioyfi(x) on the parameter spa¢ewith C ool
arange ofy,in, Ymaz), We can define thdistribution function 0al
of objective function values as: ot B ]
m({xeD| f(x)<y Od T
¢D(y) = ({ ‘D( ) }) (4) ° 10 20 30 40 50 60 70 80 90 100
m( ) Number of Function Evaluations

wherey € [ymm,ymax].andm(-) denoted_ebesgue measure Fig. 4. Ap(r)
a measure of the size of a set. For examplepesgue

measureis area in a 2-dimensional space, volume in a 3-
dimensional space, and so on. Basically, the above equation ] ) )
represents the portion of the points in the parameter spacé* Stochastic search algorithm usually comprises two el-
whose function values are smaller than a certain lgvel, (y) ements:explora_tlon and exploitation _Exploratmn ‘examines

is a monotonously increasing function ®fn [Ymin , Ymasz), its the. macroscopic fgatures of _the objective function and aims
maximum value is 1 whe = y,,., and its minimum value 0 identify promising areas in the parameter space, while
is m(x*)/m(D) wherex* is the set of global optima. Without €xploitation focuses on the microscopic features and attempts
loss of generality, we assume thétx) is a continuous func- to exploit local mfo_rmatlon to improve '_[he solution quu_:kly.
tion andm(x € D|f(x) =y) = 0,YY € [Ymins Ymaz], then Many se_arch a_lgonthms, such as multistart type algorlfthmsf,
#(y) will be a monotonously increasing continuous functio® Nnot differentiate areas and hence may waste much time in
with a range of0, 1]. ASSUMING &), € [Yumin, Ymaz] SUCh that trivial areas. RRS attempts to .|de_nt|fy a certq&percentﬂe _
ép(y,) =7, r € [0,1], ar-percentileset in the parameter St Ap(r) and only start exploitation from this set. In this

of x?l) in random sampling with probability 0.99

spaceD can be defined: way, most of trivial areas will be excluded from exploitation
and thus the overall efficiency of the search process can
Ap(r)={xeD| f(x) <y, } (5) be improved. This can be illustrated by the example shown

Note thatAp(1) is just the whole parameter spade and " Fi9 5. The upper graph shows a contour plot of a 2-

lim._,o Ap(€) will converge to the global optima. Suppose the
sample sequence generatedrbgteps of random sampling is

X, i=1...n andx?l) is the one with the minimum function 850 7F )
value, then the probability oi?l) in Ap(r) is: 800 — ‘
700 o)
P(x{) € Ap(r)) =1—(1—n)" =p (6) R )

Alternatively, ther value of ther-percentileset thatx?l) will N —
reach with probabilityp can be represented as: \:f"\', ST

r=1—(1-p4" ) o w8
For any probabilityp < 1, r will tend to O with increasing 65 - 100
n, that means, random sampling will converge to the global a 3 : :
optima with increasing number of samples. Fig 4 shows-the R S S S 50
percentileset thatn steps of random sampling can reach with L ... SN S S Lo 0
a probability of99%. We can see thatandom sampling is
highly efficient at initial steps sincedecreases exponentially [ 7" co e co T =50
with increasingn, and its inefficiency is from later samples L S SO S 100
As shown in Fig 4, it takes only 44 samples to reach a point g ) : : D
in Ap(0.1) area, whereas all future samples can only improve 50 ’_1‘00 _go 6 55 1050

r value ofx{,, at most by 0.1.

2) Overview of Recursive Random Seardne basic idea Fig- 5. Contour plot of an objective function(left) and its region of
of RRS is to maintain the initial efficiency of random sampling'? (*-0%)(1gh0)
by “restarting” it before its efficiency becomes low. However,
unlike the other methods, such as hillclimbing, random samimensional multi-modal objective function and the lower
pling cannot be restarted by simply selecting a new startiggaph shows the set ofi;(0.05). As shown in the figure,
point. Instead we accomplish the “restart” of random samplinge function has many local optima; however, only three
by changing its sample spacBasically, we perform random regions remain inA5(0.05) (shaded areas in the right plot).
sampling for a number of times, then move or resize thHeach of these regions encloses a local optimum and the one
sample space according to the previous samples and stdth the biggest size happens to contain the global optimum.
another random sampling in the new sample space. It is desirable that the size afip(r) region identified by



exploration is as small as possible such that most of trivifll4], [36], [37]. Therefore, RED needs constant tuning to adapt
areas are filtered out. On the other hand, its smallest sizetdsthe prevailing network conditions. In view of this, it has
limited by the efficiency of random sampling, i.e., it shouldbeen debated whether or not RED can achieve its claimed
be within the reach of initial high-efficiency steps of randoradvantages[37], [38], [39].
sampling so that identifying a point in it will not take too long Based on simplified models, some general guidelines for
to lower the overall efficiency. setting RED parameters have been proposed[34], [36], [40].
To identify aAp(r) area, RRS first take a certain number ofntuitive modifications on RED have also been proposed to
samples and use the best one to decide the locatiohgf). automate the tuning of RED under varying network conditions
It then goes on into recursive random sampling process by adjusting one of the parameters[14], [41]. However, the
shrinking or re-aligning the sample space. In recursive rand@fiectiveness of these methods in complex network scenarios
sampling, random sampling is performed for a number & still under investigation. Rather than relying on simplified
times, if it fails to find a better point, the sample space models or intuition, here we employ the on-line simulation
shrunk by a certain ratio. Otherwise, the sample space keéggnework for the dynamical tuning of RED.
its size unchanged, but moves its center to the new improved
sample. This shrink-and-re-align procedure is repeated umil Problem Formulation
the size of the sample space decreases below a threshol
Then we identify another p(r) and restart the above search
process. Interested readers can refer to [33] for the detail
the algorithm.

