
1

One More Bit Is Enough
Yong Xia Lakshminarayanan Subramanian Ion Stoica Shivkumar Kalyanaraman

RPI UCB UCB RPI
xiay@alum.rpi.edu lakme@cs.berkeley.edu istoica@cs.berkeley.edu shivkuma@ecse.rpi.edu

Abstract— Achieving efficient and fair bandwidth allocation
while minimizing bottleneck queue length and congestion-induced
packet loss rate for high Bandwidth-Delay Product (BDP) net-
works has long been a daunting challenge. The current end-
to-end congestion control schemes including TCP and its many
variants and the TCP+AQM/ECN proposals have significant
limitations in achieving this goal. XCP, while achieving the
goal, requires multiple bits (not available in the IP header) to
exchange the congestion information between network and end-
hosts. Adding these bits to the IP header is a non-trivial and
lengthy process.

In this paper, we design and implement a simple, low-
complexity algorithm called Variable-structure congestion Con-
trol Protocol (VCP) that leverages only the existing two ECN bits
for network congestion feedback and yet achieves comparable
performance as XCP, i.e., exponential convergence onto high
utilization, low persistent queue length, negligible packet loss rate
and reasonable fairness. However, VCP has significantly slower
fairness convergence speed in comparison to XCP. Extensive ns2
simulations validate the performance of VCP for a wide range
of high BDP scenarios. Additionally, VCP can also be extended
to provide bandwidth differentiation.

I. I NTRODUCTION

The classical Additive-Increase/Multiplicative-Decrease
(AIMD) algorithm [9] used in TCP congestion control [19] is
well-known to be ill-suited for high Bandwidth-Delay Product
(BDP) networks. With rapid advances in the deployment of
very high bandwidth links in the Internet, the need for a
viable replacement for TCP in such environments has become
increasingly paramount.

Several research efforts have proposed different approaches
for this problem, each with their own strengths and limitations.
These can be broadly classified into two categories:end-to-end
and network feedbackbased. We contend that pure end-to-
end congestion control schemes like HighSpeed TCP [14],
STCP [30], FAST TCP [24] and BIC TCP [49], although
being attractive short-term improvements, are not suitable in
the long term. The primary reason is that, in high BDP net-
works, using loss and/or delay as the only congestion signal(s)
has fundamental limitations in achieving high utilization and
fairness while maintaining a low bottleneck queue length and
minimizing congestion-induced packet drop rate. HighSpeed
TCP outlines the limitations of loss-based approaches in high
bandwidth optical links with very low bit-error rates [14].
On the other hand, delay-based approaches like FAST TCP
are sensitive to delay variations, which is a very common
phenomenon in the Internet. For example, in a recent Internet
experiment, FAST TCP throughput is 4∼8 times less than the
other tested stacks due to reverse path queueing delay [6].

The limitations of pure end-to-end schemes have motivated
the use of explicit network feedback for congestion control.

XCP [27], a promising proposal for high BDP networks, is an
example of anexplicit rate feedback scheme where the band-
width allocation functionality is primarily placed inside the
network. (ATM ABR mechanisms, e.g., [8][25][21][26], also
belong to this class.) On the other hand, existingcongestion
notification feedback schemes like TCP+AQM/ECN propos-
als [15][2][34][45], in which end hosts adjust their sending
rates based on congestion notification from the network, are
known to not scale to high BDP scenarios [27].

Contrary to conventional wisdom, this paper demonstrates
the existence of a simple congestion notification based scheme,
namely Variable-structure congestion Control Protocol (VCP),
that can approximate XCP’s superior performance in high BDP
networks with only two bits of feedback from network. VCP
introduces two simple modifications to the TCP+AQM/ECN
approach. First, VCP uses a load factor based mechanism to
encode congestion information in the two ECN bits available
in the IP header. Second, guided by the two bits of conges-
tion feedback, VCP uses asliding-modecongestion control
algorithm as described below.

The basic idea behind the design of VCP is as follows.
Network routers classify the level of congestion into three
regions (i.e., low-load, high-load and overload), which can
be encoded in the two ECN bits. Based on this encoded
load factor feedback, end hosts switch their control algorithm
between multiplicative increase (MI), additive increase (AI)
and multiplicative decrease (MD) to match those three network
load regions, respectively. By using MI in low-load region,
flows can exponentially ramp up their bandwidth to improve
network utilization. Once high utilization is attained, AIMD
provides long-term fairness among competing flows.

We implement VCP in ns2 [41] and use extensive packet-
level simulations to evaluate its performance and compare it
with XCP. These simulations cover a wide range of network
scenarios, particularly high BDP networks, and demonstrate
that it is possible to design an end-host based congestion
control with a two-bit ECN feedback to obtain most benefits
of XCP, i.e., exponential convergence to high utilization, low
persistent queue, negligible packet drop rate and reasonable
fairness. One disadvantage of VCP when compared to XCP is
a significantly slower fairness convergence speed.

VCP is attractive due to two reasons: (1) It does not require
any modifications to the IP header. Since the ECN proposal
has standardized two bits for congestion notification, VCP can
just reuse these two bits. (2) It is a simple protocol with low
algorithmic complexity. The complexity of VCP’s end host
algorithm is similar to that of TCP and part of its AIMD
component is already present in the existing TCP code. Its
router algorithm is extremely simple, scalable and maintains

2

no per-flow state. We believe that these benefits largely offset
VCP’s limitation of having a slow fairness convergence speed.

Is two bits indeed necessary? Fundamentally, to achieve
high utilization and long-term fairness it is essential to dis-
tinguish between three load regions and at least two bits are
necessary to encode these three regions. Section II has more
discussions on this. Another natural question is what would
be the improvement of using more than two bits to encode
the load regions. While we do not answer this question in the
paper, the relatively small performance gap between VCP and
XCP in Section IV suggests that using more bits will only
incrementally improve the performance.

The rest of the paper is organized as follows. Section II
discusses high level design rationales and illustrates VCP
with a simple example. Section III describes VCP building
blocks and the complete protocol. Section IV presents ns2
simulation results and compares with XCP. Section V analyzes
the stability of VCP, addresses concerns on the influence
of mode switching on efficiency and fairness and discusses
incremental deployment issues. We review related work in
Section VI and present our conclusions in Section VII.

II. FOUNDATIONS

In this section, we provide a high-level description of VCP
and illustrate how it works. Before we describe VCP, we
briefly outline the reasons why TCP+AQM does not scale to
high BDP networks while XCP does. Based on this, we extract
two basic guidelines that form the core of VCP’s design.

A. Why XCP outperforms TCP and TCP+AQM?

Using loss as the only congestion feedback, TCP cannot
scale to high BDP networks. As per the TCP throughput
equation [42], a TCP flow needs to observe an abysmally low
loss rate (i.e.,O(10−14)) to obtain a steady state throughput
of 10Gbps with an RTT of 100ms [14]. Two of the primary
problems for TCP’s low utilization are: (a) loss is a poor
congestion signal; (b) using the AIMD algorithm. Packet loss
may be caused by events other than congestion. Even if a loss
indeed signals congestion, it is abinary indicator of congestion
and conveys no information about the degree of congestion.
Given that this congestion signal is imprecise, the increase
policy needs to be conservative while the decrease policy needs
to be aggressive [27]. In high BDP networks, every loss event
forces a TCP flow to perform an MD which is followed by
the slow convergence of AI algorithm to reach high utilization
levels. Given that time for each individual AIMD epoch is
proportional to the network bandwidth, TCP flows remain in
low utilization regimes for prolonged periods of time thereby
resulting poor link utilization. Using AQM/ECN in conjunc-
tion with TCP does not solve this problem either. While ECN
feedback prevents congestion collapse, this feedback is also
binary. The existing AQM schemes with one-bit ECN indicate
congestion near 100% utilization and provide no information
on the degree of congestion.

XCP offers a complete solution to the congestion control in
high BDP network. It precisely measures the bottleneck spare

bandwidth to detect and report congestion. It decouples effi-
ciency control and fairness controlat the router: MIMD is used
to control the flow aggregate and converge exponentially fast to
any available bandwidth, while AIMD is used to fairly allocate
this bandwidth among competing flows. Consequently, XCP
significantly outperforms TCP and TCP+AQM in high BDP
networks. However, XCP needs multiple bits in the packet
header to carry (a) bandwidth allocation information (∆cwnd)
from network routers to end hosts, and (b) congestion window
(cwnd) and RTT information (rtt) from the end-hosts to the
network routers.

B. Design Guidelines

Based on the above description, we realize that it is essential
to: (a) measure the degree of network utilization and match
end host sending rates with the degree of utilization; (b) use
different algorithms to control efficiency and fairness. A key
question is to determine how to implement these mechanisms
at end hostswith minimal network assistance. By network
assistance, we refer to the AQM-style congestion control ap-
proach where routers provide feedback on the level of network
congestion and end hosts perform the actual congestion control
mechanism using this feedback. Designing an end-host based
congestion control for high BDP networks which uses minimal
network assistance is a challenging problem, especially since
end hosts have to independently adjust their sending rates
using only the feedback available from the network. Unlike
XCP, an end-host based scheme does not have the luxury
of interacting with network routers by signaling end-host
congestion state and obtaining end-host specific feedback. To
address this challenge, we use two basic design guidelines:

Guideline #1, Decouple efficiency control and fairness con-
trol in different bandwidth utilization regions.

Efficiency and fairness have different levels of relative
importance under different situations. When bandwidth uti-
lization is low, our goal is to improve efficiency more than
fairness. However, when bandwidth utilization is sufficiently
high, we accord higher priority to fairness than efficiency. By
decoupling these two issues in different utilization regions, end
hosts have only a single objective in each utilization region
and thus need to apply the appropriate congestion response in
each regime. For example, one such choice of a congestion
response which we use in VCP is to perform MI in low
utilization regimes for improving efficiency, and use AIMD
in high utilization regions for fairness. The goal then is to
switch between these two congestion responses depending on
the current network utilization region.

Guideline #2, Use link load factor as the congestion signal.

XCP uses spare bandwidth, i.e., the difference between
demand and capacity to measure the degree of congestion.
In this paper we use load factor, i.e., the relative ratio of
demand and capacity [21]. This selection satisfies the above
requirement of differentiating utilization regions.

