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Abstract— Owing to the simplicity and ease of deploy-
ment, single-rate multicast congestion control is worthy of
further exploration. In this article, we propose a new single-
rate multicast congestion control scheme called ORMCC
based on a new metric, TRAC (Throughput Rate At Conges-
tion). The scheme is simple: states maintained at source
and receivers are

�������
; only simple computation is re-

quired; and there is no need to measure RTTs from all re-
ceivers to the source. At the same time, the scheme is TCP-
friendly, does not suffer from drop-to-zero problem, and is
very effective with feedback suppression. Theoretical analy-
sis of the scheme performance is provided, and simulations
have shown that ORMCC outperforms PGMCC [15] and
TFMCC [19] under most situations. We have also imple-
mented ORMCC on top of UDP and successfully run it on
real systems in Emulab[18] with promising results.

Index Terms— Multicast, congestion control, single-
rate, drop-to-zero, TCP friendliness, feedback suppression,
throughput rate at congestion (TRAC)

I. INTRODUCTION

IP multicast is efficient for transmitting bulk data to
multiple receivers. There are two categories of multi-
cast congestion control. One of them is single-rate, in
which the source controls the data transmission rate and
all receivers receive data at the same rate. The previ-
ous work includes, for example, DeLucia et. al’s work
in [4], PGMCC[15], TFMCC[19], MDP-CC[9] and our
prior work LE-SBCC [17]. The other is multi-rate (a.k.a
layered multicast congestion control), in which receivers
join just enough layers in the form of multicast groups
to retrieve data as fast as they can. The most noticeable
among them are recently developed Fine-Grained Layered
Multicast [2] and STAIR [3]. The single-rate category is
easy to implement and deploy, because it does not require
support from intermediate nodes beyond standard multi-
cast capabilities, also does not introduce high processing
load to them. Although such schemes do not scale as well
as multi-rate ones because they track the slowest receiver,
they are suitable for such situations as the multicast in a
not-so-heterogeneous environment, or bulk data transfer
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without concerns over delay. With some network support
[8], we can also emulate multi-rate schemes by deploying
single-rate schemes on selected intermediate nodes.

The contributions of this paper include:� It proposes ORMCC, a simple and effective single-
rate multicast congestion control scheme based on a
new metric TRAC, with features such as �
	��� state,
non-timer-based feedback suppression etc.� It analyzes the scheme performance theoretically.� By comparison in simulation with PGMCC [15] and
TFMCC [19], it shows that ORMCC achieves better
performance under most situations.� It includes the test results of ORMCC implementa-
tion on real systems in Emulab [18].

Our scheme is simple because (1) at the source and re-
ceivers, ��	��� state is maintained, and only simple com-
putation is required, (2) there is no need to measure
RTTs from all receivers to the source, which can be a
tedious problem especially without external instrumenta-
tion (e.g. GPS, NTP server), and (3) we do not make any
assumption on network topology and intermediate nodes
beyond standard multicast capabilities. It is also effec-
tive because (1) it successfully addresses the problems
of slowest receiver tracking, TCP-friendliness, and drop-
to-zero, (2) the feedback suppression mechanism works
very effectively by suppressing over 95% feedback un-
der normal situations. In fact, it outperforms PGMCC[15]
and TFMCC[19] under most situations. The key idea of
ORMCC is to base the scheme on a new metric, TRAC
(Throughput Rate At Congestion), which is the throughput
rate measured by receivers when congestion is detected.

The general concept of our scheme is as follows: The
source dynamically selects one of the slowest receivers
as Congestion Representative (CR), and only considers its
feedback for rate adaptation. The slowest receivers are
those with the lowest average TRACs. When there is no
CR, all receivers may send feedbacks to the source. Once
a CR is selected, only the CR and those receivers with av-
erage TRAC lower than that of the CR can send feedbacks
so that feedbacks are efficiently suppressed. Also notice
that our scheme is not concerned with reliability issue and
only considers congestion control. Therefore, it is appli-



cable to both reliable and unreliable multicast.
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Fig. 1. EXAMPLE OF ORMCC OPERATION

An example operation can illustrate how our scheme
works more clearly. In Figure 1 (a), the source has cho-
sen a receiver behind the most congested path as CR by
comparing average TRACs of receivers. Only the CR will
send feedback while other receivers suppress their feed-
back. The feedback is CI( � ) in Figure 1 where CI means
congestion indication and � is TRAC measured by re-
ceiver. After a while, another path becomes the new most
congested path. Those receivers behind that path will see
average TRACs lower than that of the current CR, and will
send feedbacks (Figure 1 (b)). As a result, one of them
will be chosen as the new CR. After that, again, other re-
ceivers suppress their feedback (Figure 1 (c)).