%ED uses the average queue sizeas an indicator of
he congestion extent and determines the packet drop rate
cordingly. As shown in Fig 6, the instantaneous queue size

In contrast to most of the search algorithms, the RRS Control Function p=f(q)  Low PassFilter
algorithm is mainly built upon random sampling. RRS per- e A
forms the search process based on stochastic information on a q
certain sample area, therefore, its performance is less affected P q
by noises. In addition, RRS is more efficient when dealing Cﬁ r u
with the objective function with negligible parameters. This %

TCP sources Bottleneck

is because that random samples will still maintain its uniform
distribution in the subspace composed of only those importamd. 6. RED working mechanism

parameters, and hence effectively removes negligible parame-

ters from the optimization process. In this way, the efficienayis sampled at every packet arrival and then passed through
of the search can be improved significantly. For the objectige low-pass filter to remove transient noises. Based on the
function with “globally convex” feature, RRS is able to detectmoothed average queue sizethe drop probabilityP is

the overall structure by its initial extensive sampling and theralculated with a control functio® = f(g). The arriving
approach global optima with recursive sampling very quicklypackets are randomly dropped (or marked) according to this
These features have been empirically validated by the testspsabability P. Traffic sources react to these drops and adjust
a suite of benchmark functions[33]. offered loadr accordingly. Therefore, RED is mainly designed
to work with TCP traffic sources which are responsive to
packet drops and it will not work well in the cases like UDP
traffic or short-life HTTP traffic.

Buffer management mechanisms can be used for congesA queue will build up and keep increasing if the offered load
tion control by cooperating with TCP end-to-end congestidn larger than the bottleneck capacity; therefore, the objective
avoidance mechanism. Traditional DropTail could not effeof a buffer management algorithm is to stabilize the offered
tively prevent the occurrence of serious congestion and ofterad around the bottleneck capacity. Basically, TCP sources
suffer from long queueing delays. Furthermore, the globmcrease their sending rate every round trip time; on the other
synchronization may occur during the period of congestiohand, the packet drops cause TCP sources to lower their
i.e., a large number of TCP connections experience packending rates. In the equilibrium status, the increase rate of
drops and hence back off their sending rate at the same timi€P traffic should be approximately equal to its decrease rate
resulting in underutilization and large oscillation of queueingaused by packet drops and thus the offered load will stabilize
delay. Random Early Detection (RED) has been proposed [#bund a certain level. If this equilibrium status is achieved
to address these problems. The basic idea of RED is to det@bile maintaining a certain queue size, the link utilization will
the inception of congestion and notify traffic sources earlye close to 1, i.e., the offered load will stabilize around the
to avoid serious congestion. It has been demonstrated toHudtleneck capacity. The rationale of RED is to search for an
able to avoid global synchronization problem, maintain lo@ppropriate packet drop rate by varying the average queue size
average queueing delay and provide better utilization th&mcounteract the increase of offered load.

DropTail[34]. Therefore, IETF has recommended RED as theThere are four parameters in RED. Among them, the mov-
single active buffer management for wide deployment in thirg average weighiv, determines the cut-off frequency of the
Internet[35]. However, the setting of RED parameters h&sw-pass filter, and the other three parameters, i.e., minimum
proved to be highly sensitive to network scenarios and thieresholdmin,,, maximum thresholdnazx;, and maximum
performance of misconfigured RED may suffer significantlgirop probabilitymax,, determine the control functio® =

IIl. ADAPTIVE TUNING OF RED



f(g). In the standard version of RED, the control functiomaz,, or increasingmaz,. However, this obviously will
is determined by the parameters as illustrated in Fig 7. Witdause underutilization of the link. Therefore, an appropriate
tradeoff has to be made to reflect the requirement of network

=S operators. This is essentially a multi-objective optimization
3 problem and corresponding techniques should be employed to
'§ ; convert it into a tractable single objective problem.

| : } One classic multi-objective optimization technique is to

: ‘ : .- optimize the weighted average of the performance metrics. The
| ™ oG weights for different metrics reflect the quantitative tradeoff
among them and are critical to the effectiveness of opti-
mization results. However, the weights are normally difficult

this function. the d babilit b lculated di to determine. Another common technique is to define the
IS function, the drop probabiiity can beé calculated according o |imits for less significant metrics, and only optimize the

to the average queue size. The equmbn_um drop probab|l|most important one with the restriction that the other metrics
depends on two factors, the offered load increase rate and HPS not below their limits. In this paper, instead of using

granularity of congestion notification, i.e., the load decreme{}

. Lditional multi-objective optimization techniques to directly
caused b.y one packet _drop. With TCP f_aSt recovery and f@\%rk on link utilization and queueing delay, we have proposed
retransmission mechanism, each drop will cause a TCP souxc erformance metric whose optimization will cause RED to

to decrease its .sendm.g. ratc_a by_ half. Therefore, the granularé ttle in a equilibrium status and hence achieve high utilization
of the congestion notification is determined by the avera &d low queueing delay.

TCP sending rate. When the average sending rate is IargeAs mentioned above, in the equilibrium status, the average

for ExamEIet, da Smf?l'l' number IOf T%PS share_ a ?rottlznle eue size of RED stabilizes around a certain level. When
each packet drop will cause a large decréase in ofiered 10gd;. pattern changes, the equilibrium point may also shift

and vice versa In different scenarios, the increase rate hich makes the average queue size move around. When
offered load is also different. For example, the increase ramae average queue size drifts beyond the control of RED
will be large when there are many TCP flows or the rounl_q '

rio time is short. A it the d babilitv should b ED will become unstable, i.e., the queue status oscillates
fp time 1S short. AS a result, the drop probability shou etween full and empty[14], [36]. This not only causes end
adjusted according to network scenarios to maintain a stabl

ibri it If th trol funct . h €ers to experience significant delay jitters, but also results
equitibniim point. € control function remains uncnangeqy, ji, ynderutilization. Therefore, it is important to keep the
the average queue size has to be varied to obtain the n