Load factor conveys less information than spare bandwidth;
and this may fundamentally bound the performance of a load

3

router ρ
ξ

tt−Tsource

destination

time

Fig. 1. A simplified VCP model. The source sending rate at timet− T is
used by the router to calculate a load factorρ, which is echoed back from the
destination to the source at timet. Then the source adjusts its MI parameter
ξ(t) based on the load factorρ(t).

factor based scheme. However, the advantage of using load-
factor is that it is ascale-freeproperty in terms of network
capacity. It thus can be encoded using a small number of
bits without much loss of information (since we are generally
interested in the load factor range as opposed to precise
feedback). While one can develop mechanisms to encode
explicit rate feedbacks like XCP using a smaller number of
bits, one would require at leastO(log B) bits to be able to
scale to a maximum network bandwidthB. However, a load
factor can be encoded in as small as two bits which we show
is sufficient to approximate XCP’s performance.

Load factor, in comparison to binary congestion signals such
as loss and one-bit ECN, can convey more information about
the degree of network congestion. So we can expect that,
together with a set of matching bandwidth-probing algorithms
at end hosts, a load factor based scheme has the potential to
perform much better than the loss-based or one-bit ECN-based
congestion control algorithms.

C. VCP: A Simple Illustration

Now, we provide a simple illustration of how VCP works
using a toy example of a bottleneck link shared by two
competing flows. We present a detailed description of VCP
in Section III. Periodically, the router measures a load factor
for its output link (Figure 1). The load factor is echoed back to
the source hosts via the destination acknowledgment (ACK).
Depending on this feedback, the end-hosts apply different
congestion responses. If the link signals significant underload,
the end-hosts increase their sending rates using MI; if it signals
marginal underload, they increase their sending rates using AI;
otherwise, if it signals overload, they immediately cut their
sending rates using MD. This is summarized by the following
greatly simplified VCP pseudo code.

—————————————————————————
1) Each router periodically estimates a load factor, and

encodes this load factor into the data packet headers. This
information is then sent back by the receiver to the sender via
ACK packets.

2) Based on the value of the load factor it receives, each
source performs the following congestion control algorithms:

2.1) For significant underload, perform MI;
2.2) For marginal underload, perform AI;
2.3) For overload, perform MD.

—————————————————————————

MI

MD

AIMD

 0

 2

 4

 12

 16

 0 50 100 150 200 250
Time (sec)

 20

8

6

 10

 14

 18

Th
rou

gh
pu

t (
M

bp
s)

capacity
1st flow
2nd flow

Fig. 2. The throughput dynamics of two flows of the same RTT (80ms).
They share one bottleneck with the capacity bouncing between 10Mbps and
20Mbps. This simple example unveils VCP’s potential to quickly track change
in available bandwidth (with load factor-guided MIMD) and thereafter achieve
fair bandwidth allocation (with AIMD).

We continue to describe more details of the above algorithm
and explain why this simple algorithm works. Consider a
single link used by one flow that has constant RTT value
rtt = T where the link queue has infinite buffer space. With
only one flow, we have a single goal: to achieve efficiency for
any link capacity (with load factor-guided MIMD according
to the design guidelines). As shown in Figure 1, due to the
round-trip delay, the load factor received by thesourceis:

ρ(t) =
cwnd(t− T)

c T
, (1)

wherecwnd(t) is the source host congestion window size at
time t, andc is the link capacity.

Sinceρ(t) represents the offered load (with delay),1−ρ(t)
measures the (normalized) spare bandwidth. Upon receiving a
load factor, if the source updates its congestion window using
MI:

cwnd(t + T) = cwnd(t)× (1 + ξ(t)) (2)

with

ξ(t) = κ · 1− ρ(t)
ρ(t)

(3)

where κ > 0, then it can achieve high efficiency since it
exponentially tracksany available bandwidth. The stability of
the above algorithm is determined by the choice of the value
of κ. (Refer to Section V-B for the stability discussion.)

Now, assume that a new flow with the same RTT starts
transmitting. Besides efficiency, now our other goal is to
allocate bandwidth fairly (in the long run) between the two
flows. Following the design guidelines, while in the low
utilization regionρ(t) < ρ0, we use the MIMD algorithm
described above to quickly improve the efficiency. Next, we
apply the standard AIMD algorithm with parametersα andβ
to achieve fairness in the high utilization regionρ(t) ≥ ρ0:

cwnd(t + T) = cwnd(t) + α, ∀ρ(t) ∈ [ρ0, ρ1) (4)

cwnd(t + δt) = cwnd(t)× β, ∀ρ(t) ∈ [ρ1,∞) (5)

whereδt → 0+ and 0 < ρ0 ≤ ρ1 ≤ 1. (The setting of these
parameters will be discussed in Section III.)

Figure 2 shows the throughput dynamics of two flows
controlled by the above VCP algorithm. Clearly, bandwidth
changes are quickly tracked by MIMD and, when a new flow

4

arrives, the existing flow yields bandwidth to it with AIMD.
Finally, an efficient and fair allocation is reached.

The Internet, however, is much more complex than this
substantially simplified model: link capacity and router buffer
size are dramatically heterogeneous; the number of flows is
unknown and usually constantly changing; their RTTs may
differ significantly; and so on. We need to generalize the above
model to more realistic environments.

III. VCP: THE COMPLETE PROTOCOL

In this section, we provide a complete description of VCP.
To make VCP work under the Internet’s significant heterogene-
ity in link capacity, end-to-end delay, router buffer size, and
traffic characteristics, we need to address four key questions:
(a) Given the fact that the traffic seen by a router is bursty,
how do we compute a load factor that reliably estimates the
link load condition at theright time scale? (b) Consider the
particular case in which all flows have the same RTTs. How
do we set the MI/AI/MD algorithm parameters to achieve
efficiency and fairness, and at the same time maintain low
persistent bottleneck queues and minimize congestion-induced
packet losses? (c) When flows have different RTTs, one can
imagine that different flow’s MI/AI/MD mode sliding will be
out of sync and the aggregate behavior will be unpredictable. Is
it possible, and if yes how, to offset the impact of the RTT het-
erogeneity? (d) How can we provide equal (or differentiated)
bandwidth sharing using window-based congestion control?
Next, we describe VCP’s four key building blocks that answer
these questions and take us step-by-step through the design of
a practical VCP algorithm.

A. Link Load Factor Measurement and Encoding

Due to the bursty nature of Internet traffic [37][44], an
instantaneous load factor as in Equation (1) does not truly
represent the real load condition. We need to measure a load
factor over an appropriate time interval. Network congestion
may persist over different time scales. Since we are concerned
with those congestion events that last longer than one RTT, we
choose a measurement intervaltρ larger than one RTT of a
majority of flows. Everytρ = 200ms, 1 each router estimates
the load factor for each of its output linkl with:

ρl =
λl + κq · q̃l

κl · cl · tρ (6)

where κq > 0 and 0 < κl ≤ 1. (We useκq = 0.5 and
κl = 0.98.) Here λl is the amount of input traffic during
the periodtρ, q̃l is the persistent queue length during this
period, κq controls how fast the persistent queue drains [2],
κl is the target utilization [34] andcl is the link capacity. The
input traffic λl is measured using a simple packet counter.
The persistent queuẽql is generated by low-pass filtering the
instantaneous queueq(t) using a timer-driven approach that
measuresq(t) every tq = 10ms¿ tρ. Alternatively, we can
also use a data driven approach as used in RED [15] which
makes a measurement upon very packet enqueue event.

1Internet measurement shows that 90-95% of flows have an RTT less than
500ms. For US links, 75-90% of flows’ RTT is less than 200ms [23].

0
0

(10) (11)
2 2

medium overhigh
(01)

2

load: low

80% 100%

100%

: (00)
2

ccode

l
^

ρ
l

ρ
l

^

80%

50%

50%

ρ

>100%

Fig. 3. The quantized load factor̂ρl at a link l is a non-decreasing function
of the raw load factorρl and can be represented by a two-bit codeρ̂c

l .

Given sufficient demand, our goal is to keep each link
working around a state whereρl = 100% and κl is slightly
less than one. If we are able to reach this state, we have
λl/tρ = κl cl. Substituting this in Equation (6), we getq̃l = 0.
Consequently, in this state, the link capacity is almost fully
utilized and there is no persistent queue in the router buffer.

Being a normalized measure, the load factorρl can be
encoded using a small number of bits with sufficient precision.
Generally, givenn bits, the whole load factor range[0,∞)
can be partitioned into2n − 1 underload segments covering
[0%, 100%), plus one overload segment[100%,∞). Given the
two ECN bits, we can partition the whole load factor range into
the four segments as shown in Figure 3. (To get the complete
benefit of two bits, hereafter we fully utilize the two ECN bits
to encode four, instead of three, load regions, as described
earlier). We choose the following four ranges for quantizing
and encoding the load factorρl: 2

• Low-load region:ρ̂l = 50% whenρl ∈ [0%, 50%);
• Medium-load region:̂ρl = 80% whenρl ∈ [50%, 80%);
• High-load region:ρ̂l = 100% whenρl ∈ [80%, 100%);
• Overload region:̂ρl > 100% whenρl ∈ [100%,∞).
The quantized load factorŝρl can be represented by the

same number of two-bit codeŝρc
l , i.e.,ρ̂c

l = (00)2, (01)2, (10)2
and (11)2 for ρ̂l = 50%, 80%, 100% and ρ̂l > 100%,
respectively. The encoded two-bit load factorρ̂c

l is carried in
the data packet IP header from the source to the destination
and then echoed back to the source by the ACK packets. In a
network with multiple links, for each flowi, we need to convey
to the source the maximal quantized load factormax l∈Li (ρ̂l)
of all those links on the flowi’s forward pathLi = {l | i
traverses linkl}. Thus, each router updates the load factor in
a data packet header if its output link’s load factor is higher
than the load factor already encoded in the packet header. As
the quantized load factor̂ρl is a non-decreasing function of
the raw load factorρl, and this order is also preserved by the
codeρ̂c

l , i.e., ρ̂c
1 < ρ̂c

2 ⇔ ρ̂1 < ρ̂2 ⇒ ρ1 < ρ2, the comparison

2These three split points work very well in our ns2 simulations that cover
a wide range of network parameter settings in capacity, delay, and number of
flows, etc. They are chosen based on the following considerations: 1) 100% is
an obvious separator between the underload regions and the overload region;
2) To give a safety margin for the system to operate in the AIMD mode in its
steady state, 80% is used to separate the medium-load region and the high-
load region since it is slightly less than the MD parameterβ = 0.875 defined
in Section III-B; 3) We choose 50% to separate the low-load region and the
medium-load region becauseξ1(80%) = κρ · ξ1(50%) whereκρ = 0.25 is
used forρ̂l = 80% in Equation (29) in Section III-E.2 andξ1(ρ̂l) is defined
by Equation (10) in Section III-B. More discussion on this is in Section III-B.

