
1

Large-Scale Network Parameter Configuration
Using An On-line Simulation Framework

Tao Ye, Hema Tahilramani Kaur, Shivkumar Kalyanaraman
Department of Electrical, Computer and System Engineering

Rensselaer Polytechnic Institute
Troy, New York 12180

{yet3,hema}@networks.ecse.rpi.edu, shivkuma@ecse.rpi.edu

Abstract— As the Internet infrastructure grows to support a
variety of services (eg: VPNs), its legacy protocols (eg: OSPF,
BGP) are being overloaded with new functions such as traffic
engineering. Today, operators engineer such capabilities through
clever, but manual parameter tuning. In this paper, we propose
a back-end support tool for large-scale parameter configuration
that is based on efficient parameter state space search techniques
and online simulation. The framework is useful when the network
protocol performance is sensitive to its parameter settings, and
its performance can be reasonably modeled in simulation. In
particular, our system imports the network topology, relevant
protocol models and latest monitored traffic patterns into a
simulation that runs online in a network operations center
(NOC). Each simulation evaluates the network performance
for a particular setting of protocol parameters. A recursive
random search (RRS) technique is proposed to explore the
large-dimensional parameter state space, where each sample
point results in a single simulation. In other words, the overall
parameter configuration problem is modeled as a“black-box”
optimization problem. The goal of RRS is efficiency, i.e., to find
“good” network protocol configurations for the current traffic
conditions quickly. An important feature of the framework is its
flexibility: it allows arbitrary choices in terms of the simulation
engines used (eg: ns-2, SSFnet, future scalable simulators etc),
network protocols to be simulated (eg: OSPF, BGP, RED, MPLS
etc), and in the specification of the optimization objectives. We
demonstrate the flexibility and relevance of this framework in
three scenarios: joint tuning of the RED buffer management
parameters at multiple bottlenecks, traffic engineering using
OSPF link weight tuning, and outbound load-balancing of traffic
at peering/transit points using BGP LOCAL PREF parameter.
The first application (RED) is prototyped and evaluated in a
Linux-based testbed using SNMP as the configuration interface.

Index Terms— network performance management, network
protocol configuration, black-box optimization, on-line simulation

I. I NTRODUCTION

Today’s network protocols like BGP and OSPF were de-
signed for one primary service: “best effort reachability.” In-
creasingly, network operators want to use the IP infrastructure
for complex functions like deploying Virtual Private Networks
(VPN), managing traffic within ASes to meet Service Level
Agreements(SLA), and between ASes (at peering points) to
optimize on peering agreements. Such operational optimiza-
tion is performed by using “parametric hooks” in protocols
that can be “tweaked” appropriately. However, the parameter
setting process today is manual and is widely considered a
black art. Recent studies [1] and common knowledge [2], [3]

is that the configuration of many protocols, such as BGP, is
tough, error prone and is likely to get harder as the protocol
is overloaded to serve more functions. Though some tools are
emerging to aid operators, a lot more needs to be done.

Network
Network
Model Optimization

Black−box

Algorithm

Experiment
Parameters

Performance
Metric

Network
Information

Recomended
Parameters

Optional Direct
Parameter Setting

Human
Operator

Monitor

On−line Simulation System

Network
Simulator

Fig. 1. On-line simulation framework for adaptive configuration of network
protocols

In this paper, we propose a novel on-line simulation frame-
work (OLS) to aid generic large-scale network protocol con-
figuration. Realistically, the tool may be used as a “recom-
mendation service” to suggest a variety of “good” parameter
settings and illustrate the resulting impacts of the settings so
that operators are better informed than their current manual
procedures. Fig 1 shows the basic idea of this system. We
formulate the network protocol configuration as a “black-box”
optimization problem over the parameter state space. A sample
point in the state space corresponds to a network simulation
that evaluates the performance in terms of pre-determined met-
rics. The simulation also imports the current network topology
and a digest of latest traffic patterns. We propose a Recursive
Random Search (RRS) algorithm that intelligently searches
the large-dimensional parameter state space to find “good”
settings quickly. The “black-box” approach allowsflexibility
in terms of objectives of the desired optimization, and hence
can be applied to a variety of protocols and configuration
problems. The key assumptions of the framework is that the
underlying network protocol performance is indeed sensitive to
the settings of the parameter set chosen; and that the network
topology, traffic and protocol can be reasonably modeled in
simulation.

While these assumptions appear to be somewhat restrictive
today, on the long-term, our framework can leverage improve-
ments in modeling of topology [4], [5], [6], traffic [7], [8]

2

and/or improvements in scalable network simulation [9], [10],
[11] technology. To the best of our knowledge, our flexible
approach is unique and the first of its kind as applied to IP net-
work management. There have been proposed configuration-
support or adaptive protocol techniques for specific problems
(eg: BGP [12], OSPF [13],RED [14]). We discuss these related
works in later sections.

A key component of the framework is an efficient parameter
state space search algorithm. The requirements on such a
“black-box” algorithm are as follows:a) it should scale to
large-dimensional parameter state spaces;b) it should find
“good” solutions quickly;c) it should be robust to noise (eg:
minor inaccuracies in modeling) in the function evaluations;
andd) it should be able to automatically reject negligible pa-
rameters (i.e. to which the protocol is insensitive). Traditional
search algorithms (eg: genetic algorithms[15], multi-start hill-
climbing, tabu search[16] and simulated annealing[17]) could
not provide the above desired combination of properties as we
will show in SectionII.

We propose a new search algorithm, Recursive Random
Search (RRS), that completely relies on random sampling and
is a good match to our search objectives. We demonstrate
the flexibility and relevance of our overall framework in three
scenarios: joint tuning of the RED buffer management param-
eters at multiple bottlenecks, traffic engineering using OSPF
link weight tuning, and outbound load-balancing of traffic at
peering/transit points using BGP LOCALPREF attributes. We
use simulations to demonstrate these applications, i.e., per-
form the on-line simulation framework inside a “simulation”.
Furthermore, the first application (RED) is also prototyped
and evaluated in a Linux-based testbed using SNMP as the
configuration interface.

The rest of this paper is organized as follows: Section II
describes the features of network parameter optimization prob-
lems and presents the overview of the Recursive Random
Search(RRS) algorithm. Section III investigates the application
in adaptive tuning of RED. Section IV presents the application
in traffic engineering by tuning OSPF link weights. Section V
presents the application in outbound load balancing by tuning
BGP. Finally, Section VI concludes this paper.

II. N ETWORK PARAMETER OPTIMIZATION PROBLEM

We model the network parameter configuration problem as
solving the following equation:

C = f(N , p) (1)

whereN denotes network scenario,p the desired performance
metric andC the parameter configuration of the concerned
network protocol. Given the desired performance metricp and
the network scenarioN , Equation (1) calculates the required
configurationC. Due to the complexity of the Internet, the
analytical derivation of Equation (1) is usually not realistic.
However, with network simulation software, such asns[18],
SSFNET[10], it is possible to empirically examine network
performance for a certain network configuration and scenario,
i.e., establish the following empirical equation:

p = f−1(N , C) (2)

Based on this, for a certain network scenarioN and a
given parameter space ofC, an optimization algorithm can
be employed to search for a good solutionC0 which meets
a certain performance objectivep0. With this black-box op-
timization approach, the problem defined in Equation (1)
can be empirically solved. This idea is the basis of the on-
line simulation framework. Note that for network parameter
optimization problems, traditional experiment design methods,
such as, factorial design, are not applicable since they normally
assume a relatively simple mathematical model and try to fit
the problem into this model. Since littlea priori knowledge
is available, to formulate a proper model is very difficult.

Like optimization problems arising in many engineering
areas, network parameter optimization can be mathematically
formulated as (assume minimization): given a real-valued
objective functionf : Rn → R, find a global minimumx∗,

x∗ = arg min
x∈D

f(x) (3)

wherex is the parameter vector to be optimized,D is the pa-
rameter space, usually a compact set inRn. In these problems,
the objective functionf(x) is often analytically unknown and
the function evaluation can only be achieved through computer
simulation or other indirect ways. This type of problems are
hence called “black-box” optimization problems where the
objective function is modeled as a black-box. Since littlea
priori knowledge is assumed, these black-box optimization
problems are considered very hard to solve. In addition, since
the objective functions are often non-linear and multi-modal,
this type of optimization are also calledglobal optimization
in contrast tolocal optimizationwhich has only one single
extreme inf(x) and is much easier to solve.

Most of black-box optimization problems are NP-hard and
can only be solved for near-optimal solutions with heuristic
search algorithms. Many heuristic search algorithms have been
proposed and demonstrated to be very successful in practice,
such as, multi-start hill-climbing[19], genetic algorithm[15]
and simulated annealing[17]. However, there has been no
consistent report on their performance. In fact,No Free Lunch
Theorem[20], [21] has theoretically demonstrated that no mat-
ter what performance metric is used, no single optimization al-
gorithm can consistently perform better in all problem classes
than the others. The average performance of any algorithm is
the same over all classes of problems. In other words, there
exists no general all-purpose optimization algorithm. For one
specific class of problems, its inherent properties have to be
carefully investigated to perform efficient optimization.

A. Properties of Network Parameter Optimization Problems

The following features are usually present in network pa-
rameter optimization problems.