Fig. 7. RED control functionP? = f(q)

the control function has to be adjusted accordingly, i.e., tl?)%ti
three parameter which determingg;) should be dynamically
tuned. m= == (8)
w,y controls the cut-off frequency of the low-pass filter. The ) ) ]
cut-off frequency should be high enough to detect managealigere ¢ is the expected average queue size predefined by
traffic variations, while low enough to filter out transienfi€WOrk operatorsg; is the periodic sample of the average
traffic oscillations which can not be effectively controlled byiU€ue size andV is the number of samples. This metric essen-
RED. For example, the oscillation within one round trip timdally calculates the variance of the average queue size relative
rtt should be removed. Therefore, the optinaf is usually to go over a certain period of time. When the equilibrium
related tortt. In addition, since the average queue size [§vel Of RED is far from the expected leveh will be large.
calculated at every packet arrival instead of a constant interVaf, When RED is misconfigured and hence the equilibrium
different link speeds will result in different packet arrivaf@nnot be reached, the queue size will oscillate substantially,
intervals and hence affect the cut-off frequency of the lov@SC resulting in a largen. Therefore, minimizingm wil

pass filter. Consequently, the optima} is also dependent on cause RED to avoid both situations and always maintain an
the link speed. equilibrium aroundg,. Thus, high link utilization and stable

gueueing delay can both be achieved.

mized as:

B. Optimization Objective

For a buffer management algorithm, there are basicaffy Simulation Results

two performance metrics, i.e., link utilization and average The simulations of on-line RED tuning are performed for
gqueue size. The main objective of RED is toaintain a varying traffic load and round trip time, two major factors
high utilization while keeping a low average queue [§4¢ affecting RED performance. The network topology used in
However, optimizing one of the performance metrics maye simulations is shown in Fig 8. We used[18] as the
compromise the other. For example, a high link utilization casimulation tool. Infinite FTP traffic between TCP sources and
always be obtained by increasingin,; or decreasingnax,, Sinks is generated to build up a queue at router RED
hence virtually increasing the average queue size. On the otlseiconfigured onrl to manage a 100-packet buffer. Each
hand, a low average queue size can be obtained by decreasinqulation runs for 40 seconds and network conditions are
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seconds, the-tt of these flows is increased to 170ms. And
after another 13 seconds, thg is reduced to around 2ms. The
instantaneous queue sizes of standard RED and RED with on-
line simulation control are shown in Fig 10. The upper graph
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Fig. 8. Network topology for RED tuning simulation
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changed twice during the simulation. We will compare the

performance of standard RED and RED controlled with the on-

line simulation framework under changing network conditions.
We define an expected average queue size of 30 packets

and the objective is to maintain the equilibrium status of RED

around this level. According to the common guideline of RED L oL

parameter setting, we usein,, = 15, maxy, = 45, mazx, = 5 10 15 20 25 30 35 40

0.1,w, = 0.002 for standard RED. We also assume that the Time (nseconds)

on-line simulation system can promptly detect the change dfy. 10. comparison of standard RED (upper graph) and RED controlled

network conditions and trigger the optimization process 6§ on-line simulation (lower graph) under varying round trip time

RED parameters. In reality, this can be achieved by monitorin

the change in performance metrics or analyzing traffic statisti€dows that whent is increased to 170ms, the equilibrium

directly. of standard RED queue is again broken and the queue keep
First we test the tuning of RED to varying traffic load. Thé@scillating between full and empty status. And wheft is

number of TCP flows in the simulation starts with 16, theffduced to 2ms, although the queue does reach an equilibrium

increases to 64 after around 13 seconds, and finally decres¥8&s, there still exist big variations in queue size. As shown

to 4 after another 13 seconds. The instantaneous queue sideie lower graph, the dynamically tuned RED eliminated

of standard RED and RED with on-line simulation control aré€se problems.

shown in Fig 9. The upper graph shows that for the standard ) o )
D. Real Network Experiment for Optimization of Multiple

RED Queues

To test the effectiveness of the OLS framework, real network
experiments are also performed. This section presents one
such experiment. A Linux-based testbed shown in Fig 11
is used andns is adopted for network simulation in the
on-line simulation system. There are 4 Linux routers in the
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Fig. 9. Comparison of standard RED (upper graph) and RED controlled by
on-line simulation (lower graph) under varying traffic load

) ) Fig. 11. Linux-based testbed topology with multiple RED queues
RED, when the traffic load increases beyond the control of

current RED parameter setting, the equilibrium status magtwork and each of them is configured with a RED queue
not be broken and the queue remains in a very unstable statisch is monitored and controlled by the on-line simulation
where large oscillations between full and empty queue persisgstem through SNMP. Again, infinite FTP sources are used
On the other hand, when the traffic load decreases to a cert@mingenerate network traffic. Note that in this test we will
level, the queue frequently becomes empty and this causgsto tune the parameters for all four RED concurrently.
the underutilization of the link capacity. The lower grapl®ince optimizing each RED individually may compromise the
shows that when dynamically tuned, RED always maintaiperformance of the others, we have taken all RED queues
an equilibrium status where the queue size remains very staldea single black-box system with a total of 16 parameters.
and the utilization is close to 100%. Consequently, a global performance metric has to be defined
Then we test the tuning of RED to varying round trip timebased on the objective of network operators. If using ISP-based
The simulation starts with 16 TCP flows and each with a roundetrics, such as utilization and queueing delay, a certain multi-
trip time of 18ms (not including queueing delay). After 13bjective technique has to be employed to combine the metrics