5

2

2

0.5

0.2

0.1

0.064
0.044

0.032
0.024

ξ

ξ

 0.01

 0.1

 1

 1 10 100 1000 1e+06 1e+07 1e+04 1e+05

0.01

(cwnd)
buf / cwnd

1 / cwnd

[1Mbps] [1Gbps] [1Tbps]

cwnd (packet) [capacity, for 1000B packet and 80ms RTT]

Fig. 4. The MI parameterξ2 is a pairwise linear function oflog(cwnd).
The line buf/cwnd roughly represents the declining trend of router buffer
size compared withcwnd (or BDP). AI corresponds to1/cwnd. STCP uses
a fixed MI parameter 0.01 [30]. Note the logarithmic scale in both axes. Also
note x-axis roughly spans from 100Kbps to 1Tbps.

operation on the load factorρl at any linkl can directly operate
on the two-bit codêρc

l .

B. End Host Window Increase/Decrease Algorithms

The end host switches its window-based control between
MI/AI/MD depending on the load factor feedback. To simplify
the discussion, we consider a single-link network shared by
two flows f1 and f2, whose RTTs are equal to the measure-
ment period of the link load factor, i.e.,rtt1 = rtt2 = tρ. So
the flows have synchronous feedback and their control inter-
vals are also in sync with the link load factor measurement. We
will handle the case of non-synchronous feedback and control
due to heterogeneous RTT in Section III-C.

Following the simplified VCP model described in Section II-
C, if the end host receives an encoded load factorρ̂c

l that
represents the low-load or medium-load regions, it increases
its congestion windowcwnd using MI — this guarantees to
exponentially probe any amount of available bandwidth. For
high-load regions, the end host increasescwnd using AI —
together with MD, this guarantees the convergence toward
fairness. Otherwise, upon getting the first overload signal, the
end host immediately decreases itscwnd using MD, followed
by AI for the remaining time in the same RTT. So, at any time
t, we apply one of the following algorithms:

MI : cwnd(t + rtt) = cwnd(t)× (1 + ξ) (7)

AI : cwnd(t + rtt) = cwnd(t) + α (8)

MD: cwnd(t + δt) = cwnd(t)× β (9)

wherertt = tρ, δt → 0+, ξ > 0, α > 0 and1 > β > 0.
Now, we describe how to set the parametersξ, α and β.

First, as discussed in the Section III-A, we require an MD
parameterβ that does not force the two flows to make a
quantum jump from high utilization to the medium-load or
low-load regions. Once the system reaches high utilization, the
goal is to retain the system in this regime (if no capacity or
demand change) and achieve fairness amongst the two flows
by using AIMD. Hence we chooseβ = 0.875 (instead of
0.5 used by TCP), a value larger than80% which separates
the high-load and medium-load regions (see Section III-A).
Second, we set the AI parameterα = 1.0. For high BDP
networks, this makes AI probing extremely slow. However, it
does not matter much since AI means the network has already
entered the high-utilization region where efficiency does no

longer suffer from the slow probing speed. Third, to set the
MI parameterξ, we need to handle two factors: the intra-flow
factor and the inter-flow factor.

Intra-flow factor: With a current load factor̂ρl, in the next
RTT each flow needs to increase itscwnd to fill at least part of
the spare capacity that is proportional to1− ρ̂l. And because
the cwnd change uses MI, and it is based on the current
sending rate which is proportional tôρl, we get:

ξ1(ρ̂l) = κ · 1− ρ̂l

ρ̂l
(10)

whereκ controls the speed to converge toward full utilization.
We setκ = 0.25 and thusξ1(50%) = 0.25 and ξ1(80%) =
0.0625.

Inter-flow factor: For multiple flows, we argue that it is
better to setξ as a decreasing function than a constant value,
and its decrease should be slower thanO(1

cwnd). To see why
is this consider two extreme cases. If we use a constant value
ξ = c, then MI is increasingly unfair3 to low-rate flows,
and becomes increasingly bursty causing larger queues and
potentially packet losses. On the other hand, if we choseξ =

1
cwnd , then MI degenerates to AI. As a result, we choose a
function that is piecewise linear inlog(cwnd): 4

ξ2(cwnd) = a− b log(cwnd) (11)

and ξ2(cwnd) > 0. Instead of settinga and b, we choose a
set of specific values and interpolate the functionξ2(cwnd)
shown in Figure 4. For example, one set of values we use
are: 5ξ2(1) = 1.0, ξ2(10) = 0.5, ξ2(102) = 0.2, ξ2(103) =
0.1, ξ2(104) = 0.064, ξ2(105) = 0.044, ξ2(106) = 0.032 and
ξ2(107) = 0.024. This setting has also taken into account the
relatively decreasing trend of the router buffer size compared
with BDP. For efficient implementation,ξ2(cwnd) can be
computed off-line and organized as a lookup table indexed
by dcwnd e, wheredxe is the smallest integer that is not less
thanx. Finally, we combine the above two factors together:

ξ = min(ξ1(ρ̂l), ξ2(cwnd)). (12)

C. Handling RTT Heterogeneity by Parameter Scaling

So far we have considered the condition ofrtt1 = rtt2 =
tρ. Now we relax this condition on the previous model. The
flows have heterogeneous RTTs that usually differ from the
link load factor measurement interval as well. RTT substan-
tially affects the performance of window-based congestion
control. To offset the impact of RTT heterogeneity, we need
to generalize the end host algorithms in Equations (7)∼(9).

3Although it is not required to handle fairness in the MI phase, applying the
coming Equation (11) improves the fairness convergence speed of VCP. This
is a necessary compensation for the slow fairness convergence of the end-host
based AIMD which VCP applies. Refer to discussion in Section III-D.

4The logarithmic functionξ2(cwnd) is a middle-ground choice because
(− log(cwnd))′ = −1

cwnd
, while (const)′ = 0 and (1

cwnd
)′ = −1

cwnd2 .
5To illustrate how we come up with these values, consider the following

numerical examples: i) Given this setting, it takes less than 70 RTT to grow
cwnd from 1 to 104 packets, and less than 210 RTT from104 to 107;
ii) If two flows f1 and f2 start with different initial congestion windows
cwndf1(0) = 10 · cwndf2(0), but ξf2 − ξf1 = 0.033, then after about
t = 70 · rtt we will reachcwndf1(t) = cwndf2(t).

6

src

dst

rtr

MD
AI

new decision point
Freeze

dst

rtr

MD

src AI
new decision point

Freeze src

dst

rtr

AI AI
new decision pointMD

Frz

(1) rtt ¿ tρ (2) rtt ≈ tρ (3) rtt À tρ

Fig. 5. After each MD that is triggered by the first overload signal, the source host freezes itscwnd for tρ (for the bottleneck to generate a new load factor)
and then applies AI for onertt (for the new load factor to come back), regardless of the remaining encoded load factors during these two periods.

We first consider MI and AI which last for an entire RTT. If
we scale the parameters of the MI/AI algorithms in Equations
(7)-(8) for a flow with its RTT value and a common basetρ: 6

For MI : ξ ← (1 + ξ)
rtt
tρ − 1 , (13)

For AI : α ← α · rtt

tρ
, (14)

then during any time periodS, with Equation (7)/(8), the flow
will MI/AI an amount that is independent of the length of its
RTT, given synchronous feedback:

MI : cwnd(t + S) = cwnd(t)× (1 + ξ)
S
tρ , (15)

AI : cwnd(t + S) = cwnd(t) + α · S

tρ
. (16)

This scaling compensates RTT heterogeneity among flows,
which would otherwise cause small-RTT flows to gain a
significant advantage than large-RTT flows, either in MI or
in AI. In the other word, the value of RTT is decoupled from
deciding the congestion window increase speed.

For MD which is an impulse-like operation, since Equa-
tion (9) is not affected by the length of RTT, it needs
no change. However, the behavior after the MD needs to
accommodate the length oftρ. As illustrated in Figure 5, upon
getting the first load factor feedback that signals congestion
(i.e., ρ̂c

p = (11)2), the end host immediately cuts its congestion
window cwnd using MD. Next, it freezes itscwnd firstly for
a time period oftρ (for all the three cases shown in the figure)
such that the congested router can generate a new load factor
based on the source sending rate right after the MD. Then the
end host applies AI for one RTT, the time that it needs to
get the new load factor feedback from the destination ACK
packet. Based on this new load factor, a new decision can
be made. Of course, during these two time periods the router
could be congested again (e.g., because of incoming traffic).
That is where the router buffer space comes into play. As
the last resort, if the route buffer overflows, packet gets lost
and another loss-induced MD will be performed, preventing
congestion collapse. Although Figure 5 illustrates only either
tρ = n · rtt or rtt = n · tρ for an integern, this analysis can
be generalized to the non-integer cases.

However, RTT is the one which determines how long it takes
to get the load factor back to the source host. Consider two

6Equation (13) is the solution for1+ξ = (1+ξ scaled)
tρ
rtt where the right-

hand side is the MI amount during a time intervaltρ of a flow with RTT value
rtt. Similarly, Equation (14) is obtained by solving1+α = 1+

tρ

rtt
·α scaled.

flows f andF with RTT values such thatrttf ¿ rttF , which
share the same bottleneckl. This means that, after a load factor
ρ̂c

l is generated, flowF will receive it much later than flowf .
We focus on the situation where the load factor triggers a mode
switch that might have a negative impact on fairness, i.e., when
ρ̂c

l = (10)2. Flow f has switched from MI to AI, but flowF
still keeps doing MI for a time period of up torttF long, since
it has not received that load factor. During such a time interval,
with the RTT scaling according to Equation (15), flowF will
increase its congestion window fromcwnd to cwnd · (1 + ξ)
and gain an unfair share. To limit this effect, we boundrtt

tρ

above byσmi. Of course, this upper bound will cause the
large-RTT flows to probe at a slower speed in MI than small-
RTT flows. Fortunately, according to the design guideline in
Section II-B, it is not required to achieve fairness in the MI
phase. We will revisit this issue in Section V-A.