High efficiencyis required for the desired search algorithm.
More specifically, the emphasis of the search algorithm
should be on finding a better operating point within the
limited time frame instead of seeking the strictly global
optimum. Network conditions vary with time and the
search algorithm shouldquickly find better network pa-
rametersbefore significant changes in the network occur.

3

Furthermore, network parameter optimization is based on
network simulation which might be very time-consuming.
This also requires a highly efficient search.

High dimensionalityis another feature of these problems.
For example, AT&T’s network has thousands of routers
and links[6]. If all OSPF link weights of this network
are to be configured, there will be thousands of pa-
rameters present in the optimization. High-dimensional
optimization problems are usually much more difficult to
solve than low-dimensional problems because of “curse of
dimensionality”[19].

Noiseis often introduced into the evaluation of the objective
function since network simulation may be used for func-
tion evaluations. Due to inaccuracies in network modeling,
simulation, etc., the obtained empirical objective function
may be distorted from the real one, in other words, affected
by small random noises. Fig 2 shows an example of 2-
dimensional empirical objective function obtained with
network simulation. It can be seen that there exist many
irregular small random fluctuations imposed on the overall
structure.

Drop Rate

0

0.02
Queue Weight 0

0.2

Maxiumum Drop Probability

0.015
0.016
0.017
0.018
0.019

0.02
0.021
0.022

Drop Rate

Fig. 2. An empirical objective function obtained with network simulation
(RED buffer management)

Negligible parametersmay also be included in the objective
function. These parameters contribute little to the objective
function and should be ruled out from the optimization
process. However, in practice, they are normally very
difficult to be identified and eliminated effectively. If the
search algorithm is able to automatically excluded these
parameters from the optimization process, the efficiency
of the optimization will be significantly improved.

“Globally convex” or “big valley” structure[22], [23] may
be present in the objective functions. That is, high-quality
local optima tend to center around the global one and
be close to each other, whereas low-quality local optima
tend to distribute far away from the global one. “Globally
convex” structure appears in many practical optimization
problems, especially in the situations when the objective
function is affected by random noises. Boese[24] has
demonstrated the existence of this structure in complex
Traveling Salesman Problem(TSP) and graph bisection
problem, and presented anintuitive graph for this struc-
ture(Fig 3). The same structure has been found in cir-
cuit/graph partitioning and job-shop scheduling, etc.[25].
Leary[26] also confirmed that there exist similar “funnel”
structures in molecular conformation problems where the

Fig. 3. Big valley structure

potential energy from the forces between atoms is mini-
mized.

The issues described above are common in many practical
optimization problems[27], [28]. For such class of problems,
genetic algorithm[29] and simulated annealing[30], controlled
random search[31], are the most common algorithms since
they require littlea priori information from the concerned
problem and are generally applicable. However, these algo-
rithms are mainly designed for full-optimization and often
lacking in efficiency. In practice, they are often combined
with local search techniques, such as, deepest descent and
pattern search, to improve their efficiency. However, since
these local search techniques use fixed local structures to guide
the search process, they are usually susceptive to the effect of
noises[32]. For example, in pattern search, the wrong pattern
may easily be derived if the samples for pattern exploration are
corrupted by noises. Furthermore, for the objective function
with “globally convex” structures, local methods also perform
inefficiently since there exist a large number of low-quality
local optima. For example, multistart local search algorithms
may waste many efforts on examining these low-quality local
optima and essentially work like an inefficient random sam-
pling.

B. Recursive Random Search Algorithm

Because of the disadvantages described above for traditional
search algorithms, we have proposed the Recursive Random
Search algorithm (RRS)[33] to meet the requirements of
network parameter optimization. RRS is based on the high-
efficiency feature of random sampling at initial steps. The idea
is to use initial high-efficiency random samples to identify
promising areas and then start recursive random sampling
processes in these areas which shrink and re-align sample
spaces to local optima. We have tested this algorithm on a suite
of difficult benchmark functions and some network parameter
optimization problems. The results have shown that in terms
of quickly locating a good solution, RRS outperforms other
search algorithms, such as multi-start pattern search and con-
trolled random search. The test results have also demonstrated
that RRS is much more robust to noise than those local-
search-based method. Furthermore, the inclusion of negligible
parameters in the objective function has little effect on the
efficiency of RRS. In the following we will first illustrate the
initial high-efficiency feature of random sampling and then

4

present a concise description of the algorithm. Readers can
refer to [33] for more details and the test results.

1) Initial Efficiency of Random Sampling:Given an mea-
surable objective functionf(x) on the parameter spaceD with
a range of[ymin, ymax], we can define thedistribution function
of objective function values as:

φD(y) =
m({x ∈ D | f(x) ≤ y })

m(D)
(4)

wherey ∈ [ymin, ymax] andm(·) denotesLebesgue measure,
a measure of the size of a set. For example,Lebesgue
measureis area in a 2-dimensional space, volume in a 3-
dimensional space, and so on. Basically, the above equation
represents the portion of the points in the parameter space
whose function values are smaller than a certain levely. φD(y)
is a monotonously increasing function ofy in [ymin, ymax], its
maximum value is 1 wheny = ymax and its minimum value
is m(x∗)/m(D) wherex∗ is the set of global optima. Without
loss of generality, we assume thatf(x) is a continuous func-
tion and m(x ∈ D|f(x) = y) = 0, ∀y ∈ [ymin, ymax], then
φ(y) will be a monotonously increasing continuous function
with a range of[0, 1]. Assuming ayr ∈ [ymin, ymax] such that
φD(yr) = r, r ∈ [0, 1], a r-percentileset in the parameter
spaceD can be defined:

AD(r) = {x ∈ D | f(x) ≤ yr } (5)

Note thatAD(1) is just the whole parameter spaceD and
limε→0 AD(ε) will converge to the global optima. Suppose the
sample sequence generated byn steps of random sampling is
xi, i = 1 . . . n andxn

(1) is the one with the minimum function
value, then the probability ofxn

(1) in AD(r) is:

P (xn
(1) ∈ AD(r)) = 1− (1− r)n = p (6)

Alternatively, ther value of ther-percentileset thatxn
(1) will

reach with probabilityp can be represented as:

r = 1− (1− p)1/n (7)

For any probabilityp < 1, r will tend to 0 with increasing
n, that means, random sampling will converge to the global
optima with increasing number of samples. Fig 4 shows ther-
percentileset thatn steps of random sampling can reach with
a probability of 99%. We can see thatrandom sampling is
highly efficient at initial steps sincer decreases exponentially
with increasingn, and its inefficiency is from later samples.
As shown in Fig 4, it takes only 44 samples to reach a point
in AD(0.1) area, whereas all future samples can only improve
r value ofxn

(1) at most by 0.1.

2) Overview of Recursive Random Search:The basic idea
of RRS is to maintain the initial efficiency of random sampling
by “restarting” it before its efficiency becomes low. However,
unlike the other methods, such as hillclimbing, random sam-
pling cannot be restarted by simply selecting a new starting
point. Instead we accomplish the “restart” of random sampling
by changing its sample space. Basically, we perform random
sampling for a number of times, then move or resize the
sample space according to the previous samples and start
another random sampling in the new sample space.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

r

Number of Function Evaluations

Convergence Curve of Random Sampling with Probability 0.99

Fig. 4. AD(r) of xn
(1)

in random sampling with probability 0.99

A stochastic search algorithm usually comprises two el-
ements:exploration and exploitation. Exploration examines
the macroscopic features of the objective function and aims
to identify promising areas in the parameter space, while
exploitation focuses on the microscopic features and attempts
to exploit local information to improve the solution quickly.
Many search algorithms, such as multistart type algorithms,
do not differentiate areas and hence may waste much time in
trivial areas. RRS attempts to identify a certainr-percentile
set AD(r) and only start exploitation from this set. In this
way, most of trivial areas will be excluded from exploitation
and thus the overall efficiency of the search process can
be improved. This can be illustrated by the example shown
in Fig 5. The upper graph shows a contour plot of a 2-

 950
 900
 850
 800
 750
 700
 650
 600

−150 −100 −50 0 50 100
−150

−100

−50

0

50

100

 666

−150 −100 −50 0 50 100
−150

−100

−50

0

50

100

Fig. 5. Contour plot of an objective function(left) and its region of
AD(0.05)(right)

dimensional multi-modal objective function and the lower
graph shows the set ofAD(0.05). As shown in the figure,
the function has many local optima; however, only three
regions remain inAD(0.05) (shaded areas in the right plot).
Each of these regions encloses a local optimum and the one
with the biggest size happens to contain the global optimum.
It is desirable that the size ofAD(r) region identified by

5

exploration is as small as possible such that most of trivial
areas are filtered out. On the other hand, its smallest size is
limited by the efficiency of random sampling, i.e., it should
be within the reach of initial high-efficiency steps of random
sampling so that identifying a point in it will not take too long
to lower the overall efficiency.

To identify aAD(r) area, RRS first take a certain number of
samples and use the best one to decide the location ofAD(r).
It then goes on into recursive random sampling process by
shrinking or re-aligning the sample space. In recursive random
sampling, random sampling is performed for a number of
times, if it fails to find a better point, the sample space is
shrunk by a certain ratio. Otherwise, the sample space keeps
its size unchanged, but moves its center to the new improved
sample. This shrink-and-re-align procedure is repeated until
the size of the sample space decreases below a threshold.
Then we identify anotherAD(r) and restart the above search
process. Interested readers can refer to [33] for the detail of
the algorithm.