from every RED router. Instead, we have selected an end ukxxd to several shortest paths. However, the problem of uneven
performance metric, i.e., the Coefficient of Variatioga) (of mapping still remains.
goodputs for TCP connections, which measures the variatioriTwo main approaches have been taken to solve the intra-
of TCP goodputs. This choice is somewhat arbitrary, only @omain traffic engineering problem. One approach is to deploy
demonstrate the effectiveness of our approach. In additighe emerging MPLS technology which is not constrained by
choosing such a metric is also to demonstrate the flexibility tife shortest path nature of routing. Constraint-based routing
the approach, i.e., rather than being restricted to a few metr@an be used to compute routes in an MPLS network subject
like utilization and delay, RED can be tuned according to ang QoS and policy constraints. Another approach is to adjust
performance metric defined by network operators though ttiee link weights of the existing network (running OSPF) such
mechanism of how RED affects this performance metric malat the OSPF routing with these link weights leads to desired
be completely unknown. routes. For example, One earlier approach was to adapt link
During the experiment, a number of TCP flows are genveights to reflect the local traffic conditions on a link or to
erated from one side to the other. The goodputs of theseoid congestion ([45], [46], [47]). This is called adaptive rout-
TCP flows are collected periodically from TCP sinks. Théng or traffic-sensitive routing. However, adapting link weights
Coefficient of Variation(COV) of the goodputs is calculatedb local traffic conditions leads to frequent route changes and
and plotted as a function of time as shown in Fig 12. lis unstable (see [48], [49] for stability analysis). Additionally,
the beginning, the parameters of these RED queues are agdptive routing is based on the local information and therefore
to randomvalues to represent a misconfigured system, whidannot optimize traffic allocation from the viewpoint of the
results in a large unfairness between TCP flows, i.e., a higlerall network. These drawbacks are alleviated in [13] where
average COV value and large oscillations. At 325 seconithe configuration of OSPF link weights is modeled as a black-
the on-line simulator starts and detects the misconfiguratibnx optimization problem. The authors have chosen a heuristic
of REDs. Soon the good configuration with a performanamst function which is piecewise linear with offered load
better than a predefined threshold is found and the netwamkd applied a multi-start hillclimbing algorithm to find good
is reconfigured. This results in an immediate performanselutions.
improvement as shown in the plot: the average of COV dropsin this section, we will use the on-line simulation framework
to a very low value and the instantaneous COV curve beconfes the adaptive configuration of OSPF link weights. Instead
stable over time. of the heuristic metric used in [13], we have chosen the
total packet drop rate in the network as the performance
‘cov of goodput —=— | metric since it is a more accurate to indicate the congestion
i in the network and it also has significant impacts on the
performance of some underlying protocols, such as TCP. The
packet drop rate for one set of link weights could be estimated
e using packet-level or flow level simulation. However, the OLS
R e framework allows flexibility in the type of method used for
0 10 200 300 400 500 600 70C function evaluation (wherever appropriate). Here we use a
GI/M/1/K queuing mode instead of a full-fledged simulation
Fig. 12. Tuning multiple RED queues for optimizing coefficient of variationo calculate the packet drop rate, which is considerably faster.
of goodputs When calculating the drop rate, the mean and variance of
the offered load should both be considered. This is a more
complete representation of traffic conditions than the average
offered load used in [13].

On-line simulator start

coefficient of variation
o
(4]

IV. TRAFFIC ENGINEERING BY TUNING OSPF LNK
WEIGHTS

The term “traffic engineering” refers to a broad set df 1he Objective Function
capabilities where traffic flows are mapped onto a network Our goal for OSPF configuration is to minimize the packet
topology to meet a variety of performance objectives specifiedop rate in the network for a given mean and variance of
by operators. In current Internet, IP traffic is mapped onto thiee aggregate demands between each source and destination
network by standard routing protocols, such as, Open Shortamiters. Let us consider a network represented by a directed
Path First (OSPF) protocol. OSPF is mainly used for intrgraph G=(N,L£), where ' and £ represent respectively the
domain traffic routing. It routes traffic on shortest paths basedt of routers and links in the network. Each lihk £ has
on the advertised link weights. As a result, the link along tHeandwidth denoted by3; and a buffer space oK; packets.
shortest path between the two nodes may become congedidassume that packets arriving when the buffer space at a
while the links on longer paths may remain idle. Many traffiink is full are dropped and there is no other active queue
measurements[42], [43] have observed large variations in limkanagement algorithm running at the routers. In addition to
utilization across the network. OSPF allows for Equal Cotlte knowledge of bandwidth and buffers at all the links, we
Multi Path(ECMP) where the traffic is distributed equallyassume that an estimate of the mean and variance of the
among various next hops of the equal cost paths betweeaggregate demand from each sourcdo destinationt is
source and a destination [44]. This is useful in distributing tHenown. LetD, V denote the mean and variance matrix of the



estimated aggregate demand. In practice, all such informatieith )\, o as its mean and variance of the offered load, we

can be obtained using the tools described in [8], [50]. can have the parameters of the GE distribution representing
In the following, we will first show how to derive the dropthe arrival process:

probability for one link based on the offered load. Then we 2)\2

will formulate the optimal general routing problem which aims P=aie anda = pA 13)

to optimize the overall packet drop rate for the network. No
that the OSPF optimization problem is just the optimal gene
routing subject to the shortest path constraint.

:‘gpe merging ofNV independent GEx,a;) processes is a bulk-

arrival Poisson process with mean arrival rateequal to

_ n Zf;l a; and p equal to a/Z%. Similarly, splitting of a
1) Link Drop Probability: Let P denote the packet drop GE(p,a) process intaV streams according to a Bernoulli filter

probability on a link,\, o2 denote the mean, variance of the.  r,,...rn, the parameters of thé" process are

offered load to this link in packets per second, aBd K D

denote its bandwidth and buffer space respectively. In order Pi= o~
. ; -~ p(1—r;)+r;

to find a closed-form expression for the packet drop probability

P, let us assume an exponentially distributed packet size wiggader may refer to [53], Section 1.4 for more details.

mean X. However, we consider a general arrival process. The packet arrival process of a single TCP flow is bursty

We compute the packet drop probability at the link using i nature with a “bulk” of packets arriving every round-trip