D. Weighted Bandwidth Sharing via Window-based Control

Even if the window-based control algorithm achieves fair
cwnd allocation, this does not directly translate to fair band-
width allocation. The standard AIMD algorithm has to be
extended to provide fair (or even differentiated) bandwidth
sharing. We first consider the AIMD rate control. Consider
two flows that share the same bottleneck(s) and receive
synchronous congestion signals. Flowi starts from an initial
sending rateri(0), wherei = 1 or 2. If each of them have an
AI parameterαri and an identical MD parameterβ, then at
the end of the first congestion epoch that includesm rounds
of AI and one round of MD:7

ri(1) = β · (ri(0) + m · αri). (17)

The rate ratio between the two flows is:

Λr
1,2(1) =

r1(1)
r2(1)

=
r1(0)/m + αr1

r2(0)/m + αr2
, (18)

Hence, when the number of the congestion epochsM is large
enough, the two flows will have a weighted share that is
proportional to their rate AI parametersαri:

Λr
1,2(M) =

r1(M)
r2(M)

→ αr1

αr2
. (19)

7We implicitly assumem À 1. As discussed in Section III-B, since the AI
parameterα is refrained from being set as a large number to probe bandwidth
quickly – which is now the job of the MI phase – we can always find anα for
any given MD parameterβ such thatm = 1−β

α
· cwnd À 1. For example,

given β = 0.875, set α = 1.0 makes the assumption true for high BDP
networks (where, e.g.,cwnd À 30). An even smaller number can be used
for α to make this assumption virtually always valid in practice.

7

The weighted rate difference at the end of theM -th con-
gestion epoch is:

∆r
1,2(M + 1) = β ·∆r

1,2(M) (20)

where

∆r
1,2(M) =

r1(M)
αr1

− r2(M)
αr2

(21)

for M = 0, 1, 2, Obviously hereβ decides the speed to
converge onto the target weighted share. For instance, given
β = 0.875, it takes about five congestion epochs to eliminate
half of the weighted rate difference.

Fairness gets improved per congestionepochwith the end-
host based AIMD algorithm. While a network-based AIMD
scheme like XCP improves fairness in everyroundof control.
Consequently, an end-host based scheme like VCP will be
significantly slower than XCP in the fairness convergence
speed. See Section IV-D for simulation results.

The above algorithm is based on the AIMD rate control.
To achieve the same goal, it has to be tailored for any
window-based scheme. It is also orthogonal to the handling of
heterogeneous RTTs in Section III-C. For a complete solution
we need to integrate these two factors. For example, if we
want to achieve a weighted bandwidth sharer for a flow
with a weight w, i.e., r ∝ w, consideringcwnd = r · rtt
and Equations (14) and (19), we end up with scaling the
window AI parameterα for a typical RTTtd = 100ms, and
tρ = 200ms = 2 td with:

For AI : α ← α · rtt2

tρtd
· w =

α

2
· (rtt

td
)2 · w . (22)

This scaling, however, might introduce a significant amount
of bursty traffic within one RTT ifrtt À td or w is huge and
therefore cause packet loss. To limit this effect, we impose
an upper boundσai on w · (rtt

td
)2 such that the burstiness can

be effectively absorbed by the router buffer. Of course, this
upper bound will cause the large-RTT flows to receive a lower
bandwidth share than otherwise, as shown in Section IV-E.

E. The VCP Protocol

Now, we are in the position to describe in detail the
operations performed by the VCP routers and the VCP end
hosts as well as how they interact.

1) The Router:The VCP router computes and encodes a
load factor based on the number of incoming packets and
the average queue for each output link. Then, it updates the
encoded load factor in the IP header if the value computed by
the router is larger than the one carried by the packet.

VCP Router Algorithm
—————————————————————————

R.1) For each incoming packet of sizesp, update a counter:

λl ← λl + sp // Count (23)

R.2) When the queue sampling timertq fires at timet:

q̃l ← EWMA(q̃l, q(t)) // Average (24)

i.e., update the low-pass filtered queue measurementq̃l with
an Exponentially Weighted Moving Average (EWMA) similar
to what is used in RED. We settq = 10ms;

R.3) When the load factor measurement timertρ fires:

ρl =
λl + κq · q̃l

κl · cl · tρ // Measure (25)

ρ̂c
l ← encode (ρl) // Encode (26)

λl ← 0 // Reset (27)

whereκq = 0.5, κl = 0.98, tρ = 200ms,cl is the link capacity,
and the encoding function is defined in Section III-A;

R.4) For each dequeued data packetp that carries an
encoded load factor̂ρ c

p from upstream:

ρ̂ c
p ← max(ρ̂c

l , ρ̂ c
p) // Tag (28)

—————————————————————————

2) The End Hosts:The VCP receiver is the same as the
TCP Reno receiver, except that it copies the encoded two-bit
load factorρ̂ c

p from the data packet to its corresponding ACK
packet. The VCP sender builds upon the TCP Reno sender. It
behaves like TCP Reno when packet loss happens. The VCP
sender also initializes the encoded load factorρ̂ c

p in the data
packet IP header to(00)2. It switches its window-based control
between MI/AI/MD according to the encoded load factorρ̂ c

p

received in the ACK packet. This switching is performed as
follows.

VCP Sender Algorithm
—————————————————————————

S.1) If the load factor is low/moderate (ρ̂ c
p = (0X)2), do:

ξ = min(ξ1(ρ̂l), κρ · ξ2(cwnd))

inc = (1.0 + ξ)min(srtt
tρ

, σmi) − 1.0 // Scaling

cwnd ← cwnd + inc // MI (29)

where ρ̂l = 50%, κρ = 1.0 for ρ̂ c
p = (00)2 and ρ̂l =

80%, κρ = 0.25 for ρ̂ c
p = (01)2, ξ1 and ξ2 are defined in

Equations (10) and (11) in Section III-B, respectively,srtt is
the smoothed RTT measurement in ms,tρ = 200ms, and the
MI burstiness limiterσmi = 2.5;

S.2) If the load factor is high (̂ρ c
p = (10)2), do:

inc = α ·min((
srtt

td
)2 · w, σai) // Scaling

cwnd ← cwnd + inc / cwnd // AI (30)

whereα = 1.0, td = 100ms, the AI burstiness limiterσai =
10.0, and the weightw is settable with a default value 1.0;

S.3) For the first “overload” load factor (̂ρ c
p = (11)2), cut

the congestion window once immediately with:

cwnd ← max(1.0, β · cwnd) // VCP−MD (31)

where β = 0.875. Then, for a time period of lengthtρ +
srtt, first freezecwnd for one tρ and second follow S.2 for
onesrtt, regardless of the value of the remaining load factors

8

TABLE I

VCP PARAMETER SETTINGS

Parameter Value Meaning

tρ 200 ms the link load factor measurement interval
tq 10 ms the router queue sampling interval
κl 0.98 the link target utilization
κq 0.5 how fast to drain the router steady queue
td 100 ms the typical RTT value of a flow
κ 0.25 how fast to probe the available bandwidth
κρ 1.0 / 0.25 the MI adjuster, forρ̂ c

p = (00)2 / (01)2
α 1.0 the AI parameter
β 0.875 the MD parameter

σmi 2.5 the traffic burstiness limiter for MI
σai 10.0 the traffic burstiness limiter for AI
w 1.0 the default weight value (may change)

during this time period. (Even we do only one VCP-MD in
this time period, since VCP builds upon TCP Reno, the loss-
triggered MD might be performed as well. This happens when
the VCP-MD rate cut is not sufficient to bring the network out
of congestion.)
—————————————————————————

IV. PERFORMANCEEVALUATION

In this section, we use extensive ns2 simulations to evaluate
the performance of VCP under different network topologies,
configurations and traffic load. For the purpose of comparison,
we use similar network configurations as used in the XCP
paper [27]. Our simulations cover a wide range of network
scenarios, such as link capacities in [1.5Mbps, 4Gbps], round
trip propagation delays in [10ms, 1.4s], numbers of long-lived,
FTP-like flows in [1, 1000], and arrival rates of short-lived,
web-like flows in [1s−1, 1000s−1]. In all the simulations
we use two-way traffic with congestion resulted in the re-
verse path. The bottleneck buffer size is always set to one
bandwidth-delay product. The data packet size is 1000 bytes,
while the ACK packet is 40 bytes. All the simulations run
for at least 120s to ensure that the system has reached steady
state. The average utilization statistics neglect the first 20%
of simulation time. For all the time-series graphs, utilization
and throughput are averaged over 500ms interval, while queue
length and congestion window are sampled every 20ms. We
use afixedset of VCP algorithm parameters shown in Table I
for all the simulations in this paper.

Our results demonstrate that, for a wide range of network
scenarios, particularly high BDP scenarios, VCP is able to
achieve comparable performance as XCP, i.e., exponential
convergence onto high utilization, low persistent queue length,
negligible packet drop rate and reasonable fairness, except
that its fairness convergence is significantly slower than XCP.
Due to utter complexity of the Internet and limitations of the
simulation approach [16], although we have painstakingly run
more than 160 simulations for this paper and tried to make
them representative (e.g., two-way traffic, different RTT, rough
timer, parameter settings, etc.), we do not claim that these
simulations cover all, or even a major part of, the real-world
scenarios. Conclusions are made to the extent that is covered
by them. Nevertheless, we believe the results below still give
us substantial confidence on the performance of VCP.

.

..

.

..

.

..

.

..

Src 2

Src 1

Src n

R 0 R 1

Dst 1

Dst 2

Dst n

forward traffic

reverse traffic

Fig. 6. A single-bottleneck topology with two-way traffic.

R0 R R R1 2

reverse traffic

forward traffic

cross traffic

nR
n−1

Fig. 7. A multiple-bottleneck parking-lot topology (n = 9 is used).

A. One Bottleneck

Firstly we evaluate the performance of VCP for a single
bottleneck shown in Figure 6, where the capacity, the round-
trip propagation delay, the number of FTP flows and the arrival
rate of web flows may change. The basic setting is an 150Mbps
link with 80ms RTT where 50 FTP flows are on the forward
path. There are 50 FTP flows on the reverse path. The changes
are then made over this basic setting to evaluate the impact of
each network configuration parameter. All the simulations in
this subsection run for 120s or 300 RTTs, whichever is larger.
For comparison purpose, in this subsection we use exactly the
same network configurations as in Section 5.2 of [27], from
which we reuse the XCP results in Figures 8∼11. (Note XCP
does not provide maximal queue statistics.)