In contrast to most of the search algorithms, the RRS
algorithm is mainly built upon random sampling. RRS per-
forms the search process based on stochastic information on a
certain sample area, therefore, its performance is less affected
by noises. In addition, RRS is more efficient when dealing
with the objective function with negligible parameters. This
is because that random samples will still maintain its uniform
distribution in the subspace composed of only those important
parameters, and hence effectively removes negligible parame-
ters from the optimization process. In this way, the efficiency
of the search can be improved significantly. For the objective
function with “globally convex” feature, RRS is able to detect
the overall structure by its initial extensive sampling and then
approach global optima with recursive sampling very quickly.
These features have been empirically validated by the tests on
a suite of benchmark functions[33].

III. A DAPTIVE TUNING OF RED

Buffer management mechanisms can be used for conges-
tion control by cooperating with TCP end-to-end congestion
avoidance mechanism. Traditional DropTail could not effec-
tively prevent the occurrence of serious congestion and often
suffer from long queueing delays. Furthermore, the global
synchronization may occur during the period of congestion,
i.e., a large number of TCP connections experience packet
drops and hence back off their sending rate at the same time,
resulting in underutilization and large oscillation of queueing
delay. Random Early Detection (RED) has been proposed [34]
to address these problems. The basic idea of RED is to detect
the inception of congestion and notify traffic sources early
to avoid serious congestion. It has been demonstrated to be
able to avoid global synchronization problem, maintain low
average queueing delay and provide better utilization than
DropTail[34]. Therefore, IETF has recommended RED as the
single active buffer management for wide deployment in the
Internet[35]. However, the setting of RED parameters has
proved to be highly sensitive to network scenarios and the
performance of misconfigured RED may suffer significantly

[14], [36], [37]. Therefore, RED needs constant tuning to adapt
to the prevailing network conditions. In view of this, it has
been debated whether or not RED can achieve its claimed
advantages[37], [38], [39].

Based on simplified models, some general guidelines for
setting RED parameters have been proposed[34], [36], [40].
Intuitive modifications on RED have also been proposed to
automate the tuning of RED under varying network conditions
by adjusting one of the parameters[14], [41]. However, the
effectiveness of these methods in complex network scenarios
is still under investigation. Rather than relying on simplified
models or intuition, here we employ the on-line simulation
framework for the dynamical tuning of RED.

A. Problem Formulation

RED uses the average queue sizeq̄ as an indicator of
the congestion extent and determines the packet drop rate
accordingly. As shown in Fig 6, the instantaneous queue size

P=f(q)

Bottleneck

Control Function

q

Low Pass Filter

r u

q
P

TCP sources

Fig. 6. RED working mechanism

q is sampled at every packet arrival and then passed through
a low-pass filter to remove transient noises. Based on the
smoothed average queue sizeq̄, the drop probabilityP is
calculated with a control functionP = f(q̄). The arriving
packets are randomly dropped (or marked) according to this
probability P . Traffic sources react to these drops and adjust
offered loadr accordingly. Therefore, RED is mainly designed
to work with TCP traffic sources which are responsive to
packet drops and it will not work well in the cases like UDP
traffic or short-life HTTP traffic.

A queue will build up and keep increasing if the offered load
is larger than the bottleneck capacity; therefore, the objective
of a buffer management algorithm is to stabilize the offered
load around the bottleneck capacity. Basically, TCP sources
increase their sending rate every round trip time; on the other
hand, the packet drops cause TCP sources to lower their
sending rates. In the equilibrium status, the increase rate of
TCP traffic should be approximately equal to its decrease rate
caused by packet drops and thus the offered load will stabilize
around a certain level. If this equilibrium status is achieved
while maintaining a certain queue size, the link utilization will
be close to 1, i.e., the offered load will stabilize around the
bottleneck capacity. The rationale of RED is to search for an
appropriate packet drop rate by varying the average queue size
to counteract the increase of offered load.

There are four parameters in RED. Among them, the mov-
ing average weightwq determines the cut-off frequency of the
low-pass filter, and the other three parameters, i.e., minimum
thresholdminth, maximum thresholdmaxth and maximum
drop probabilitymaxp, determine the control functionP =

6

f(q̄). In the standard version of RED, the control function
is determined by the parameters as illustrated in Fig 7. With

p

qAverage Queue Size
min

1

max

D
ro

p
Pr

ob
ab

ili
ty

P

th 2maxthth

max

Fig. 7. RED control functionP = f(q̄)

this function, the drop probability can be calculated according
to the average queue size. The equilibrium drop probability
depends on two factors, the offered load increase rate and the
granularity of congestion notification, i.e., the load decrement
caused by one packet drop. With TCP fast recovery and fast
retransmission mechanism, each drop will cause a TCP source
to decrease its sending rate by half. Therefore, the granularity
of the congestion notification is determined by the average
TCP sending rate. When the average sending rate is large,
for example, a small number of TCPs share a bottleneck,
each packet drop will cause a large decrease in offered load,
and vice versa. In different scenarios, the increase rate of
offered load is also different. For example, the increase rate
will be large when there are many TCP flows or the round
trip time is short. As a result, the drop probability should be
adjusted according to network scenarios to maintain a stable
equilibrium point. If the control function remains unchanged,
the average queue size has to be varied to obtain the new
equilibrium drop probability. Therefore, to keep the average
queue size stable around a certain level in varying conditions,
the control function has to be adjusted accordingly, i.e., the
three parameter which determinesf(q̄) should be dynamically
tuned.

wq controls the cut-off frequency of the low-pass filter. The
cut-off frequency should be high enough to detect manageable
traffic variations, while low enough to filter out transient
traffic oscillations which can not be effectively controlled by
RED. For example, the oscillation within one round trip time
rtt should be removed. Therefore, the optimalwq is usually
related tortt. In addition, since the average queue size is
calculated at every packet arrival instead of a constant interval,
different link speeds will result in different packet arrival
intervals and hence affect the cut-off frequency of the low-
pass filter. Consequently, the optimalwq is also dependent on
the link speed.

B. Optimization Objective

For a buffer management algorithm, there are basically
two performance metrics, i.e., link utilization and average
queue size. The main objective of RED is tomaintain a
high utilization while keeping a low average queue size[34].
However, optimizing one of the performance metrics may
compromise the other. For example, a high link utilization can
always be obtained by increasingminth or decreasingmaxp,
hence virtually increasing the average queue size. On the other
hand, a low average queue size can be obtained by decreasing

maxth or increasingmaxp. However, this obviously will
cause underutilization of the link. Therefore, an appropriate
tradeoff has to be made to reflect the requirement of network
operators. This is essentially a multi-objective optimization
problem and corresponding techniques should be employed to
convert it into a tractable single objective problem.

One classic multi-objective optimization technique is to
optimize the weighted average of the performance metrics. The
weights for different metrics reflect the quantitative tradeoff
among them and are critical to the effectiveness of opti-
mization results. However, the weights are normally difficult
to determine. Another common technique is to define the
lower limits for less significant metrics, and only optimize the
most important one with the restriction that the other metrics
are not below their limits. In this paper, instead of using
traditional multi-objective optimization techniques to directly
work on link utilization and queueing delay, we have proposed
a performance metric whose optimization will cause RED to
settle in a equilibrium status and hence achieve high utilization
and low queueing delay.

As mentioned above, in the equilibrium status, the average
queue size of RED stabilizes around a certain level. When
traffic pattern changes, the equilibrium point may also shift
which makes the average queue size move around. When
the average queue size drifts beyond the control of RED,
RED will become unstable, i.e., the queue status oscillates
between full and empty[14], [36]. This not only causes end
users to experience significant delay jitters, but also results
in link underutilization. Therefore, it is important to keep the
average queue size of RED stable at a target level, such as
the middle betweenminth andmaxth as proposed in[41]. In
consideration of this, we define the performance metric to be
optimized as:

m =
∑N

i=1(q̄i − q0)2

N
(8)

where q0 is the expected average queue size predefined by
network operators,̄qi is the periodic sample of the average
queue size andN is the number of samples. This metric essen-
tially calculates the variance of the average queue size relative
to q0 over a certain period of time. When the equilibrium
level of RED is far from the expected level,m will be large.
Or when RED is misconfigured and hence the equilibrium
cannot be reached, the queue size will oscillate substantially,
also resulting in a largem. Therefore, minimizingm will
cause RED to avoid both situations and always maintain an
equilibrium aroundq0. Thus, high link utilization and stable
queueing delay can both be achieved.

C. Simulation Results

The simulations of on-line RED tuning are performed for
varying traffic load and round trip time, two major factors
affecting RED performance. The network topology used in
the simulations is shown in Fig 8. We usedns[18] as the
simulation tool. Infinite FTP traffic between TCP sources and
sinks is generated to build up a queue at routerr1. RED
is configured onr1 to manage a 100-packet buffer. Each
simulation runs for 40 seconds and network conditions are

7

r1
10Mbps, 10ms

TCP sources TCP sinks

45Mbps,2ms
RED

...
...