GI/M/1/K queuing model. The drop probability of a finitetime. The model that we have considered implies that we have

GI/M/1/K has been approximated by an infinite buffer GI/M/Xpulk” arrivals (in form of bursts of packets from competing

anda; = r;a. (14)

queue [51] using the following equation. TCP sources) of varying sizes arriving into a queue. Our model
P(Ny = K) does not capture the feedback effect of packet drops on TCP
P(Nk = K) = P(Na < K) (9)  flows because we have considered the aggregate traffic arriving

) o at an OSPF router as our demand estimate.
N denotes the number of packets in the finite buffered queue

whereasN,, denotes number of packets in the infinite buffer Taking the Laplace transform of (12), we get,
QI/M/l queue. The queue length distribution of GI/M/1 queue G(s)=1—p+ pa (15)
is given by [52]: s+a
P(Nao = j) = Awi~! G > 0) (10) Then substitute it into (11) and solve it forfor the GE arrival
o =) )= process gives

where A is the normalization constant and is a constant w=p+(1-p) (16)
depending on the arrival process and service ratean be h
obtained by solving the following equation: where, o aX
= —_- = —_—, 17
w = ((1-wp) (11) P=LT B a7)

where~(s) is the Laplace transform of the arrival process and Finally, using (9), (10), (11) and (15), we get the packet
u is the service rate which is given bg In order to solve drop probability

(11) for w, we need to assume a inter-arrival time distribution K

for the arrival process. Let us consider the Generalized Expo- pP= (p=p)lp+1-p) (18)
nential (GE) distribution for modeling the arrival process to 1=(p+1—prtt

first two moments. We discuss below the reason for choice lof summary, Equation (18) represents the closed form ex-

GE distribution. pression of packet drop probability?, on a single link as a
The pdf of GE distribution is given by function of mean, variancg, o of the arrival process, mean
packet sizeX, link bandwidth B and buffer space<. Figure
g(z) = (1 —p)d(z) + pae™** (12) 13 shows the drop probability as a function of the offered load

whered () is the delta functionp anda two constant param- for difference values of variance of the inter-arrival time for a

eters. As can be seen from (12), a GE process is characteriHfier size of 20 packets. As expected, higher drop probability
by two parameterg; anda. GE distribution is a special case of'S 0Pseérved when the arrival process has a high variance, i.e.,
H, distribution and can be used to model general inter-arri4fi€n the incoming traffic is more bursty.

processes that are more bursty than Poisson process. For & The Optimal General RoutingThe optimal general
Poisson process the variance is equal to the square of mg@Qting represents routing where there is no limitation on the
Hence, GE distribution may be used to model the first twgay a flow is split among multiple paths available between a
moments of processes with variance greater than the squareirce and destination[13]. It is the best that can be achieved
mean. If the arrival process is represented by a GE distributicw carefully setting up multiple Label Switched Paths (LSPSs)
then, with probabilityp the inter-arrival time is exponentially jn, MPLS. Using link packet drop probabilities obtained from

distributed with meam and with probabilityl — p, the inter- (18), we can formulate the optimal general routing problem
arrival time is zero. Hence, this distribution represents a batgh:

arrival process with geometrically distributed batch size and o — Z NP, (19)
exponentially distributed inter-batch arrival times. For a link ler
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Aipi X

0.05 MIM/A/K Queus If p, is equal to=5=, then, using (18), the probability of
L oy vanance =9 T packet dropped at link is given by
g 0.04 r Variance = 8 o K
g 0035 | (P —p)(pr + 1 —p)™
S 003} P = (26)
g . 1—(pl+1—pl)Kl+1
5 0025 ) ) ] )
z o002 The optimal general routing problem is given by (19),
€ 0015 | subject to the constraints given by (21), (22), (23), (24),
£ oo1p (25), (26). It may be noted that we are casting the traffic
0.005 1 according to the routing in order to obtain the mean and
®0 01 02 03 04 05 06 07 08 09 1 variance of the total offered traffic to eatk £. However, we
Offered Load (Normalized to Bandwidth/Packet Size(in bits)) are not iterating to obtain the equilibrium traffic parameters.

Fig. 13. Packet drop probability as a function of offered load foraGE/M/llzléssentl.a"y’. we are using the upper bound on the packet drop
queue for different values of variance probability in (19).

B. Optimization of OSPF Weights Using On-line Simulation

The general optimal routing problem, where the objective
function is completely defined by (19)-(26), may possibly be
solved forfl(s’t)w € L by using some non-linear programming
. . Do technigues. However, under constraints of OSPF routing, the
cglculated by (18). Th.|s is a constrained optimization probleF?—lIation between the link weights and optimization metric
vg(t? tt)h% ;‘Itsvv(\;ecnor;zttziztsas; Zzgzng?ﬁr’f?fr ;g%] ;:nrg‘;":: can no Iong(.er.be analytically.defined. In [54], Quthors have

’ ; X ! proved that it is NP-hard to find OSPF link weight settings
the fraction of the demand®(s, ) on link I, then the flow ¢, an optimization metric piecewise linear in offered load.
balance constraints are given by It is straightforward to show, by proceeding along the same

where )\; is the arrival rate for linkl and P, is its drop rate

—D(s,t) ifj=s lines, that our problem, i.e., minimize the packet drop rate
> f((j’j?)) -y f((;f)) = D(s,t) ifj=t (20) given by (19), is also NP-hard. For such NP-hard problems,
i:(i,j)EL ’ i:(j,i)EL ’ 0 Otherwise heuristic optimization algorithms are usually used to search for

approximate solutions. Instead of choosing a different heuristic
for each NP-hard problem, we can apply the RRS technique
N = Z fl(s’t) (21) to perform efficient search in most of such problems.