Impact of Bottleneck Capacity:In this simulation, we vary
the bottleneck capacity from 1.5Mbps to 4Gbps, but fix other
parameters. Figure 8 demonstrates that for all the cases, VCP
always keeps high utilization. As capacity increases, for the
cases where the bottleneck capacity is larger than 10Mbps
(i.e., per-flowcwnd of 2 packets), VCP’s bottleneck maximal
queue and average queue both decrease towards about 1%
of the bottleneck buffer size and no packet gets dropped.
(All the queue statistics in this subsection is in percentage
of bottleneck buffer size.) When the capacity is extremely
low, e.g., 1.5Mbps (i.e., per-flowcwnd of 0.3 packet), the
bottleneck average queue significantly increases to 83% of the
buffer size, resulting in 4% packet loss. This is due to the AI
parameterα = 1.0 which is too large for such low capacity.
Comparing VCP to XCP, we find the utilization gap is at most
6%, indicating that overall VCP achieves similar performance
as XCP.

Impact of Feedback Delay:We fix the bottleneck capacity
at 150Mbps and vary the round-trip propagation delay from
10ms to 1400ms. As shown in Figure 9, when we vary the
delay between 10ms and 400ms, we notice that the bottleneck
average utilization is mostly around 92%∼97%, the average
(maximal) queue is always less than 3% (12%) of the buffer

9

Note x−axis is in log scale.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 10 100 1000

B
ot

tle
ne

ck
 U

til
iz

at
io

n

Bottleneck Capacity (Mbps)

XCP
VCP

 0%

 20%

 40%

 60%

 80%

 100%

 1 10 100 1000

B
ot

tle
ne

ck
 Q

ue
ue

 (%
 B

uf
)

Bottleneck Capacity (Mbps)

XCP, Avg Queue

VCP, Max Queue
VCP, Avg Queue

 0%

 1%

 2

 3%

 4%

 5%

 1 10 100 1000

B
ot

tle
ne

ck
 D

ro
ps

 (%
 P

kt
 S

en
t)

Bottleneck Capacity (Mbps)

XCP
VCP

(1) Bottleneck Average Utilization (2) Bottleneck Maximal/Average Queue (3) Bottleneck Drops

Fig. 8. VCP with the bottleneck capacity ranging from 1.5Mbps to 4Gbps. (1) The bottleneck average utilization is always higher than 93%; (2-3) For most
cases (≥ 10Mbps), the bottleneck average (maximal) queue is lower than 4% (34%) of the buffer size and there is no packet drop. When the capacity is lower
than 5Mbps (i.e., the per-flow congestion window is less than one packet), the bottleneck average queue is large and a small percentage of packets (e.g., 4%
for the case of 1.5Mbps) get lost. Overall, VCP performs slightly worse than XCP. Note the logarithmic scale of the x-axis in these figures.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 10 100 1000

B
ot

tle
ne

ck
 U

til
iz

at
io

n

Round−trip Propagation Delay (ms)

XCP
VCP

 0%

 5%

 10%

 15%

 20%

 25%

 30%

 35%

 40%

 45%

 50%

 10 100 1000
Round−trip Propagation Delay (ms)

 XCP, Avg Queue
B

ot
tle

ne
ck

 Q
ue

ue
 (%

 B
uf

)

VCP, Max Queue
VCP, Avg Queue

 0%

 1%

 2%

 3%

 4%

 5%

 10 100 1000
Round−trip Propagation Delay (ms)

XCP

B
ot

tle
ne

ck
 D

ro
ps

 (%
 P

kt
 S

en
t)

VCP

(1) Bottleneck Average Utilization (2) Bottleneck Maximal/Average Queue (3) Bottleneck Drops

Fig. 9. VCP with the round-trip propagation delay ranging from 10ms to 1400ms. (1) The bottleneck average utilization is mostly higher than 91%, except
three cases: 86.7% for 400ms, 88.8% for 570ms, and 89.4% for 1300ms; (2) The bottleneck average queue is always lower than 5% (mostly around 1%∼2%)
of the buffer size. The maximal queue gets higher for delays larger than 1000ms, but is still less than 50% buffer size (see the text for explanation); (3) There
is no packet loss. The bottleneck average utilization performance gap between VCP and XCP could be as large as 12%, but the overall performance of VCP
is still comparable with XCP.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 10 100 1000

B
ot

tle
ne

ck
 U

til
iz

at
io

n

Num of Long−lived Flows

XCP
VCP

 1 10 100 1000
Num of Long−lived Flows

 XCP, Avg Queue

 40%

 35%

 30%

 25%

 20%

 15%

 10%

 5%

 0%

B
ot

tle
ne

ck
 Q

ue
ue

 (%
 B

uf
)

VCP, Max Queue
VCP, Avg Queue

 0%

 1%

 2%

 3%

 4%

 5%

 1 10 100 1000
Num of Long−lived Flows

XCP

B
ot

tle
ne

ck
 D

ro
ps

 (%
 P

kt
 S

en
t)

VCP

(1) Bottleneck Average Utilization (2) Bottleneck Maximal/Average Queue (3) Bottleneck Drops

Fig. 10. VCP with the number of long-lived, FTP-like flows ranging from 1 to 1000. (1) The bottleneck average utilization is always higher than 93%; (2)
The bottleneck average (maximal) queue is always less than 5% (38%) of the buffer size; (3) There is no packet drop. VCP performs slightly worse than
XCP in the bottleneck utilization. When the bottleneck is heavily multiplexed, e.g, with 800+ flows, VCP even slightly outperforms XCP.

size. When the delay exceeds 400ms, VCP performs worse
than the lower delay cases, with lower utilization and much
higher maximal queue length. (Note the logarithmic scale of
the x-axis in the figure.) The reason is that when the load
factor measurement intervaltρ = 200ms is much lower than
the RTTs, the link load condition measured eachtρ is not
reliable due to the busty nature of window-based control. This
can be counteracted by increasingtρ; but the tradeoff is the
link load measurement will be less responsive. Note in this
simulation all the flows have the same RTT, and we believe
the case for all the flows having similar large RTTs (> 400ms)
is not a common condition in practice. Nevertheless, even for
the large RTT cases, the worst utilization is 86%, the highest
maximal queue is still less than 50% of the bottleneck buffer
size, the persistent queue length is around 2% buffer size and
there is no packet drops. Comparing to XCP, VCP’s utilization
could be 12% less than XCP. But their average queue length

is similar and both of them drop no packet.

Impact of Number of Long-lived Flows:With an increase
in the number of forward FTP flows (Figure 10 shows the
results), we notice that the whole traffic gets more bursty,
as shown by the increasing trend of the bottleneck maximal
queue. However, even when the network is very heavily
multiplexed by 1000 flows (i.e., the average per-flowcwnd
equals to only 1.5 packets), the maximal queue is still less
than 38% of the buffer size. For all the cases, VCP behaves
very comparable to XCP.

Impact of Short-lived Traffic:Finally we add web traffic into
the network. These short-lived web flows arrive according to
the Poisson process, with the average arrival rate varying from
1/ s to 1000/ s. Their transfer size obeys the Pareto distribution
with an average of 30 packets (corresponding to the parameter
shape = 1.35 in ns2). This setting is consistent with the real-

10

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 10 100 1000

B
ot

tle
ne

ck
 U

til
iz

at
io

n

Mice Arrival Rate (/s)

XCP
VCP

 10 100 1000
Mice Arrival Rate (/s)

 XCP, Avg Queue

 30%

 25%

 20%

 15%

 10%

 5%

 0%

B
ot

tle
ne

ck
 Q

ue
ue

 (%
 B

uf
)

VCP, Max Queue
VCP, Avg Queue

 0%

 1%

 2%

 3%

 4%

 10 100 1000
Mice Arrival Rate (/s)

XCP

 5%

B
ot

tle
ne

ck
 D

ro
ps

 (%
 P

kt
 S

en
t)

VCP

(1) Bottleneck Average Utilization (2) Bottleneck Maximal/Average Queue (3) Bottleneck Drops

Fig. 11. Similar to XCP, VCP remains efficient with the short-lived, web-like flows arriving/departing at a rate from 1/ s to 1000/ s. (1) The bottleneck
average utilization is always higher than 93%; (2) The average (maximal) queue is always less than 3% (20%) of the buffer size; (3) There is no packet drop.

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1 2 3 4 5 6 7 8 9

B
ot

tle
ne

ck
 U

til
iz

at
io

n

Bottleneck ID

Different Bandwidth
Same Bandwidth

 0%

 1%

 2%

 3%

 4%

 1 2 3 4 5 6 7 8 9
Bottleneck ID

Same Bandwidth, Max Queue
Different Bandwidth, Max Queue

Same Bandwidth, Avg Queue
Different Bandwidth, Avg Queue

 5%

B
ot

tle
ne

ck
 Q

ue
ue

 (%
 B

uf
)

 0%

 1%

 2%

 3%

 4%

 1 2 3 4 5 6 7 8 9
Bottleneck ID

Different Bandwidth
Same Bandwidth

 5%

Bo
ttl

en
ec

k
D

ro
ps

 (%
 P

kt
 S

en
t)

(1) Bottleneck Average Utilization (2) Bottleneck Maximal/Average Queue (3) Bottleneck Drops

Fig. 12. VCP with multiple congested bottlenecks. When either all the links have the same capacity (100Mbps), or the middle link #5 has lower capacity
(50Mbps) than the rest of the links, VCP consistently achieves high utilization, low persistent queue and zero packet drop on all the bottlenecks.