...
...

45Mbps,2ms

r2

Fig. 8. Network topology for RED tuning simulation

changed twice during the simulation. We will compare the
performance of standard RED and RED controlled with the on-
line simulation framework under changing network conditions.

We define an expected average queue size of 30 packets
and the objective is to maintain the equilibrium status of RED
around this level. According to the common guideline of RED
parameter setting, we useminth = 15,maxth = 45,maxp =
0.1, wq = 0.002 for standard RED. We also assume that the
on-line simulation system can promptly detect the change in
network conditions and trigger the optimization process of
RED parameters. In reality, this can be achieved by monitoring
the change in performance metrics or analyzing traffic statistics
directly.

First we test the tuning of RED to varying traffic load. The
number of TCP flows in the simulation starts with 16, then
increases to 64 after around 13 seconds, and finally decreases
to 4 after another 13 seconds. The instantaneous queue sizes
of standard RED and RED with on-line simulation control are
shown in Fig 9. The upper graph shows that for the standard

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40Q
u

e
u

e
 S

iz
e

 (
in

 p
a

ck
e

ts
)

Time (in seconds)

RED Controled with On-line Simulation

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40Q
u

e
u

e
 S

iz
e

 (
in

 p
a

ck
e

ts
)

Time (in seconds)

Standard RED

Fig. 9. Comparison of standard RED (upper graph) and RED controlled by
on-line simulation (lower graph) under varying traffic load

RED, when the traffic load increases beyond the control of
current RED parameter setting, the equilibrium status may
not be broken and the queue remains in a very unstable status
where large oscillations between full and empty queue persist.
On the other hand, when the traffic load decreases to a certain
level, the queue frequently becomes empty and this causes
the underutilization of the link capacity. The lower graph
shows that when dynamically tuned, RED always maintains
an equilibrium status where the queue size remains very stable
and the utilization is close to 100%.

Then we test the tuning of RED to varying round trip time.
The simulation starts with 16 TCP flows and each with a round
trip time of 18ms (not including queueing delay). After 13

seconds, thertt of these flows is increased to 170ms. And
after another 13 seconds, thertt is reduced to around 2ms. The
instantaneous queue sizes of standard RED and RED with on-
line simulation control are shown in Fig 10. The upper graph

0
10
20
30
40
50
60

0 5 10 15 20 25 30 35 40Q
u

e
u

e
 S

iz
e

 (
in

 p
a

ck
e

ts
)

Time (in seconds)

RED Controled with On-line Simulation

0
10
20
30
40
50
60
70

0 5 10 15 20 25 30 35 40Q
u

e
u

e
 S

iz
e

 (
in

 p
a

ck
e

ts
)

Time (in seconds)

Standard RED

Fig. 10. Comparison of standard RED (upper graph) and RED controlled
by on-line simulation (lower graph) under varying round trip time

shows that whenrtt is increased to 170ms, the equilibrium
of standard RED queue is again broken and the queue keep
oscillating between full and empty status. And whenrtt is
reduced to 2ms, although the queue does reach an equilibrium
status, there still exist big variations in queue size. As shown
in the lower graph, the dynamically tuned RED eliminated
these problems.

D. Real Network Experiment for Optimization of Multiple
RED Queues

To test the effectiveness of the OLS framework, real network
experiments are also performed. This section presents one
such experiment. A Linux-based testbed shown in Fig 11
is used andns is adopted for network simulation in the
on-line simulation system. There are 4 Linux routers in the

10M

10M

r1

r3

r2

RED

RED

10M 100M
r4

RED

100M

100M

TCP sources

TCP sinks

TCP sources

RED

..
.

..
.

..
.

..
.

..
.

..
.

Fig. 11. Linux-based testbed topology with multiple RED queues

network and each of them is configured with a RED queue
which is monitored and controlled by the on-line simulation
system through SNMP. Again, infinite FTP sources are used
to generate network traffic. Note that in this test we will
try to tune the parameters for all four RED concurrently.
Since optimizing each RED individually may compromise the
performance of the others, we have taken all RED queues
as a single black-box system with a total of 16 parameters.
Consequently, a global performance metric has to be defined
based on the objective of network operators. If using ISP-based
metrics, such as utilization and queueing delay, a certain multi-
objective technique has to be employed to combine the metrics

8

from every RED router. Instead, we have selected an end user
performance metric, i.e., the Coefficient of Variation (σ

µ) of
goodputs for TCP connections, which measures the variation
of TCP goodputs. This choice is somewhat arbitrary, only to
demonstrate the effectiveness of our approach. In addition,
choosing such a metric is also to demonstrate the flexibility of
the approach, i.e., rather than being restricted to a few metrics
like utilization and delay, RED can be tuned according to any
performance metric defined by network operators though the
mechanism of how RED affects this performance metric may
be completely unknown.

During the experiment, a number of TCP flows are gen-
erated from one side to the other. The goodputs of these
TCP flows are collected periodically from TCP sinks. The
Coefficient of Variation(COV) of the goodputs is calculated
and plotted as a function of time as shown in Fig 12. In
the beginning, the parameters of these RED queues are set
to randomvalues to represent a misconfigured system, which
results in a large unfairness between TCP flows, i.e., a high
average COV value and large oscillations. At 325 second,
the on-line simulator starts and detects the misconfiguration
of REDs. Soon the good configuration with a performance
better than a predefined threshold is found and the network
is reconfigured. This results in an immediate performance
improvement as shown in the plot: the average of COV drops
to a very low value and the instantaneous COV curve becomes
stable over time.

On−line simulator start

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400 500 600 700

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

time(in seconds)

cov of goodput
average

Fig. 12. Tuning multiple RED queues for optimizing coefficient of variation
of goodputs

IV. T RAFFIC ENGINEERING BY TUNING OSPF LINK

WEIGHTS

The term “traffic engineering” refers to a broad set of
capabilities where traffic flows are mapped onto a network
topology to meet a variety of performance objectives specified
by operators. In current Internet, IP traffic is mapped onto the
network by standard routing protocols, such as, Open Shortest
Path First (OSPF) protocol. OSPF is mainly used for intra-
domain traffic routing. It routes traffic on shortest paths based
on the advertised link weights. As a result, the link along the
shortest path between the two nodes may become congested
while the links on longer paths may remain idle. Many traffic
measurements[42], [43] have observed large variations in link
utilization across the network. OSPF allows for Equal Cost
Multi Path(ECMP) where the traffic is distributed equally
among various next hops of the equal cost paths between a
source and a destination [44]. This is useful in distributing the

load to several shortest paths. However, the problem of uneven
mapping still remains.

Two main approaches have been taken to solve the intra-
domain traffic engineering problem. One approach is to deploy
the emerging MPLS technology which is not constrained by
the shortest path nature of routing. Constraint-based routing
can be used to compute routes in an MPLS network subject
to QoS and policy constraints. Another approach is to adjust
the link weights of the existing network (running OSPF) such
that the OSPF routing with these link weights leads to desired
routes. For example, One earlier approach was to adapt link
weights to reflect the local traffic conditions on a link or to
avoid congestion ([45], [46], [47]). This is called adaptive rout-
ing or traffic-sensitive routing. However, adapting link weights
to local traffic conditions leads to frequent route changes and
is unstable (see [48], [49] for stability analysis). Additionally,
adaptive routing is based on the local information and therefore
cannot optimize traffic allocation from the viewpoint of the
overall network. These drawbacks are alleviated in [13] where
the configuration of OSPF link weights is modeled as a black-
box optimization problem. The authors have chosen a heuristic
cost function which is piecewise linear with offered load
and applied a multi-start hillclimbing algorithm to find good
solutions.

In this section, we will use the on-line simulation framework
for the adaptive configuration of OSPF link weights. Instead
of the heuristic metric used in [13], we have chosen the
total packet drop rate in the network as the performance
metric since it is a more accurate to indicate the congestion
in the network and it also has significant impacts on the
performance of some underlying protocols, such as TCP. The
packet drop rate for one set of link weights could be estimated
using packet-level or flow level simulation. However, the OLS
framework allows flexibility in the type of method used for
function evaluation (wherever appropriate). Here we use a
GI/M/1/K queuing mode instead of a full-fledged simulation
to calculate the packet drop rate, which is considerably faster.
When calculating the drop rate, the mean and variance of
the offered load should both be considered. This is a more
complete representation of traffic conditions than the average
offered load used in [13].

A. The Objective Function

Our goal for OSPF configuration is to minimize the packet
drop rate in the network for a given mean and variance of
the aggregate demands between each source and destination
routers. Let us consider a network represented by a directed
graphG=(N ,L), whereN and L represent respectively the
set of routers and links in the network. Each linkl ∈ L has
bandwidth denoted byBl and a buffer space ofKl packets.
We assume that packets arriving when the buffer space at a
link is full are dropped and there is no other active queue
management algorithm running at the routers. In addition to
the knowledge of bandwidth and buffers at all the links, we
assume that an estimate of the mean and variance of the
aggregate demand from each sources to destinationt is
known. LetD, V denote the mean and variance matrix of the

9

estimated aggregate demand. In practice, all such information
can be obtained using the tools described in [8], [50].