(8,) EN'XN The optimal routing in OSPF can be formulated as the

. following “black box” optimization problem:
The parametep(s:!) for the GE process used to fit the demand

D(s,t) is given according to (13): min ®(w) (27)
2D(s,t)?
D(s,t)? + V(s,t)

The mean packet arrival rate to a limk)\;, is given by

wherew is the vector of network link weights an@i(-) the

objective function, which is unknown. Basically, in order to

( o _ . obtain the value of® for a given OSPF weight setting, we run

Let ;" denote the probability with which the demandnodified Floyd Warshall’s algorithm (modified to obtain equal

D(s,t) is sent on linki. Then rl(s"t) is given by cost paths also) to obtain the routing. Then the traffic is cast to

obtain parameters of the aggregate packet arrival process and

Tfsvt) — (23) drop probability for every link € £ using (21), (22), (23),
D(s, 1) (24), (25) and (26). Finally the value @ may be calculated

by (19).

p(s,t) —

(22)

s,t)

fl(57t)

Let pl(s’t) denote the parameter of the GE process after
splitting the deman®(s, t) with probabilityrl(s’t). Thenpl(s’t) . _
denotes the parameterof the GE process representing th&: Simulation Results

flow fl<8’t)_ The parametepl(s’t) is given according to (14): We have considered three network topologies to demon-
(5.0) strate our results. In these topologies, each link is assumed

l(s,t) _ p (24) to consist of two simplex link whose weights may be set

p(s) (1 — rl(s’t)) + rl(s’t) independently. Two are well-known ARPANET topology and

MCI topology.The ARPANET topology consists of 48 routers
ezand 140 simplex links, and the MCI topology 19 routers
and 62 simplex links. We also perform the simulation on a
al?%rge—scale real ISP network topology, i.e., EXODUS network,
obtained from Rocketfuel project[55]. This topology includes
244 core routers from EXODUS network and 1040 simplex
pm=x Y fleplety=1 (25) links. Fig 14 shows the figures of these topologies generated

(5,H)ENXN by NAM[56].

The total offered load on link is given by \; (21), the

parametep of the associated GE distribution may be obtain
by merging the flowg"l(s’t) going throughl. If p; denotes the
parametemp of the GE process associated with the aggreg
traffic on link , thenyp; is given by
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In the simulations, random amount of traffic was sent ARPANET | MCI | EXODUS
from every node to every other node in the network. This | Improvement] 31.8% | 60.2% | 35.7%
random traffic was generated using the method outlined in TABLE |
[13]. For each node., two random numbers are generated TABLE SUMMARIZING THE MAXIMUM PERCENTAGE IMPROVEMENT IN
O., D, € ]0,1]. For each pair of nodes:{v) another random  THE PACKET DROP RATES OBTAINED FOR DIFFERENT TOPOLOGIES FOR
numberC, . € [0, 1] was generated. A denotes the largest THE RESULTS SHOWN INFIGURE 15
Eucledian distance between any pair of nodes anddénotes
a constant, the average demand betweemdv is given by

D(u,v) = aOuDvO(uﬂ,)e . V. OUTBOUND LOAD BALANCING IN BGPENVIRONMENT
where, 5(u,v) denotes the Eucledian distance between theFor inter-domain Traffic Engineering, the traffic demand

nodeswu and v. This method of generating random trafficStatistics are usually kept private and the control over routers
<“>v>) ensures more traffic for source destinatioutside the local domain is normally not available. The global

(the terme 25" ‘ _ : ; _
pairs that are closer to each other. Since a product of thrbe @PProach like those for intra-domain TE is not practical.

random variables is taken to generate the demands, therd i§refore, inter-domain TE has mainly focused on multi-
actually a large variation in the traffic demands. The ratio gomed Autonomous Systems (AS), in-bound/out-bound load-

square of mean to the variance was assumed to be a uniforffy2ncing between adjacent ASes using BGP attributes (e.g.

distributed random variable i, 1]. The mean and variance ofMED, LOCAL_PREF, ASPATH, etc.) [57].

the traffic demands are generated using the above procedurd '€ AS€s are increasingly becoming muiti-homed [57]. The

All the links in the network have 1Mbps bandwidth with outoound traffic of an AS may be routed on one of several
buffer size of 50 packets. The packet size was chosen to gPound links, depending on the decision made by the inter-

exponentially distributed with mean packet size of 200 byte@® routing algorithm, usually Border Gateway Protocol(BGP).
BGP routing decisions are made by a series of policy filters.

We usedns[18] to simulate the real network runningygyally an AS may use the shortest AS path for most
OSPF. The traffic in the network was generated with thggtinations. This may lead to unbalanced load distribution
method described above. Every 200 seconds the traffic pattgfiong the multiple outbound interfaces. In this section, we
(the mean and variance of demand matrix) was changed {ghsider the problem of load-balancing outbound traffic in

introduce a dynamic scenario. The traffic_ ger_1erator is implgGP from the perspective of a single AS. We show that this
mented over UDP to generate bursty traffic with the GE intels 5, NP-hard problem and use the OLS framework to solve
arrival distribution described in (12). In the simulation, wey,g problem.

assume OLS has a complete knowledge of necessary networkcp provides only some simple capabilities for TE between

information, such as, traffic _demands, network topology, etgg neighbors. The MED attribute can be used by an AS to
Whenever a change of traffic pattern happens, OLS perforiag, m its neighbor of a preferred connection (among multiple

the optimization procedure for a certain time to obtain ghysical connections) for inbound traffic to a particular address
good OSPF link weight setting. If the optimized setting gj@

e N refix. Usually it is used by the service providers on the
better than the original, it will be deployed at 100 secondgqyest of their multi-homed customers. Lately, it is also being

after the traffic change. The 100-seconds time difference jSeq petween the service providers. The R&H attribute
used because we want to observe the performance differege 10 been used to achieve TE objectives.PASH is

between before optimization and after optimization. Note thal; feq” or “padded” with additional instances of the same
here we assume the running time of the optimization procegg numper to increase its length and expect lower amount of