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30

Fl
ow

 T
hr

ou
gh

pu
t (

M
bp

s)

Flow ID

Equal RTT (40ms)
Different RTT (40−156ms)

Very Different RTT (40−330ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120

B
ot

tle
ne

ck
 U

til
iz

at
io

n

Time (sec)

Equal RTT (40ms)
Different RTT (40−156ms)

Very Different RTT (40−330ms)

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

B
ot

tle
ne

ck
 Q

ue
ue

 (p
ac

ke
ts

)

Time (sec)

Very Different RTT (40−330ms)

(1) Flow Average Throughput Distribution (2) Bottleneck Utilization (3) Bottleneck Queue

Fig. 13. To some extent, VCP distributes bandwidth fairly among competing flows with either equal or different RTTs. (1) The bottleneck bandwidth gets
evenly allocated to all the flows if the RTT ratio is within 4. Beyond that, flow throughput distribution spreads wider when the RTT heterogeneity is significant,
with the throughput ratio of up to 5 given the RTT ratio of up to 8; (2) The bottleneck utilization keeps higher than 95% after the starting period; (3) Even
for the case of significant RTT heterogeneity (i.e., 40ms∼330ms), the bottleneck queue remains very low, given the buffer size of 2080 packets. Compared
with the results in [27], VCP performs much better than TCP+RED/REM/AVQ/CSFQ and is close to, though not as good as (for the 40ms∼330ms case),
XCP.

world web traffic model [10]. As shown by Figure 11, the
bottleneck always maintains high average utilization with low
queue length and zero packet drop, quite similar to XCP.

Across a wide range of network configuration, these simu-
lations demonstrate that VCP can achieve comparable perfor-
mance to XCP in a one-bottleneck scenario. Note this result
is achieved with a fixed set of VCP parameters, indicating the
robustness of the VCP algorithm.

B. Multiple Bottlenecks

Next, we study the performance of VCP using a more
complex network topology with multiple bottlenecks. For this
purpose, we use a classic parking-lot topology with nine links,
as shown in Figure 7. All the links have a 20ms one-way
propagation delay. There are 50 FTP flows traversing all the
links in the forward direction, and 50 FTP flows traversing
all the links in the reverse direction as well. In addition, each
individual link has 5 cross FTP flows traversing in the forward

direction. We run two simulations. First, all the links have
100Mbps capacity. Second, the middle link #5 has the smallest
capacity of only 50Mbps, while all the others have the same
capacity of 100Mbps.

Figure 12 shows that for both cases, VCP performs as good
as in the single-bottleneck scenarios. When all the links have
the same capacity, VCP achieves higher than 93% average
utilization, less than 0.2%-buffer-size average queue length
and zero packet drops at all the bottlenecks. When we lower
the capacity of one of the links in the topology, the average
utilization increases to 95%, with the largest maximal queue
representing only 2.7% of the buffer size.

C. Fairness

TCP flows with different RTTs achieve bandwidth allocation
that is proportional to1/ rttz where1 ≤ z ≤ 2 [36]. VCP
alleviates this issue to some extent. Here we look at the RTT-
fairness of VCP. We have 30 FTP flows sharing a single

11

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600
Time (sec)

Flow 1 (rtt = 40ms)
Flow 2 (rtt = 50ms)
Flow 3 (rtt = 60ms)
Flow 4 (rtt = 70ms)
Flow 5 (rtt = 80ms)

 45
Fl

ow
 T

hr
ou

gh
pu

t (
M

bp
s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

B
ot

tle
ne

ck
 U

til
iz

at
io

n

Time (sec)

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

B
ot

tle
ne

ck
 Q

ue
ue

 (p
ac

ke
ts

)

Time (sec)

(1) Flow Throughput (2) Bottleneck Utilization (3) Bottleneck Queue

Fig. 14. VCP converges onto good fairness, high utilization and small queue. However, its fairness convergence takes significantly longer time than XCP.
(1) Every 100s, a new flow comes in and the network converges onto a new fair bandwidth allocation; (2) The bottleneck utilization keeps higher than 93%
after the starting period; (3) The bottleneck queue remains low throughout the simulation, comparing to its buffer size of 337 packets.

RTT: 60ms−105ms

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120

C
on

ge
st

io
n

W
in

do
w

 (p
ac

ke
ts

)

Time (sec)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

B
ot

tle
ne

ck
 U

til
iz

at
io

n

Time (sec)

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120

B
ot

tle
ne

ck
 Q

ue
ue

 (p
ac

ke
ts

)

Time (sec)

(1) Flow Congestion Window (2) Bottleneck Utilization (3) Bottleneck Queue

Fig. 15. VCP is robust against and responsive to sudden, considerable traffic demand change. Here 40 FTP flows join the system of 10 FTP flows (with
heterogeneous RTTs of 60ms∼105ms) at 40s and leave at 80s. (1) The 10 flows’ congestion windows adapt quite responsively to the sudden demand changes
at 40s and 80s; (2) The bottleneck quickly ramps up to high utilization in 4 seconds after the departure of the 40 flows at 80s; (3) The bottleneck queue gets
only slightly more bursty with all the 50 flows active. It remains small throughout the simulation, comparing to the buffer size of 1025 packets.

90Mbps bottleneck, with 30 FTP flows on the reverse path.
We perform three sets of simulations for three cases: (a) same
RTT; (b) small RTT difference; (c) huge RTT difference. We
will see that VCP is able to allocate bottleneck bandwidth
fairly among competing flows, as long as their RTTs are not
significantly different. This capability degrades as the RTT
heterogeneity increases.

First, all the forward FTP flows have a common RTT of
40ms. As shown in Figure 13, the link capacity is very evenly
distributed among all the flows. An average utilization of 96%
is achieved with an average queue of 5 packets (less than 1.2%
buffer size), maximal queue 39 packets (or 8.7% buffer size)
and no packet drops. Second, when the flows have small RTT
difference, we notice that the bandwidth sharing is again very
fair. And other performance matrices are also similarly good.
Third, the flows have significantly different RTTs - 40ms to
330ms (i.e., RTT ratio of about 8). This seems to stress the
protocol. VCP can not distribute the bandwidth fairly between
the flows that have huge RTT variation (with throughput ratio
of up to 5). However, the bottleneck remains highly utilized,
the persistent queue is very low and no packet gets dropped.

D. Dynamics

All the previous simulations focus on the long-term, steady-
state behavior of VCP. Now we investigate its short-term
dynamics.

Convergence Behavior:In this simulation, a single 45Mbps
bottleneck is shared by 5 FTP flows that have 40ms, 50ms,
60ms, 70ms and 80ms RTT, respectively. There are also 5
FTP flows in the reverse direction. The forward flows start

sending packets 100s apart at 0s, 100s, 200s, 300s and 400s,
respectively. The reverse flows are always on. Figure 14
illustrates that VCP’s AIMD mechanism reallocates bandwidth
to new flows whenever they come in without affecting its high
utilization or causing large instantaneous queue. Note these
flows have different RTTs. The RTT heterogeneity is effec-
tively compensated by the parameter scaling in Section III-C
— otherwise, the flow with the smallest RTT will claim more
bandwidth than the ones with larger RTTs. Finally, due to the
reason discussed in Section III-D, VCP’s fairness convergence
takes much longer time than XCP. This is the price that
an end-host based scheme without using precise bandwidth
information has to pay.

Sudden Demand Change:In this simulation, traffic demands
change suddenly and considerably. We start the simulation
with 10 FTP flows sharing an 100Mbps bottleneck. They have
RTT from 60ms to 105ms, 5ms apart. There are 10 FTP flows
on the reverse path as well. At 40s, 40 new forward FTP flows
become active. Then they leave at 80s. Figure 15 clearly shows
that, at 80s when the departure of four fifth of the total traffic
creates four-fold available bandwidth for the remaining flows,
the system quickly discovers this and ramps up from 25%
utilization to 95% in about 4 seconds! Notice that during the
adjustment period, even though the bottleneck queue is more
bursty, it remains very low. This simulation shows that VCP
is responsive to sudden, significant decreases/increases in the
available bandwidth. This is no surprise because VCP switches
to the MI/MD mode which by nature can trace any bandwidth
change∆bw in logarithmic timeO(log (∆bw)).

12

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100 120
Time (sec)

Flow 1 (weight=3, rtt=60ms)
Flow 2 (weigth=2, rtt=80ms)
Flow 3 (weigth=1, rtt=100ms)

 10
Fl

ow
 T

hr
ou

gh
pu

t (
M

bp
s)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

B
ot

tle
ne

ck
 Q

ue
ue

 (p
ac

ke
ts

)

Time (sec)

 5

 10

 15

 20

 2 4 6 8 10 12 14 16 18 20

Fl
ow

 T
hr

ou
gh

pu
t D

iff
er

en
tia

tio
n

Weight Specified

Weight Targeted
Weight Achieved, Flow 1
Weight Achieved, Flow 5

Weight Achieved, Flow 10

(1) Flow Throughput (2) Bottleneck Queue (3) Weight Achieved

Fig. 16. VCP is able to allocate differential bandwidth among competing flows of heterogeneous RTTs. Flow #1, #2 and #3 have 60ms, 80ms, 100ms RTT
and a weight of 3, 2, 1, respectively. They share a 10Mbps bottleneck. (1) Bandwidth is allocated among three flows accordingly to their weights; (2) The
bottleneck queue remains low all the time. (3) This separate set of simulations evaluate the achievable weight range. Among 10 flows of different RTTs in
[60ms, 150ms], one of them (either flow #1 with 60ms RTT, or flow #5 with 100ms RTT, or flow #10 with 150ms RTT) has a weightw varying from 1 to
20 and all the others have a unit weight. The specified weights are all quite accurately achieved for flow #1, but the highest weights that flows #5 and #10
obtain are only 15.2 and 6.6, respectively, indicating the effect of their larger RTTs.

E. Bandwidth Differentiation

Finally we show VCP’s bandwidth differentiation capability.
In our first simulation, a 10Mbps bottleneck is shared by 3 FTP
flows with different RTTs:rtt1 = 60ms,rtt2 = 80ms,rtt3 =
100ms, and different weights:w1 = 3, w2 = 2, w3 = 1. They
all start at 0s but stop at 40s, 80s, and 120s, respectively.
There are also 3 reverse FTP flows that are always on and
all with weight 1. Figures 16(1)-(2) clearly demonstrate that
the bottleneck bandwidth is distributed among the three flows
according to their specified weights without introducing large
queue in the bottleneck.