In the following sections, we will briefly discuss some
related work, followed by the ORMCC details. Simula-
tion and experiment results are presented at the end.

II. RELATED WORK

A. Single-Rate Schemes

DeLucia et. al’s work in [4] is an early single-rate mul-
ticast congestion control scheme using representatives. It
requires two types of feedback from receivers, Conges-
tion Clear (CC) and Congestion Indication (CI). Note that

their CIs are single bit and thus different from ours car-
rying � . A fixed number of receiver representatives are
maintained at the source. Whenever a CI is received by
the source, if the sender of this CI is in the representa-
tive set, the representative is refreshed; if not, the sender
will replace the representative that has not been refreshed
for the longest time. Feedback from representatives is
echoed by the source to suppress feedback scheduled at
non-representative receivers. The source uses only the
feedback from representatives to do MIMD (multiplica-
tive increase and multiplicative decrease) rate adaptation.

The representative selection mechanism in that scheme
is “simplistic”[4], but there is certain complexity involved
in generating CC. The representative set is not guaranteed
to include the slowest receiver, which means that the slow-
est receiver can be overloaded. Furthermore, it assumes
that only a few bottlenecks cause most of the congestion.
Based on this assumption, receiver suppression is the only
mechanism for filtering feedback from receivers. In a het-
erogeneous network, where there may be many different
bottlenecks and asynchronous congestion, the assumption
may not be true. Consequently, the transmission rate may
be reduced more than necessarily and stay very low or
close to zero. This is known as the drop-to-zero problem.

PGMCC [15], TFMCC [19] and MDP-CC [9] are re-
cent work also using representatives. Although they use
different policies for rate adaptation, they all leverage the
TCP throughput formula [14] [10] for allocating the slow-
est receiver, i.e the receiver with the lowest estimate TCP
throughput according to the formula. Therefore, it is nec-
essary for them to measure packet loss rate and RTT for
all receivers.

PGMCC [15] keeps one representative as acker. The
acker sends ACKs to the source which mimics the behav-
ior of TCP. At the same time, NAKs with loss rate are sent
from all other receivers. This is different from our scheme
because we do not require separate ACK streams. The
PGMCC source measures RTT between itself and all re-
ceivers in terms of packet numbers, and compare the esti-
mated throughput for updating acker. Due to the necessity
of RTT measurement for all receivers, feedback suppres-
sion may have serious effect on PGMCC’s performance.
In fact, PGMCC does not provide a feedback suppression
mechanism.

TFMCC [19] adjusts the rate according to the estimated
rate calculated by the representative. RTTs are measured
by receivers with a somewhat complex procedure. The
sender needs to echo receiver’s feedback according to
some priority order, and there is one-way delay RTT ad-
justment plus sender-sider RTT measurement. TFMCC
comes with feedback suppression which is an enhanced



version of [7] and is probabilistic timer-based. Therefore,
the total number of feedbacks is the function of the esti-
mated total number of receivers, and additional delay is
introduced into feedback.

MDP-CC [9] increases/decreases the transmission rate
exponentially toward the target rate. Similar to TFMCC,
the target rate is also calculated by the representative. In
contrast to PGMCC and TFMCC, MDP-CC maintains a
pool of representative candidates for representative up-
date. As shown in that paper, maintaining multiple repre-
sentative candidates requires much effort. MDP-CC can
use probabilistic timer-based feedback suppression which
has the same properties as that of TFMCC.

LE-SBCC [17] is our prior work. It only requires sin-
gle bit NAKs from receivers, and the source has three cas-
caded filters to filter receiver feedback before using it for
rate adaptation. The computation complexity at the source
is �
	��� .However, it needs �
	��� ( � is the number of re-
ceivers) states at the source, and network aggregation can
also lead to performance degradation. ORMCC does not
have these drawbacks.