is less .than the traffic change period, i.e., the' optimization ha$)ound traffic from the neighbor AS to whom it is announced.
been finished at 100 seconds after the traffic change. In Q5 ever, this may lead to a large overhead if done too often.
S|mu!at|on,_ the optimization procedure typically finds a beFt%nother way used to achieve some TE is to subvert the BGP-
solut|on_ with a few _hundred to a few thousands of fu_nctlomDR address aggregation process. In particular an AS may
evaluations (depending on the size of the network), which C@Qact more-specifics, or de-aggregate it and re-advertise the
be interpreted to a computation time of minutes to hours Wh?ﬁbre—specifics to other ASes. The longest-prefix match rule
using a single Pentium Il class PC. This time can be furthgf |p torwarding will lead to a different route for the more
reduced by performing the optimization on a more powerfdlyecific address. However, this is achieved at the expense
computer or multiple computers. of larger number of entries in forwarding tables. This is
The actual packet drop rates are collected during the siman indirect and undesirable way to achieve inbound load-
lation for all the traffic sinks in the network and then summebalancing. One way to avoid subverting CIDR aggregation
together to get the total packet drop rate. Figure 15 shows tafsthown in our recent work [58]), in the case of multi-homed
packet drop rate in the network as a function of time. Tablestub ASis by mapping the inbound load-balancing problem to
summarizes the maximum improvement in packet drop rates address management problem. Alternatively, AS neighbors
for different topologies. Note that more or less improvemenisay agree on BGP community attributes [59] (that are not
may result depending on the topology and traffic conditionse-advertised) to specify traffic engineering. We notice that
We observe that OLS can demonstrate improvements of thbound load-balancing is considerably complex and requires
order of 30-60% in the total drop rate. re-advertisements or support from neighboring ASes. How-
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ARPANET MCI EXODUS

Fig. 14. Network topologies for simulations of OSPF link weight configuration
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ever, outbound load-balancing is simpler, and can be achiey®sed on destination prefixes in the routing table are more
by impacting local policy changes. suitable for load balancing [42] since they are relatively stable
The LOCAL PREF attribute is used locally within the AS tothrough the day and on per-hour time scales. We have used this

prefer an outbound direction for a chosen destination prefganularity for defining a flow in our load balancing scheme.
AS or exit router. LOCALPREF holds the highest priority In other words, the traffic demand is split into flows at the
in the policy filter hierarchy, i.e. the BGP will choose thdevel of per destination-prefix.
path with h!ghest LOCALPREF_ over ot_her policy attnbutes.. A typical BGP routing table consists of thousands of des-
Therefore, if we know the desired routing to meet the traffic . : ) . )

. : C tination prefix entries. It will be very complex to work with
engineering objective, we can use the LOCRREF to over- ) .
. ; . such a large number of traffic flows. However, many traffic
ride the default routing. Recent work [3] observes that it is .

) . SN . measurements [42], [43] have demonstrated the existence of
possible to adjust traffic distribution over outbound links b

changing LOCALPREF of some “hot-prefixes” and Shiﬂmggo—called elephant and mice phenomenon. That is, a small

them away from congested links. However, the problem gymber of traffic streams, known akephantsgenerate a large
unbalanced traffic distribution still remains. In fact, how & ortion of total traffic whereas a large number of streamise

. . . o enerate a small portion of total traffic. For example, it has
shift” these hot-prefixes to achieve load balancing is a NF-

i been found that the top 9% of flows between ASes account
hard problem as we will show later. Here we use the o

. . : ; for 86.7% of the packets or 90.7% of the bytes transmitted
line simulation framework to tackle this problem and perfor !
; . I6[143]. Furthermore, these elephant traffic flows are usually very
automatic outbound load balancing. . )
stable over time and hence are suitable to be re-routed for
A. Granularity of Traffic Demands Ioad—bz_alancing purpose. Based on thgse observa_tions, our load
. balancing scheme only attempt to adjust the routing of the top

_G|ven a _certz_;un ou'Fbound raffic de“_“af?d’ load balanci % destination prefixes in the routing table based on their
aims to split this traffic demand and distribute them even Yaffic demandst

among outbound links. Usually, the traffic demand can be
divided into a number of traffic flows. In the finest granularity,

a traffic flow is determined by the source and destination
IP addresses and the port number. In a coarse granularity, f"il'he fraction of optimized destination prefixes can be kept fixed or
traffic flow can be identified by the source and destination AG;.

! ) reased in the event of increase in routing tables. In future, a smaller fraction
pair. Internet measurements have shown that traffic aggregatiesestination prefixes may be used if 10% gives a very large number.
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B. Optimal Routing Calculation for Load Balancing solution with a upper bound @ft*, wheret* denotes the value

Given the knowledge of traffic demand and outbound Iinﬁ%‘c ¢ produced by the optimal solution. The time complexity

information, the optimal routing for load balancing can b8' this method is exponential in the value af
calculated. Letm be the number of outbound links in the In_stead of the integer programming approaph, we have
concerned AS. Let; and c;, i = 1...m, denote theit applied the OLS framework to this load balancing problem.

outbound link and its capacity (or bandwidth), respectivelyith the flexibility of OLS, it is possible to optimize for
All the outbound traffic of this AS will be routed on these’@rious performance objectives besides load balancing. For
links. If s i — 1...m. denotes the total outbound traffic€x@mple, in addition to load-balancing, the network operator

carried by thei’” link, then the utilization of link/; is given also prefers to use the shortest paths. It is possible to formulate
L] K2

by s;/ci. The objective of load balancing is to minimize thé multi-objective optimization problem and obtain a solution,
maximum link utilization among all the outbound links, i.e.,USiNg OLS, that meets both load-balancing and shortest path

criteria.
minimize max il (28) The complete optimization procedure performed by the OLS
=lem G framework can be summarized as follows:
Let n denote the number of selected destination prefisgs, 1 Extract top 10% destination prefixes, with traffic de-
andd;, j = 1...n, denote the average offered load for these'  andsd. j=1...n, from the routing table:
destinations. Our load balancing scheme attempts to adjusighie Calculat]édj/ci and fi/ci, i = 1...m, j = 1...n

routing of thesen prefixes in order to minimize the objective according to the traffic demand for each prefix and the
function in Equation (28). LeD; denote the subset of the capacity of each outbound link.