In our second set of simulations, we evaluate the range of
weights achievable. We have a bottleneck of capacity 100Mbps
shared by 10 FTP flows of heterogeneous RTT ranging from
60ms to 150ms (rtti = 50 + 10× i ms for i = 1, 2, . . . , 10).
One flow has a varying weight in[1, 20] while others have
the same unit weight. There are also 10 reverse FTP flows all
with unit weight. We simulate three cases with the weighted
flow being flow #1 (60ms RTT), #5 (100ms RTT) and #10
(150ms RTT), respectively. Each simulation runs for 150s.
Figure 16(3) shows the achieved bandwidth ratio between the
weighted flow and the average of all the others. The achieved
weight range for flow #1 is [1.0, 20.4], closely matching the
specified wights, while flows #5 and #10 achieve only [1.0,
15.2] and [1.0, 6.6], respectively, indicating the influence of
their larger RTTs. All these results are achieved while the
bottleneck is highly utilized with low persistent queue.

RTT heterogeneity does limit the bandwidth differentiation
achievability, as shown in Figure 16(3). This is due to the
relationship between bandwidth differentiation and burstiness
thus introduced into the network. The resulting burstiness
will in turn affect if the targeted bandwidth differentiation is
achieved or not.

V. D ISCUSSIONS

Since VCP switches its control between MI/AI/MD algo-
rithms based on the load factor feedback, concerns naturally
arise on the effect of mode sliding on system stability and
bandwidth allocation efficiency and fairness, particularly when
RTT heterogeneity is significant. In this section we discuss the
efficiency, fairness and stability issues and comment on the
incremental deployment aspects of VCP.

A B

Fast MI −−> Slow MI

C

MI−−>AI MD<−−>AI

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10
Co

ng
es

tio
n W

ind
ow

 (p
ac

ke
ts)

Time (sec)

flow with rtt = 50ms
flow with rtt = 500ms

Fig. 17. The congestion window dynamics of two flows with dramatically
different RTTs (50ms vs. 500ms). Due to its longer delay, the larger-RTT flow
always slides its mode later than the small-RTT one (see the regions labeled
as A, B, C). However, the effect of this asynchronous switching is limited by
VCP and does not prevent it from achieving efficiency and fairness.

A. Influence of Mode Sliding on Efficiency and Fairness

From an efficiency perspective, VCP’s goal is to bring and
maintain the system to a high utilization regime and restrict
mode switching between AI and MD. While MI enables VCP
to quickly reach high link-utilization, VCP has several built-in
mechanisms to enable the system to remain in that state. One
such important mechanism is the scaling of AI/MI parameters
in the case of flows having different RTTs. While one may
argue that this scaling treats flows alike irrespective of the their
RTTs which may seem undesirable, this behavior is critical
to avoid oscillations. Specifically, this scaling is essential to
prevent a flow with a very low RTT to apply MI several times
within the same router load factor measurement period. Other
mechanisms that VCP uses to maintain high efficiency include
choosing an appropriate value of the MD parameter to remain
in the high utilization regime, the safety margin between MI
and AI, and applying burstiness limiters.

For fairness, as discussed in Section III-C, there are two
major concerns: (1) Since RTT is the inherent control cycle
of window-based schemes, small-RTT flows probe bandwidth
faster than large-RTT flows; (2) A flow with higher RTT
switches from MI to AI later than its lower-RTT counterparts
and thus may gain an unfair share. The first issue is handled
by the RTT scaling in Equations (13)-(16). The second issue
is addressed by the MI burstiness limiterσmi (in the source
host algorithm S.1). To further illustrate this, Figure 17 shows
the congestion window evolution of two flows with RTT
of 50ms and 500ms traversing a single 10Mbps bottleneck.

13

At 4.26s, the 50ms-RTT flow switches from MI to AI; the
500ms-RTT flow, however, keeps doing MI until 4.58s due
to its longer delay. During this 0.32s interval, the 500ms-
RTT flow’s congestion window gain due to MI is limited by
σmi. After that, it finally enters the AI phase which lasts for
many rounds. The extensive simulation results in Sections IV-
B∼ IV-E, where we always use heterogeneous RTT settings,
validate that VCP limits the effect of asynchronous mode-
switching due to delay difference.

B. VCP Stability

We consider the stability of VCP based on the simplified
model in Section II-C. VCP is a variable-structure system with
two components: MIMD and AIMD. We have to consider both
components as well as the mode sliding between them. The
stability of AIMD has been well-established by [9] and [19].
Therefore we focus on MIMD and the sliding function.

Consider a topology of one bottleneck of capacityc used by
N flows i ∈ [1, N] with identical, constant RTTs. Assume∀i,
rtti = T . The source hosti has a congestion windowwi(t)
at any timet. As shown in Figure 1, whenever a load factor
ρ(t) arrives at the source, due to the delay it was calculated
with the aggregated source sending rate at timet− T :

ρ(t) =
∑

wi(t− T)
c T

. (32)

It triggers an update on the MI parameterξ(t) in Equation (3).
Due to the MIMD rule in Equation (2), we have

ẇi(t) =
wi(t)

T
· ξ(t)

= κ · wi(t)
T

· [c T∑
wi(t− T)

− 1]. (33)

Let y(t) = c T∑
wi(t)

(obviouslyy(t) > 0), we get

ẏ(t) =
κ

T
· y(t) · [1− y(t− T)]. (34)

It is called delayed logistic differential equation. Its stability
has been well-understood [32]: Ifκ ≤ 3/2, then it is globally
asymptotically stable with the equilibriumy∗ = 1.

We now discuss the mode sliding between MI, AI and
MD. Under normal conditions, the system mode slides as
MI →AI ↔MD. If somehow the system switches from MD
directly to MI, thanks to the scaling of the MI/AI parameters
in Section III-C, if there is no significant change in traffic
demand, it will then slide into AI regardless of the length of
RTT. Further, to prevent the system from oscillating between
MI and MD, we useρ̂l = 0.8 to separate MI and AI, and set
the MD parameterβ = 0.875. This way, a safety margin of
7.5% is provided.

Obviously, formal analysis on the mode-sliding function
is still an open question. So, in this paper we rely on the
extensive simulations in Section IV to evaluate its influence on
the stability of VCP, which demonstrate substantially positive
results, even for very high bandwidths (up to 80Mbps per flow)
or large delays (up to 1.4s RTT). We also remark that TCP is
also a variable-structure control — its slow-start is MI. VCP’s
load factor-guided MI is at most as fast as TCP slow-start.

C. Making VCP TCP-friendly

We define a VCP flow to beTCP-friendlywith a competing
TCP flow if the steady state throughput of the TCP flow
matches what it would when competing with a normal TCP
flow [42][13]. However in high BDP networks, a VCP flow
should be able to leverage the additional bandwidth unused
by the TCP flows while not affecting the throughput of TCP
flows. Because VCP operates with AIMD in steady state, it is
straight-forward to tailor it to exhibit TCP-friendly behavior.
At the end host, to match TCP’s AI parameter, we need to
change the VCP AI parameter toα = 3(1−β)

1+β = 0.2 according
to the TCP-friendly general AIMD formula [50]. At the router,
when the encoded load factor̂ρc

l = (11)2, we replace the
original deterministic ECN marking with a probabilistic one
similar to RED. For TCP sources, in accordance with the
ECN proposal, the encoded load factors(00)2, (01)2 and(10)2
correspond to no congestion, while(11)2 to congestion.

D. Incremental Deployment

If VCP is to be gradually deployed on the Internet, the
deployment could follow the similar path as CSFQ [47] and
XCP on an island-by-island basis. Therefore, even though VCP
looks simpler than XCP, the deployment cost is quite similar,
not much less. The deployment, however, will still benefit
from VCP’s simplicity: It does not need a new field in the
IP header; the needed two-bit space has been standardized
for congestion control purposes by the current ECN proposal
and VCP uses it in a way that is a natural generalization of
ECN. From the end hosts perspective, VCP can be made TCP-
friendly, as described earlier. On the network side, as we have
shown, the VCP router is scalable in that it does not keep
any per-flow state and its algorithm complexity is very low.
This makes it deployable in high speed core networks. The
traffic inside an VCP island will immediately enjoy VCP’s
capability of maintaining high utilization, low persistent queue
and minimal packet drop. The cross traffic that passes an VCP
island between two border routers will be mapped onto an
VCP flow from the ingress router to the egress router. These
border routers do need to keep per-VCP-flow state. However,
since the VCP flow is aggregated from the passing micro-
flows, this will not cause scalability problems.

VI. RELATED WORK

This work builds upon a great body of related work, partic-
ularly XCP [27], TCP [19][40], AIMD [9] and ECN [45][46].
Congestion control is pioneered by TCP [19] and the
AIMD algorithm [9][22]. The research on AQM starts from
RED [15][4], followed by Blue [12], REM [2], PI con-
troller [18], virtual queuing [17], AVQ [34], and CHOKe [43],
etc. A nonlinear optimization framework provides these works
a theoretic underpin [29][39][33][28]. Below we relate VCP
to three categories of congestion control approaches.

Explicit rate based schemes:XCP regulates source sending
rate with decoupled efficiency control and fairness control and
achieves excellent performance. ATM ABR (e.g., see [21]
and the references therein) previously proposes explicit rate
control. VCP learns from these schemes. However, VCP is

14

primarily an end-host based protocol. This key difference
brings new design challenges not faced by XCP and thus VCP
is not just a “two-bit” version of XCP. The link load factor is
suggested as a congestion signal in [21], based on which VCP
quantizes and encodes it for a more compact representation of
the degree of congestion. QuickStart [20] occasionally uses a
number of bits per packet to quickly ramp up source sending
rate. VCP is complementary to QuickStart in that it constantly
uses two bits per packet.

Congestion notification based schemes:For high BDP net-
works, according to [27], the performance gap between XCP
and TCP+RED/CSFQ/REM/AVQ with one-bit ECN support
seems large. VCP generalizes one-bit ECN and applies some
ideas from the above schemes. For example, RED’ EWMA
queue-averaging idea, REM’s match-rate-clear-buffer idea and
AVQ’s virtual-capacity idea obviously find themselves in
VCP’s load factor calculation in Equation (6). This paper
demonstrates that the marginal performance gain from one-bit
to two-bit ECN feedback could be significant. Two-bit ECN
is also used to choose different decrease parameters for TCP
in [11], which is very different from the way VCP uses. On
the end-host side, the binomial control [3] improves TCP’s
dynamic performance by generalizing AIMD, while VCP goes
even further to combine MIMD with AIMD.