In the following, we will first show how to derive the drop
probability for one link based on the offered load. Then we
will formulate the optimal general routing problem which aims
to optimize the overall packet drop rate for the network. Note
that the OSPF optimization problem is just the optimal general
routing subject to the shortest path constraint.

1) Link Drop Probability: Let P denote the packet drop
probability on a link,λ, σ2 denote the mean, variance of the
offered load to this link in packets per second, andB, K
denote its bandwidth and buffer space respectively. In order
to find a closed-form expression for the packet drop probability
P , let us assume an exponentially distributed packet size with
mean X̄. However, we consider a general arrival process.
We compute the packet drop probability at the link using a
GI/M/1/K queuing model. The drop probability of a finite
GI/M/1/K has been approximated by an infinite buffer GI/M/1
queue [51] using the following equation.

P (NK = K) =
P (N∞ = K)
P (N∞ ≤ K)

(9)

NK denotes the number of packets in the finite buffered queue,
whereas,N∞ denotes number of packets in the infinite buffer
GI/M/1 queue. The queue length distribution of GI/M/1 queue
is given by [52]:

P (N∞ = j) = Aωj−1 (j ≥ 0) (10)

where A is the normalization constant andω is a constant
depending on the arrival process and service rate.ω can be
obtained by solving the following equation:

ω = γ ((1− ω)µ) (11)

whereγ(s) is the Laplace transform of the arrival process and
µ is the service rate which is given byB

X̄
. In order to solve

(11) for ω, we need to assume a inter-arrival time distribution
for the arrival process. Let us consider the Generalized Expo-
nential (GE) distribution for modeling the arrival process to
first two moments. We discuss below the reason for choice of
GE distribution.

The pdf of GE distribution is given by

g(x) = (1− p)δ(x) + pae−ax (12)

whereδ(x) is the delta function,p anda two constant param-
eters. As can be seen from (12), a GE process is characterized
by two parameters,p anda. GE distribution is a special case of
H2 distribution and can be used to model general inter-arrival
processes that are more bursty than Poisson process. For a
Poisson process the variance is equal to the square of mean.
Hence, GE distribution may be used to model the first two
moments of processes with variance greater than the square of
mean. If the arrival process is represented by a GE distribution,
then, with probabilityp the inter-arrival time is exponentially
distributed with meana and with probability1− p, the inter-
arrival time is zero. Hence, this distribution represents a batch
arrival process with geometrically distributed batch size and
exponentially distributed inter-batch arrival times. For a link

with λ, σ as its mean and variance of the offered load, we
can have the parameters of the GE distribution representing
the arrival process:

p =
2λ2

σ2 + λ2
anda = pλ (13)

The merging ofN independent GE(pi,ai) processes is a bulk-
arrival Poisson process with mean arrival ratea equal to∑N

i=1 ai and p equal to a/
∑ ai

pi
. Similarly, splitting of a

GE(p,a) process intoN streams according to a Bernoulli filter
r1, r2, ...rN , the parameters of theith process are

pi =
p

p(1− ri) + ri
andai = ria. (14)

Reader may refer to [53], Section 1.4 for more details.

The packet arrival process of a single TCP flow is bursty
in nature with a “bulk” of packets arriving every round-trip
time. The model that we have considered implies that we have
“bulk” arrivals (in form of bursts of packets from competing
TCP sources) of varying sizes arriving into a queue. Our model
does not capture the feedback effect of packet drops on TCP
flows because we have considered the aggregate traffic arriving
at an OSPF router as our demand estimate.

Taking the Laplace transform of (12), we get,

G(s) = 1− p +
pa

s + a
(15)

Then substitute it into (11) and solve it forω for the GE arrival
process gives

ω = ρ + (1− p) (16)

where,

ρ =
a

µ
=

aX̄

B
. (17)

Finally, using (9), (10), (11) and (15), we get the packet
drop probability

P =
(p− ρ)(ρ + 1− p)K

1− (ρ + 1− p)K+1
(18)

In summary, Equation (18) represents the closed form ex-
pression of packet drop probability,P , on a single link as a
function of mean, varianceλ, σ2 of the arrival process, mean
packet sizeX̄, link bandwidthB and buffer spaceK. Figure
13 shows the drop probability as a function of the offered load
for difference values of variance of the inter-arrival time for a
buffer size of 20 packets. As expected, higher drop probability
is observed when the arrival process has a high variance, i.e.,
when the incoming traffic is more bursty.

2) The Optimal General Routing:The optimal general
routing represents routing where there is no limitation on the
way a flow is split among multiple paths available between a
source and destination[13]. It is the best that can be achieved
by carefully setting up multiple Label Switched Paths (LSPs)
in MPLS. Using link packet drop probabilities obtained from
(18), we can formulate the optimal general routing problem
as:

Φ =
∑

l∈L
λlPl (19)

10

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ob

ab
ilit

y
of

 P
ac

ke
t D

ro
p

Offered Load (Normalized to Bandwidth/Packet Size(in bits))

M/M/1/K Queue
Variance = 0
Variance = 4
Variance = 8

Fig. 13. Packet drop probability as a function of offered load for a GE/M/1/20
queue for different values of variance

whereλl is the arrival rate for linkl and Pl is its drop rate
calculated by (18). This is a constrained optimization problem
with the flow constraints at each routerj for each demand
D(s, t) between sources and destinationt. If f

(s,t)
l denotes

the fraction of the demandD(s, t) on link l, then the flow
balance constraints are given by

∑

i:(i,j)∈L
f

(s,t)
(i,j) −

∑

i:(j,i)∈L
f

(s,t)
(j,i) =




−D(s, t) if j = s
D(s, t) if j = t
0 Otherwise

(20)

The mean packet arrival rate to a linkl, λl, is given by

λl =
∑

(s,t)∈N×N
f

(s,t)
l (21)

The parameterp(s,t) for the GE process used to fit the demand
D(s, t) is given according to (13):

p(s,t) =
2D(s, t)2

D(s, t)2 + V(s, t)
(22)

Let r
(s,t)
l denote the probability with which the demand

D(s, t) is sent on linkl. Thenr
(s,t)
l is given by

r
(s,t)
l =

f
(s,t)
l

D(s, t)
(23)

Let p
(s,t)
l denote the parameterp of the GE process after

splitting the demandD(s, t) with probabilityr
(s,t)
l . Thenp

(s,t)
l

denotes the parameterp of the GE process representing the
flow f

(s,t)
l . The parameterp(s,t)

l is given according to (14):

p
(s,t)
l =

p(s,t)

p(s,t)(1− r
(s,t)
l) + r

(s,t)
l

(24)

The total offered load on linkl is given by λl (21), the
parameterp of the associated GE distribution may be obtained
by merging the flowsf (s,t)

l going throughl. If pl denotes the
parameterp of the GE process associated with the aggregate
traffic on link l, thenpl is given by

pl = λl(
∑

(s,t)∈N×N
f

(s,t)
l p

(s,t)
l)−1 (25)

If ρl is equal to λlplX̄
Bl

, then, using (18), the probability of
packet dropped at linkl is given by

Pl =
(pl − ρl)(ρl + 1− pl)Kl

1− (ρl + 1− pl)Kl+1
(26)

The optimal general routing problem is given by (19),
subject to the constraints given by (21), (22), (23), (24),
(25), (26). It may be noted that we are casting the traffic
according to the routing in order to obtain the mean and
variance of the total offered traffic to eachl ∈ L. However, we
are not iterating to obtain the equilibrium traffic parameters.
Essentially, we are using the upper bound on the packet drop
probability in (19).

B. Optimization of OSPF Weights Using On-line Simulation

The general optimal routing problem, where the objective
function is completely defined by (19)-(26), may possibly be
solved forf (s,t)

l ∀l ∈ L by using some non-linear programming
techniques. However, under constraints of OSPF routing, the
relation between the link weights and optimization metric
can no longer be analytically defined. In [54], authors have
proved that it is NP-hard to find OSPF link weight settings
for an optimization metric piecewise linear in offered load.
It is straightforward to show, by proceeding along the same
lines, that our problem, i.e., minimize the packet drop rate
given by (19), is also NP-hard. For such NP-hard problems,
heuristic optimization algorithms are usually used to search for
approximate solutions. Instead of choosing a different heuristic
for each NP-hard problem, we can apply the RRS technique
to perform efficient search in most of such problems.

The optimal routing in OSPF can be formulated as the
following “black box” optimization problem:

minΦ(w) (27)

wherew is the vector of network link weights andΦ(·) the
objective function, which is unknown. Basically, in order to
obtain the value ofΦ for a given OSPF weight setting, we run
modified Floyd Warshall’s algorithm (modified to obtain equal
cost paths also) to obtain the routing. Then the traffic is cast to
obtain parameters of the aggregate packet arrival process and
drop probability for every linkl ∈ L using (21), (22), (23),
(24), (25) and (26). Finally the value ofΦ may be calculated
by (19).

C. Simulation Results

We have considered three network topologies to demon-
strate our results. In these topologies, each link is assumed
to consist of two simplex link whose weights may be set
independently. Two are well-known ARPANET topology and
MCI topology.The ARPANET topology consists of 48 routers
and 140 simplex links, and the MCI topology 19 routers
and 62 simplex links. We also perform the simulation on a
large-scale real ISP network topology, i.e., EXODUS network,
obtained from Rocketfuel project[55]. This topology includes
244 core routers from EXODUS network and 1040 simplex
links. Fig 14 shows the figures of these topologies generated
by NAM[56].