prefixes that are routed on link by adjusted routing. Iff; sep 3 Each destination prefix may be reachable by all or some
denotes the load on link generated by the other 90% traffic of the outbound links. This information can be obtained
flows, which are routed to this link by the default BGP routing, from Adj-RIBs-In at a BGP router. Assign a very large
then Equation (28) becomes value ofd, /c; for the infeasible routes, so the solution

N B d; fi (minimization) will not result in an infeasible solution.
minimize & = ifﬁfn( Z T) + c; (29) Step 4 Measure or compute the value &f for default routing

JeD: using Equation (29) denoted 1§°.
where, the first term represents the percentage load d@el9 5 Run RRS till a stopping criteria is reached. A stopping
the selected 10% flows and the second term represents the criteria can be a limit on time, number of iterations etc..
percentage load generated by the other 90% flows on link  Let ®*, 7 denote the value of objective function and
l;. This problem can also be written as the following integer  corresponding routing at the end of optimization.
programming problem. Step 6 If [2=2°| > A, whereA is the predefined threshold,
deploy 7 by setting a high LOCALPREF of desired

minimize ¢ (30) . . 2 .
" links for appropriate destination prefixes.
. d; i )
subject to inj—j + Ji <t,i=1l...m
=1 GG C. Simulation Results

iwi- —1,j=1...n The simulations presented in this section demonstrated the
P T load balancing for an AS including 8 outbound links with
normalized capacities of 100, 100, 100, 100, 45, 45, 45, 12,
respectively. We assume the number of top 10% destination
where z;; is a binary number and;; = 1 means flowd; prefixes which generate most of the traffic is 148. Note this
is output on linkl;, otherwisexz;; = 0. Note that traffic number is chosen somewhat arbitrarily only for the description
flow d; may not have all outbound links as its alternativeurpose. In the simulation, we generate only 148 traffic flows
paths. One can assume an arbitrarily latfygc; for those instead of all the traffic flows since the actual effect of the
links. The problem represented by Equation (30) is actualbther 90% flows on the simulation is only to reduce the
a classical task scheduling problem with unrelated parallepacity of the links by a certain amount. Therefore, ignoring
machines [61], where a number of tasks with different sizélsese flows will not compromise the validity of the simulation
are assigned to a set of parallel machines. The processiagults in any way. We assign each destination prefix a certain
time of each task is different on different machines and thead such that the total offered load is the 30% of the total
objective there is to minimize the completion time of all tasksapacity of all the links. In the beginning of the simulation, the
by carefully distributing these tasks onto the parallel machinesffered load is randomly distributed over the outbound links.
This problem is NP-hard and approximation algorithms can Gden we apply the proposed load balancing scheme to the
used to obtain near-optimal solutions. For example, in [62]reetwork. The link utilization of outbound links are compared
linear programming technique is first used to obtain a basit Table Il. As shown in the table, before optimization, the
solution where there are at most — 1 non-integralz;;. load distribution across the outbound links is rather uneven,
Then for these non-integrat;;, an exhaustive enumerationfor example, one link is greatly under-utilized with a utilization
is performed to find the optimal scheduling. Combining thef 7% while another link is heavily used with a utilization of
solutions of these two steps can produce an approxim@®1%. After applying the load balancing scheme, the load

z;;€{0,1},i=1...m, j=1...n
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Outbound Link Capacity 100 | 100 | 100 | 100 | 45 45 45 12
Before Optimization | 0.07 | 0.25| 0.20 | 0.33 | 0.60 | 0.45| 0.48| 0.91
After Optimization 0.25| 0.33] 0.27 | 0.30| 0.35| 0.33| 0.34| 0.23

TABLE I

LINK UTILIZATION OF OUTBOUND LINKS BEFORE AND AFTER OPTIMIZATION

distribution become much more even and the utilization ofs]
each link is very close to the ideal value, i.e., the average
utilization 30%. The maximum link utilization drops from [,
91% to 35%.

context and is especially advantageous when handling obj

(8]
VI. CONCLUSION

In this paper, we presented an on-line simulation framework
for adaptive large-scale network parameter configuration. The;
on-line simulation framework tackles the parameter configu-
ration problem with a black-box optimization approach. As
a result, it allows great flexibility in the choice of perfor{iq]
mance objectives to be achieved and is generally applicabld
to a variety of network protocols. The essence of the oL
framework is to formulate network parameter configuration g
a back-box optimization problem. The major features of these
optimization problems are examined and an efficient sear g
algorithm, Recursive Random Search algorithm, is design[g
to address these problems. RRS emphasizes on finding a March 1999.
“good” solution within the limited time frame instead of full [1°]
optimization, which is very important since the optimizatiofe;
is performed under “quasi-stationary” network conditions. The
RRS algorithm performs very efficiently in the concernelt’!

tive functions affected by noises and those with negligible9]
parameters because of its basis on random sampling.

The application of the OLS framework to three networkzo]
protocols, RED, OSPF and BGP, has been investigated. Sim-
ulations and experiments have demonstrated that OLS is vE&d|
successful to adapt the protocol configuration to the prevailing
network conditions and achieve various network performange]
objectives. In addition to these applications, many other net-
work protocols can also be configured with this framewor
Exploring other possible applications is one of our future
research directions.

The overall approach proposed in this paper is limited 6?/4]
the extent we can model, measure and simulate networks.
We can leverage more accurate and rapidly evaluated mé&H
els/simulations in the future within this framework.
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