Pure end-to-end schemes:Recently there have been many
studies on the end-to-end congestion control for high BDP
networks. HighSpeed TCP [14] extends the standard TCP by
adaptively setting the increase/decrease parameters according
to the congestion window size. H-TCP [38] employs an adap-
tive AIMD with its parameters set as functions of the elapsed
time since the last congestion event. Adaptive TCP [31] also
applies dynamic AIMD parameters with respect to the chang-
ing network conditions. STCP [30] changes to a fixed MIMD
algorithm. FAST [24] uses queueing delay, like TCP Vegas [5],
instead of packet loss, as its primary congestion signal and
improves Vegas’ Additive-Increase/Additive-Decrease (AIAD)
algorithm with a proportional controller. BIC TCP [49] adds
a binary search phase into the standard TCP to probe the
available bandwidth in a logarithmic manner. TCP West-
wood [7] enhances the loss-based congestion detector using
more robust bandwidth estimation techniques. All these end-
to-end schemes do not need explicit feedback. Therefore, it
is hard for them to achieveboth low persistent bottleneck
queue and zero congestion-caused packet loss. VCP does need
explicit two-bit ECN but is able to maintain low queue and
almost zero loss. However, it is unclear whether these end-to-
end schemes, if given AQM/ECN support from network, can
achieve similar performance as VCP in high BDP networks.

Variable-structure control with sliding modes has a long
history in control theory [48]. It is useful when a set of features
are desired in a system but no single algorithm can provide
all of them. In computer networking areas, it has been used
to solve the traffic engineering problem in [35]. Our work can
be viewed as an application of this idea to congestion control.

VII. C ONCLUSIONS

This paper demonstrates the existence of a simple, low-
complexity congestion control algorithm for high bandwidth-

delay product networks called VCP. Based on extensive ns2
simulations, we show that VCP can largely approximates
XCP’s performance while requiring only two bits of conges-
tion feedback from the network. Given that the two-bit network
feedback can be embedded in the ECN bits in the IP header,
VCP becomes an attractive solution since it does not require
any IP header modifications.

A few questions remain unaddressed. First, how much
additional benefit can one get using more bits of network
feedback? Second, to what extent pure end-to-end congestion
control mechanisms scale for high BDP networks? Finally,
from a deployment perspective, what is the right type of
congestion control for high BDP networks?

VIII. A CKNOWLEDGEMENT

The authors are grateful for the insightful comments from
Sally Floyd and K. K. Ramakrishnan, and for the helpful
suggestions on VCP’s stability analysis from Xinzhe Fan and
Jianghai Hu. Our thanks to all of them.

REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control.IETF
RFC 2581, April 1999.

[2] S. Athuraliya, V. Li, S. Low, and Q. Yin. REM: Active Queue Manage-
ment. IEEE Network, 15(3):48-53, May 2001.

[3] D. Bansal and H. Balakrishnan. Binomial Congestion Control Algo-
rithms. INFOCOM’01, April 2001.

[4] B. Braden et al. Recommendations on Queue Management and Conges-
tion Avoidance in the Internet.IETF RFC 2309, April 1998.

[5] L. Brakmo and L. Peterson. TCP Vegas: End to End Congestion
Avoidance on a Global Internet.IEEE Journal on Selected Areas in
Communications, 13(8):1465-1480, October 1995.

[6] H. Bullot and R. Les Cottrell. Evaluation of Advanced TCP
Stacks on Fast Long-Distance Production Networks. Available at
http://www.slac.stanford.edu/grp/scs/net/talk03/tcp-slac-nov03.pdf.

[7] C. Casetti, M. Gerla, S. Mascolo, M. Sansadidi, and R. Wang. TCP West-
wood: End-to-End Congestion Control for Wired/Wireless Networks.
Wireless Networks Journal, 8(5):467-479, September 2002.

[8] A. Charny, D. Clark, and R. Jain. Congestion Control with Explicit Rate
Indication. IEEE ICC’95, June 1995.

[9] D. Chiu and R. Jain. Analysis of the Increase/Decrease Algorithms
for Congestion Avoidance in Computer Networks.Journal of Computer
Networks and ISDN, 17(1):1-14, June 1989.

[10] M. Crovella and A. Bestavros. Self-Similarity in World Wide Web
Traffic: Evidence and Possible Causes.IEEE/ACM Trans. Networking,
5(6):835-846, December 1997.

[11] A. Durresi, M. Sridharan, C. Liu, M. Goyal, and R. Jain. Multilevel
Explicit Congestion Notification.SCI’01, July 2001.

[12] W. Feng, K. Shin, D. Kandlur, and D. Saha. The Blue Active Queue
Management Algorithms.UMich CSE-TR-387-99, April 1999.

[13] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-Based
Congestion Control for Unicast Applications.SIGCOMM’00, August
2000.

[14] S. Floyd. HighSpeed TCP for Large Congestion Windows.IETF RFC
3649, December 2003.

[15] S. Floyd and V. Jacobson. Random Early Detection Gateways for
Congestion Avoidance.IEEE/ACM ToN, 1(4):397-413, August 1993.

[16] S. Floyd and V. Paxson. Difficulties in Simulating the Internet.
IEEE/ACM Trans. Networking, 9(4):392-403, August 2001.

[17] R. Gibbens and F. Kelly. Resource Pricing and the Evolution of
Congestion Control.Automatica, 35:1969-1985, 1999.

[18] C. Hollot, V. Misra, D. Towlsey, and W. Gong. On Designing Improved
Controllers for AQM Routers Supporting TCP Flows.INFOCOM’01,
April 2001.

[19] V. Jacobson. Congestion Avoidance and Control.SIGCOMM’88, August
1988.

[20] A. Jain and S. Floyd. Quick-Start for TCP and IP.IETF Internet Draft
draft-amit-quick-start-02.txt, October 2002.

15

[21] R. Jain, S. Kalyanaraman, and R. Viswanathan. The OSU Scheme
for Congestion Avoidance in ATM Networks: Lessons Learnt and
Extensions.Performance Evaluation, 31(1):67-88, November 1997.

[22] R. Jain, K. K. Ramakrishnan, and D. Chiu. Congestion Avoidance in
Computer Networks with a Connectionless Network Layer.DEC-TR-
506, August 1987.

[23] H. Jiang and C. Dovrolis. Passive Estimation of TCP Round-Trip Times.
ACM Computer Communications Review, 32(3):75-88, July 2002.

[24] C. Jin, D. Wei, and S. Low. FAST TCP: Motivation, Architecture,
Algorithms, Performance.INFOCOM’04, March 2004.

[25] L. Kalampoukas, A. Varma, and K. K. Ramakrishnan. Dynamics of
an Explicit Rate Allocation Algorithm for Available Bit-Rate (ABR)
Service in ATM Networks.Proceedings of the IFIP/IEEE Conference
on Broadband Communications, April 1996.

[26] S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, and B. Vandalore.
The ERICA Switch Algorithm for ABR Traffic Management in ATM
Networks.IEEE/ACM Trans. Networking, 8(1), February 2000.

[27] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High
Bandwidth-Delay Product Networks.SIGCOMM’02, August 2002.

[28] F. Kelly. Fairness and Stability of End-to-End Congestion Control.
European Journal of Control9:149-165, 2003.

[29] F. Kelly, A. Maulloo, and D. Tan. Rate Control in Communication
Networks: Shadow Prices, Proportional Fairness and Stability.Journal
of the Operational Research Society, 49:237-252, 1998.

[30] T. Kelly. Scalable TCP: Improving Performance in Highspeed Wide Area
Networks.Submitted, December 2002.

[31] A. Kesselman and Y. Mansour. Adaptive TCP Flow Control.PODC’03.
[32] Y. Kuang. Delay Differential Equations with Applications in Population

Dynamics. Academic Press, 1993.
[33] S. Kunniyur and R. Srikant. End-To-End Congestion Control: Utility

Functions, Random Losses and ECN Marks.INFOCOM’00, March
2000.

[34] S. Kunniyur and R. Srikant. Analysis and Design of an Adaptive Virtual
Queue (AVQ) Algorithm for Active Queue Management.SIGCOMM’01,
August 2001.

[35] C. Lagoa, H. Che and B. Movsichoff. Adaptive Control Algorithms for
Decentralized Optimal Traffic Engineering in the Internet.IEEE/ACM
Trans. Networking, 12(3):415-428, June 2004.

[36] T. Lakshman and U. Madhow. The Performance of TCP/IP for Networks
with High Bandwidth-delay Products and Random Loss.IEEE/ACM
Trans. Networking, 5(3):336-350, June 1997.

[37] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the Self-Similar
Nature of Ethernet Traffic.SIGCOMM’93, August 1993.

[38] D. Leith and R. Shorten. H-TCP: TCP for High-speed and Long-distance
Networks.PFLDnet’04, February 2004.

[39] S. Low and D. Lapsley. Optimization Flow Control, I: Basic Algorithm
and Convergence.IEEE/ACM Trans. Networking, 7(6):861-875, Decem-
ber 1999.

[40] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective
Acknowledgement Options.IETF RFC 2018, October 1996.

[41] Network Simulator ns-2. Http://www.isi.edu/nsnam/ns/.
[42] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Through-

put: A Simple Model and its Empirical Validation.SIGCOMM’98,
September 1998.

[43] R. Pan, K. Psounis, and B. Prabhakar. CHOKe, A Stateless Active Queue
Management Scheme for Approximating Fair Bandwidth Allocation.
INFOCOM’00, March 2000.

[44] V. Paxson and S. Flyod. Wide-Area Traffic: The Failure of Poisson
Modeling. SIGCOMM’94, August 1994.

[45] K. K. Ramakrishnan and S. Floyd. The Addition of Explicit Congestion
Notification (ECN) to IP.IETF 3168, September 2001.

[46] K. K. Ramakrishnan and R. Jain. A Binary Feedback Scheme for
Congestion Avoidance in Computer Networks.SIGCOMM’88,August
1988.

[47] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair Queueing:
Achieving Approximately Fair Bandwidth Allocations in High Speed
Networks.SIGCOMM’98, September 1998.

[48] V. Utkin. Variable Structure Systems with Sliding Modes.IEEE Trans.
Automatic Control, 22(2):212-222, April 1977.

[49] L. Xu, K. Harfoush, and I. Rhee. Binary Increase Congestion Control
(BIC) for Fast Long-Distance Networks.INFOCOM’04, March 2004.

[50] Y. Yang and S. Lam. General AIMD Congestion Control.ICNP’00,
November 2000.