11

In the simulations, random amount of traffic was sent
from every node to every other node in the network. This
random traffic was generated using the method outlined in
[13]. For each nodeu, two random numbers are generated
Ou, Du ∈ [0, 1]. For each pair of nodes (u, v) another random
numberC(u,v) ∈ [0, 1] was generated. If∆ denotes the largest
Eucledian distance between any pair of nodes and ifα denotes
a constant, the average demand betweenu andv is given by

D(u, v) = αOuDvC(u,v)e
−δ(u,v)

2∆

where, δ(u, v) denotes the Eucledian distance between the
nodesu and v. This method of generating random traffic
(the terme

−δ(u,v)
2∆) ensures more traffic for source destination

pairs that are closer to each other. Since a product of three
random variables is taken to generate the demands, there is
actually a large variation in the traffic demands. The ratio of
square of mean to the variance was assumed to be a uniformly
distributed random variable in[0, 1]. The mean and variance of
the traffic demands are generated using the above procedure.
All the links in the network have 1Mbps bandwidth with a
buffer size of 50 packets. The packet size was chosen to be
exponentially distributed with mean packet size of 200 bytes.

We used ns[18] to simulate the real network running
OSPF. The traffic in the network was generated with the
method described above. Every 200 seconds the traffic pattern
(the mean and variance of demand matrix) was changed to
introduce a dynamic scenario. The traffic generator is imple-
mented over UDP to generate bursty traffic with the GE inter-
arrival distribution described in (12). In the simulation, we
assume OLS has a complete knowledge of necessary network
information, such as, traffic demands, network topology, etc..
Whenever a change of traffic pattern happens, OLS performs
the optimization procedure for a certain time to obtain a
good OSPF link weight setting. If the optimized setting is
better than the original, it will be deployed at 100 seconds
after the traffic change. The 100-seconds time difference is
used because we want to observe the performance difference
between before optimization and after optimization. Note that
here we assume the running time of the optimization process
is less than the traffic change period, i.e., the optimization has
been finished at 100 seconds after the traffic change. In our
simulation, the optimization procedure typically finds a better
solution with a few hundred to a few thousands of function
evaluations (depending on the size of the network), which can
be interpreted to a computation time of minutes to hours when
using a single Pentium III class PC. This time can be further
reduced by performing the optimization on a more powerful
computer or multiple computers.

The actual packet drop rates are collected during the simu-
lation for all the traffic sinks in the network and then summed
together to get the total packet drop rate. Figure 15 shows total
packet drop rate in the network as a function of time. Table I
summarizes the maximum improvement in packet drop rates
for different topologies. Note that more or less improvements
may result depending on the topology and traffic conditions.
We observe that OLS can demonstrate improvements of the
order of 30-60% in the total drop rate.

ARPANET MCI EXODUS
Improvement 31.8% 60.2% 35.7%

TABLE I

TABLE SUMMARIZING THE MAXIMUM PERCENTAGE IMPROVEMENT IN

THE PACKET DROP RATES OBTAINED FOR DIFFERENT TOPOLOGIES FOR

THE RESULTS SHOWN INFIGURE 15

V. OUTBOUND LOAD BALANCING IN BGP ENVIRONMENT

For inter-domain Traffic Engineering, the traffic demand
statistics are usually kept private and the control over routers
outside the local domain is normally not available. The global
TE approach like those for intra-domain TE is not practical.
Therefore, inter-domain TE has mainly focused on multi-
homed Autonomous Systems (AS), in-bound/out-bound load-
balancing between adjacent ASes using BGP attributes (e.g.
MED, LOCAL PREF, ASPATH, etc.) [57].

The ASes are increasingly becoming multi-homed [57]. The
outbound traffic of an AS may be routed on one of several
outbound links, depending on the decision made by the inter-
AS routing algorithm, usually Border Gateway Protocol(BGP).
BGP routing decisions are made by a series of policy filters.
Usually an AS may use the shortest AS path for most
destinations. This may lead to unbalanced load distribution
among the multiple outbound interfaces. In this section, we
consider the problem of load-balancing outbound traffic in
BGP from the perspective of a single AS. We show that this
is an NP-hard problem and use the OLS framework to solve
this problem.

BGP provides only some simple capabilities for TE between
AS neighbors. The MED attribute can be used by an AS to
inform its neighbor of a preferred connection (among multiple
physical connections) for inbound traffic to a particular address
prefix. Usually it is used by the service providers on the
request of their multi-homed customers. Lately, it is also being
used between the service providers. The ASPATH attribute
has also been used to achieve TE objectives. ASPATH is
“stuffed” or “padded” with additional instances of the same
AS number to increase its length and expect lower amount of
inbound traffic from the neighbor AS to whom it is announced.
However, this may lead to a large overhead if done too often.
Another way used to achieve some TE is to subvert the BGP-
CIDR address aggregation process. In particular an AS may
extract more-specifics, or de-aggregate it and re-advertise the
more-specifics to other ASes. The longest-prefix match rule
in IP forwarding will lead to a different route for the more
specific address. However, this is achieved at the expense
of larger number of entries in forwarding tables. This is
an indirect and undesirable way to achieve inbound load-
balancing. One way to avoid subverting CIDR aggregation
(shown in our recent work [58]), in the case of multi-homed
stub AS, is by mapping the inbound load-balancing problem to
an address management problem. Alternatively, AS neighbors
may agree on BGP community attributes [59] (that are not
re-advertised) to specify traffic engineering. We notice that
inbound load-balancing is considerably complex and requires
re-advertisements or support from neighboring ASes. How-

12

34

33

32

31

30

29

28

27

9

26

8

25

7

24

6

23

5

22

4

21

3

20

19

2

18

1

17

0

16

15

14

13

12

11

10

47

46

45 44

43

42

41

40

39

38

37

36

35
16

15

14

13

12

11

10

9

8

7

6
5

4

3
2

1

18

0

17

34

33

32

31

29

30

28

27

26

25

24

23

22

21

19
20

18

17

16

15

14

13

12

11

10

243

242

241

239

240

238

237

236

235

234

233

232

231

229230

228

227

226

225

224

223

222 221

219

220

218

217

216

215

214

213

212

211

199

209

210

198

208

197

207

196

206

195

205

194

204

193

203

192

202

191

201

190

189

200

188 187

186

185
184

183

182

181

180

179

178

177
176

175

174

173

172

171

170

169168

167

166

165

164

163

162

161

160

159 158

157

156

155

154

153

152

151 150

149

148

147

146

145

144
143

142

141140

139

138

137

136

135

134
133

132

131130 129
128

127

126

125

124

123

122

121

120

119

118

117

116

115114
113

112

111

110109

108

107

106

105

104

103
102

101
100

99

98

9

97

8

96

7

95

6

94

5

93

4

92

3

91

2

90

89

1

88

0

87

8685

84

83

82

81

80

79

78

77

76

75

74
73

72

71

70

69

68

67

66

65

64

63

6261

60

59

58

57

56

55

54

53

52

51

50

49
48 47

46

45

44

43

42

41

39

40

38

37

36

35

ARPANET MCI EXODUS

Fig. 14. Network topologies for simulations of OSPF link weight configuration

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600

T
o

ta
l
P

a
c
k
e

t
D

ro
p

 R
a

te
(i
n

 p
a

c
k
e

ts
/s

e
c
o

n
d

)

Time(in seconds)

OSPF Link Weight Optimization of ARPANET Network

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500 600

T
o

ta
l
P

a
c
k
e

t
D

ro
p

 R
a

te
(i
n

 p
a

c
k
e

ts
/s

e
c
o

n
d

)

Time(in seconds)

OSPF Link Weight Optimization of MCI Network

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500 600

T
o

ta
l
P

a
c
k
e

t
D

ro
p

 R
a

te
(i
n

 p
a

c
k
e

ts
/s

e
c
o

n
d

)

Time(in seconds)

OSPF Link Weight Optimization of EXODUS Network

ARPANET MCI EXODUS

Fig. 15. OSPF Link weights adaptive configuration simulations: Traffic pattern was changed at times 0, 200, 400..., the optimized OSPF weights were
deployed at times 100, 300,...

ever, outbound load-balancing is simpler, and can be achieved
by impacting local policy changes.

The LOCAL PREF attribute is used locally within the AS to
prefer an outbound direction for a chosen destination prefix,
AS or exit router. LOCALPREF holds the highest priority
in the policy filter hierarchy, i.e. the BGP will choose the
path with highest LOCALPREF over other policy attributes.
Therefore, if we know the desired routing to meet the traffic
engineering objective, we can use the LOCALPREF to over-
ride the default routing. Recent work [3] observes that it is
possible to adjust traffic distribution over outbound links by
changing LOCALPREF of some “hot-prefixes” and shifting
them away from congested links. However, the problem of
unbalanced traffic distribution still remains. In fact, how to
“shift” these hot-prefixes to achieve load balancing is a NP-
hard problem as we will show later. Here we use the on-
line simulation framework to tackle this problem and perform
automatic outbound load balancing.

A. Granularity of Traffic Demands

Given a certain outbound traffic demand, load balancing
aims to split this traffic demand and distribute them evenly
among outbound links. Usually, the traffic demand can be
divided into a number of traffic flows. In the finest granularity,
a traffic flow is determined by the source and destination
IP addresses and the port number. In a coarse granularity, a
traffic flow can be identified by the source and destination AS-
pair. Internet measurements have shown that traffic aggregates

based on destination prefixes in the routing table are more
suitable for load balancing [42] since they are relatively stable
through the day and on per-hour time scales. We have used this
granularity for defining a flow in our load balancing scheme.
In other words, the traffic demand is split into flows at the
level of per destination-prefix.

A typical BGP routing table consists of thousands of des-
tination prefix entries. It will be very complex to work with
such a large number of traffic flows. However, many traffic
measurements [42], [43] have demonstrated the existence of
so-called elephant and mice phenomenon. That is, a small
number of traffic streams, known aselephants, generate a large
portion of total traffic whereas a large number of streams,mice,
generate a small portion of total traffic. For example, it has
been found that the top 9% of flows between ASes account
for 86.7% of the packets or 90.7% of the bytes transmitted
[43]. Furthermore, these elephant traffic flows are usually very
stable over time and hence are suitable to be re-routed for
load-balancing purpose. Based on these observations, our load
balancing scheme only attempt to adjust the routing of the top
10% destination prefixes in the routing table based on their
traffic demands.1.

1The fraction of optimized destination prefixes can be kept fixed or
increased in the event of increase in routing tables. In future, a smaller fraction
of destination prefixes may be used if 10% gives a very large number.

13

B. Optimal Routing Calculation for Load Balancing

Given the knowledge of traffic demand and outbound link
information, the optimal routing for load balancing can be
calculated. Letm be the number of outbound links in the
concerned AS. Letli and ci, i = 1 . . . m, denote theith

outbound link and its capacity (or bandwidth), respectively.
All the outbound traffic of this AS will be routed on these
links. If si, i = 1 . . .m, denotes the total outbound traffic
carried by theith link, then the utilization of linkli is given
by si/ci. The objective of load balancing is to minimize the
maximum link utilization among all the outbound links, i.e.,

minimize max
i=1...m

si

ci
(28)

Let n denote the number of selected destination prefixes
anddj , j = 1 . . . n, denote the average offered load for these
destinations. Our load balancing scheme attempts to adjust the
routing of thesen prefixes in order to minimize the objective
function in Equation (28). LetDi denote the subset of then
prefixes that are routed on linkli by adjusted routing. Iffi

denotes the load on linkli generated by the other 90% traffic
flows, which are routed to this link by the default BGP routing,
then Equation (28) becomes

minimizeΦ = max
i=1...m

(
∑

j∈Di

dj

ci
) +

fi

ci
(29)

where, the first term represents the percentage load due to
the selected 10% flows and the second term represents the
percentage load generated by the other 90% flows on link
li. This problem can also be written as the following integer
programming problem.

minimize t (30)

subject to
n∑

j=1

xij
dj

ci
+

fi

ci
≤ t, i = 1 . . . m

m∑

i=1

xij = 1, j = 1 . . . n

xij ∈ {0, 1}, i = 1 . . . m, j = 1 . . . n

where xij is a binary number andxij = 1 means flowdj

is output on link li, otherwisexij = 0. Note that traffic
flow dj may not have all outbound links as its alternative
paths. One can assume an arbitrarily largedj/ci for those
links. The problem represented by Equation (30) is actually
a classical task scheduling problem with unrelated parallel
machines [61], where a number of tasks with different sizes
are assigned to a set of parallel machines. The processing
time of each task is different on different machines and the
objective there is to minimize the completion time of all tasks
by carefully distributing these tasks onto the parallel machines.
This problem is NP-hard and approximation algorithms can be
used to obtain near-optimal solutions. For example, in [62] a
linear programming technique is first used to obtain a basic
solution where there are at mostm − 1 non-integralxij .
Then for these non-integralxij , an exhaustive enumeration
is performed to find the optimal scheduling. Combining the
solutions of these two steps can produce an approximate

solution with a upper bound of2t∗, wheret∗ denotes the value
of t produced by the optimal solution. The time complexity
of this method is exponential in the value ofm.

Instead of the integer programming approach, we have
applied the OLS framework to this load balancing problem.
With the flexibility of OLS, it is possible to optimize for
various performance objectives besides load balancing. For
example, in addition to load-balancing, the network operator
also prefers to use the shortest paths. It is possible to formulate
a multi-objective optimization problem and obtain a solution,
using OLS, that meets both load-balancing and shortest path
criteria.

The complete optimization procedure performed by the OLS
framework can be summarized as follows:

Step 1 Extract top 10% destination prefixes, with traffic de-
mandsdj , j = 1 . . . n, from the routing table;

Step 2 Calculatedj/ci and fi/ci, i = 1 . . . m, j = 1 . . . n
according to the traffic demand for each prefix and the
capacity of each outbound link.

Step 3 Each destination prefix may be reachable by all or some
of the outbound links. This information can be obtained
from Adj-RIBs-In at a BGP router. Assign a very large
value ofdj/ci for the infeasible routes, so the solution
(minimization) will not result in an infeasible solution.

Step 4 Measure or compute the value ofΦ for default routing
using Equation (29) denoted byΦ0.

Step 5 Run RRS till a stopping criteria is reached. A stopping
criteria can be a limit on time, number of iterations etc..
Let Φ∗, r∗ denote the value of objective function and
corresponding routing at the end of optimization.

Step 6 If |Φ0−Φ∗
Φ0 | ≥ ∆, where∆ is the predefined threshold,

deploy r∗ by setting a high LOCALPREF of desired
links for appropriate destination prefixes.

C. Simulation Results

The simulations presented in this section demonstrated the
load balancing for an AS including 8 outbound links with
normalized capacities of 100, 100, 100, 100, 45, 45, 45, 12,
respectively. We assume the number of top 10% destination
prefixes which generate most of the traffic is 148. Note this
number is chosen somewhat arbitrarily only for the description
purpose. In the simulation, we generate only 148 traffic flows
instead of all the traffic flows since the actual effect of the
other 90% flows on the simulation is only to reduce the
capacity of the links by a certain amount. Therefore, ignoring
these flows will not compromise the validity of the simulation
results in any way. We assign each destination prefix a certain
load such that the total offered load is the 30% of the total
capacity of all the links. In the beginning of the simulation, the
offered load is randomly distributed over the outbound links.
Then we apply the proposed load balancing scheme to the
network. The link utilization of outbound links are compared
in Table II. As shown in the table, before optimization, the
load distribution across the outbound links is rather uneven,
for example, one link is greatly under-utilized with a utilization
of 7% while another link is heavily used with a utilization of
0.91%. After applying the load balancing scheme, the load

14

Outbound Link Capacity 100 100 100 100 45 45 45 12
Before Optimization 0.07 0.25 0.20 0.33 0.60 0.45 0.48 0.91
After Optimization 0.25 0.33 0.27 0.30 0.35 0.33 0.34 0.23

TABLE II

L INK UTILIZATION OF OUTBOUND LINKS BEFORE AND AFTER OPTIMIZATION

distribution become much more even and the utilization of
each link is very close to the ideal value, i.e., the average
utilization 30%. The maximum link utilization drops from
91% to 35%.

VI. CONCLUSION

In this paper, we presented an on-line simulation framework
for adaptive large-scale network parameter configuration. The
on-line simulation framework tackles the parameter configu-
ration problem with a black-box optimization approach. As
a result, it allows great flexibility in the choice of perfor-
mance objectives to be achieved and is generally applicable
to a variety of network protocols. The essence of the OLS
framework is to formulate network parameter configuration as
a back-box optimization problem. The major features of these
optimization problems are examined and an efficient search
algorithm, Recursive Random Search algorithm, is designed
to address these problems. RRS emphasizes on finding a
“good” solution within the limited time frame instead of full
optimization, which is very important since the optimization
is performed under “quasi-stationary” network conditions. The
RRS algorithm performs very efficiently in the concerned
context and is especially advantageous when handling objec-
tive functions affected by noises and those with negligible
parameters because of its basis on random sampling.

The application of the OLS framework to three network
protocols, RED, OSPF and BGP, has been investigated. Sim-
ulations and experiments have demonstrated that OLS is very
successful to adapt the protocol configuration to the prevailing
network conditions and achieve various network performance
objectives. In addition to these applications, many other net-
work protocols can also be configured with this framework.
Exploring other possible applications is one of our future
research directions.

The overall approach proposed in this paper is limited by
the extent we can model, measure and simulate networks.
We can leverage more accurate and rapidly evaluated mod-
els/simulations in the future within this framework.

REFERENCES

[1] Ratul Mahajan, David Wetherall, and Tom Anderson. Understanding
bgp misconfiguration. InProceedings of ACM SIGCOMM, 2002.

[2] Dave Katz. Why are we scared of spf? igp scaling and stability.
NANOG, June 2002.

[3] Nick Feamster, Jennifer Rexford, and Jay Borkenhagen. Controlling the
impact of bgp policy changes on ip traffic. NANOG, June 2002.

[4] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and Willinger.
Network topology generators: Degree-based vs. structural. InProceed-
ings of ACM SIGCOMM 2002, August 2002.

[5] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers.
Brite: An approach to universal topology generation. InProceedings
of MASCOTS’01, August 2001.

[6] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring isp
topologies with rocketfuel. InProceedings of ACM SIGCOMM 2002,
August 2002.

[7] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the self-similar
nature of ethernet traffic.IEEE/ACM Transactions on Networking, 2(1),
February 1994.

[8] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and
F. True. Deriving traffic demands for operational ip networks: method-
ology and experience.IEEE/ACM Transaction on Networking, pages
265–278, June 2001.

[9] C. Carothers, D. Bauer, and S. Pearce. Ross: A high-performance,
low memory, modular time warp system. InProceedings of the 14th
Workshop on Parallel and Distributed Simulation, pages 53–60, May
2000.

[10] SSFNET. network simulator. http://www.ssfnet.org.
[11] OPFNET. network simulator. http://www.opnet.com.
[12] Nick Feamster and Jennifer Rexford. Network-wide bgp route prediction

for traffic engineering. August 2002.
[13] Bernard Fortz and Mikkel Thorup. Internet traffic engineering by

optimizing ospf weights. InProceedings of the INFOCOM 2000, pages
519–528, 2000.

[14] Wu chang Feng, Dilip D. Kandlur, Debanjan Saha, and Kang G. Shi.
A self-configuring RED gateway.Proceedings of IEEE Infocom 1999,
March 1999.

[15] D. Goldberg.Genetic Algorithms in Search, Optimization, and Machine
Learning. MA: Addison Wesley, 1989.

[16] Fred Glover. Tabu search– part I.ORSA Journal on Computing,
1(3):190–206, 1989.

[17] E. Aarts and J. Korst.Simulated Annealing and Boltzmann Machines.
John Wiley & Sons, 1989.

[18] NS. network simulator. http://www.isi.edu/nsnam/ns/.
[19] Aimo Törn and Antanas̆Zilinskas.Global Optimization, volume 350 of

Lecture Notes in Computer Science. Springer-Verlag, 1989.
[20] Nicholas J. Radcliffe and Patrick D. Surry. Fundamental limitations on

search algorithms: Evolutionary computing in perspective. InComputer
Science Today, pages 275–291. 1995.

[21] D. h. Wolpert and W. G. Macready. No free lunch theorems for
optimization. IEEE Transaction on Evolutionary Computing, 1:67–82,
1997.

[22] T. C. Hu, V. Klee, and D. Larman. Optimization of globally convex
functions. SIAM Journal on Control and Optimization, 27(5):1026–
1047, 1989.

[23] K. D. Boese, A. B. Kahng, and S. Muddu. On the big valley and
adaptive multi-start for discrete global optimizations. Technical Report
TR-930015, UCLA CS Department, 1993.

[24] K. D. Boese, A. B. Kahng, and S. Muddu. a new adaptive multi-start
technique for combinatorial global optimizations.Operation Research
Letters, 16:101–113, 1994.

[25] Justin A. Boyan and Andrew W. Moore. Learning evaluation functions
to improve optimization by local search.Journal of Machine Learning
Research, 1(2000):77–112, 2000.

[26] Robert H. Leary. Global optimization on funneling landscapes.Journal
of Global Optimization, 18(4):367–383, December 2000.

[27] P. Brachetti, M. De Felice Ciccoli, G. Di Pillo, and S. Lucidi. A new
version of the price’s algorithm for global optimization.Journal of
Global Optimization, 10:165–184, 1997.

[28] Zelda B. Zabinsky. Stochastic methods for practical global optimization.
Journal of Global Optimization, 13:433–444, 1998.

[29] Melanie Mitchell. An Introduction to Genetic Algorithms. The MIT
Press, 1996.

[30] S. Kirkpatrick, D.C. Gelatt, and M.P. Vechhi. Optimization by simulated
annealing.Science, 220:671–680, 1983.

[31] W. L. Price. Global optimization by controlled random search.Journal
of Optimization Theory and Applications, 40:333–348, 1978.

[32] Soraya Rana, L. Darrell Whitley, and Ronald Cogswell. Searching in
the presence of noise. In H. Voigt, W. Ebeling, I. Rechenberg, and

15

Hans-Paul Schwefel, editors,Parallel Problem Solving from Nature –
PPSN IV (Berlin, 1996) (Lecture Notes in Computer Science 1141),
pages 198–207, Berlin, 1996. Springer.

[33] Tao Ye and Shivkumar Kalyanaraman. A recursive random search
for optimizing network protocol parameters. Technical report, ECSE
Department, Rensslaer Polytechnique Institute, Dec 2001.

[34] S. Floyd and V. Jacobson. Random early detection gateways for
congetsion avoidance.IEEE/ACM Transactions on Networking, 1:397–
413, August 1993.

[35] B. Braden and et al. Recommendations on queue management and
congestion avoidance in the internet. RFC 2309, 1998.

[36] Victor Firoiu and Marty Borden. A study of active queue management
for congestion control. InINFOCOM (3), pages 1435–1444, 2000.

[37] M. May, J. Bolot, C. Diot, and B. Lyles. Reasons not to deploy RED.
Technical report, INRIA Sophia-Antipolis, France, 1999.

[38] M. Christiansen, K. Jeffay, D. Ott, and F.D. Smith. Tuning RED for
web traffic. InProceeding of ACM SIGCOMM, 2000.

[39] Thomas Bonald, Martin May, and Jean-Chrysostome Bolot. Analytic
evaluation of RED performance.IEEE Infocom 2000, pages 1415–1444,
2000.

[40] C.V. Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong. A control
theoretic analysis of red. InProceedings of IEEE Infocom 2001, 2001.

[41] Sally Floyd, Ramakrishna Gummadi, and Scott Shenker. Adaptive
RED: An algorithm for increasing the robustness of RED’s active queue
management. unpubished, 2001.

[42] S. Bhattacharyya, C. Diot, J. Jetcheva, and N. Taft. Pop-level and access-
link-level traffic dynamics in a tier-1 pop. InACM SIGCOMM Internet
Measurement Workshop, November 2001.

[43] Wenjia Fang and Larry Peterson. Inter-as traffic patterns and their
implications. InProceedings of Global Internet 99, Rio, Brazil, 1999.

[44] J. Moy. Ospf version 2. RFC 2178, April 1998.
[45] Atul Khanna and John Zinky. The revised arpanet routing metric. In

Proceedings of the ACM SIGCOMM, pages 45–56, 1989.
[46] David W. Glazer and Carl Tropper. A new metric for dynamic routing

algorithms.IEEE Transactions on Communications, 38(3), March 1990.
[47] A. Sakamoto D. S. Lee, G. Ramamurthy and B. Sengupta. Performance

analysis of a threshold-based dynamic routing algorithm. InProceedings
of the Fourteenth International Teletraffic Congress, 1994.

[48] Dimitri P. Bertsekas. Dynamic models of shortest path routing al-
gorithms for communication networks with multiple destinations. In
Proceedings of 1979 IEEE Conference on Decision and Control, pages
127–133, Ft. Lauderdale, FL, Dec 1979.

[49] Jon Crowcroft Zheng Wang. Analysis of shortest-path routing algorithms
in a dynamic network environment.Computer Communication Review,
22(2):63–71, 1992.

[50] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford.
Netscope: traffic engineering for ip networks.IEEE Network Magazine:
special issue on Internet traffic engineeringh, pages 11–19, March/April
2000.

[51] Ramesh Nagarajan, James F. Kurose, and Don Towsley. Approximation
techniques for computing packet loss in finite-buffered voice multiplex-
ers. IEEE J.Select.Areas Commun, 9(3):368–337, April 1991.

[52] Robert B. Cooper.Introduction to Queueing Theory. New York : North
Holland, second edition, 1981.

[53] Harry G. Perros.Queueing Networks With Blocking, Exact and Approx-
imate Solutions. Oxford University Press, 1994.

[54] Bernard Fortz and Mikkel Thorup. Increasing internet capacity using
local search.IEEE Transaction on Networking, 2000.

[55] RocketFuel. Isp topology mapping engine.
http://www.cs.washington.edu/research/networking/rocketfuel/.

[56] NAM. network animator. http://www.isi.edu/nsnam/nam/.
[57] G. Huston. Commentary on inter-domain routing in the internet. RFC

3221, December 2001.
[58] T. Ye, S. Yadav, M. Doshi, A. Gandhi, S. Kalyanaraman, and H. T.

Kaur. Load balancing in bgp environment using online simulation and
dynamic nat. ISMA Workshop by CAIDA, December 2001.

[59] J. Stewart III. BGP-4 Inter-domain routing in the Internet. Addison-
Wesley, 1999.

[60] Jay Borkenhagen, Nick Feamster, and Jennifer Rexford. Controlling the
impact of BGP policy changes on IP traffic. NANOG, June 2002.

[61] L. A. Hall. Approximation Algorithms for NP-hard Problems, chapter
Approximation Algorithms for Scheduling. PWS Publishing Company,
1995.

[62] C. N. Potts. Analyssis of a linear programming heuristic for scheduling
unrelated parallel machines.Discrete Appl. Math., 10:155–164, 1985.