B. Multi-Rate Schemes

Ideally, the multi-rate multicast congestion control can
satisfy heterogeneous receivers because each of them re-
ceives data at its own rate. The most noticeable among
them are recently developed Fine-Grained Layered Multi-
cast [2] and STAIR [3]. However, the multi-rate schemes
are closely coupled with routing and IGMP, which implies
some potential problems. For example, different groups
for layers could follow different routes [12]. Aggregated
multicast trees [5] do not necessarily prune trees dynam-
ically and hence break the assumptions of the multi-rate
schemes. The slackness of response to congestion due to
long leave latency continues to be an issue. Besides, fre-
quent group joins and leaves can introduce significant load
at routers.

III. ORMCC DETAILS

As we have mentioned in the introduction, in ORMCC,
receivers send TRACs back to the sender whenever neces-
sary, and the sender dynamically chooses a representative
(CR) out of them and use only its TRACs to adjust the
sending rate. In this section, we will present the details
of how the whole scheme works, followed by a list of the
features of ORMCC.

A. Details of ORMCC Operations

1) Feedback Required from Receivers – CI( � ): When
receivers detect congestion by packet losses, they need to
inform the source so that the source can adjust the trans-
mission rate accordingly. In ORMCC, the feedback is

Congestion Indications with TRAC (CI( � )s). Like NAKs,
CI( � )s may be sent only when a receiver detects packet
losses (though they may also be suppressed). Assume
that at the arrival of packet � , a receiver detects that some
packets have been lost. It will then send a CI( � ) to the
source. Such a CI( � ) contains (1) The sequence number of� , for the sake of RTT measurement, and (2) The output
rate measured at the arrival of � , for the sake of CR alloca-
tion. Note than when multiple packet losses are detected
by the arrival of one packet, only one CI( � ) will be sent (if
without suppression), while multiple NAKs are generated
for the same situation. With suppression, CI( � )s may be
sent at a less frequency.

To avoid oscillation, we average the output rate over a
short period of time.1 Note that the output rates used here
are different from those in normal sense, because they
are measured only when packet losses are detected due
to congestion. To distinguish them, we give the notation
Throughput Rate At Congestion (TRAC).

2) Allocation of The Slowest Receiver: ORMCC
compares average TRAC of all receivers to allocate the
slowest ones, and choose one of them as the Congestion
Representative (CR). By using TRAC, it avoids comput-
ing TCP throughput formula [10] [14] which requires RTT
and packet loss rate.

Since TRACs are measured at receivers upon packet
losses, they indicate how much bandwidth a flow can
get out of the fully loaded bottleneck, assuming conges-
tion is the only reason for packet losses. The less it
can get, the more congested the bottleneck is. There-
fore, we choose one receiver with the lowest average
TRAC as the CR, and let the source only consider the
CI( � )s from that receiver for rate adaptation. Average
TRAC is calculated by means of EWMA (Exponentially
Weighted Moving Average). Denote TRAC as � , average
TRAC as ��	��� . With a sample � , ��	��� is updated as��	����� 	������ !��	���#"$�#� . Deviation �#% is also up-
dated as �&%'�(	��)�*�&+� %,"-�/. ��	���0�1�'. for the sake of
CR updating and feedback suppression (see Section III-
A.3 and III-A.4).

The receivers help the source to select a receiver with
the lowest average TRAC by sending in CI( � )s only if
their average TRACs are low enough to qualify them as
CR. More details of how receivers help will be covered in
Section III-A.4 of feedback suppression.

3) Update of CR under Dynamic Conditions: Net-
work conditions always keep changing, and we need to
continuously keep our choice of CR up-to-date. There
are mainly two situations under which CR needs to be
updated: (1) The situations of some non-CR receivers2

In our simulations and implementation, we use one second.



change so that one of them sees more severe congestion
than the current CR does. (2) While the situations of all
non-CR receivers remain unchanged, the previously most
congested path is improved so that the current CR sees
less congestion than other receivers, or it leaves the mul-
ticast session.

Tracking the slowest receiver by examining average
TRACs can deal with situation (1), but to cope with situa-
tion (2) needs more effort. Under this situation, there can
be no CI( � )s from the current CR. Recall that the source
only consider the CI( � )s from the CR for rate adaptation
and ignores all other CI( � )s. If the source does not change
CR in time, the transmission rate will be out of control.
To detect that, we estimate an upper bound (denoted as354�6798+: ) of the idle time (denoted as

3�4�6
) before the source

receives a first CI( � ) from the CR when the bottleneck is
fully loaded. To use

3 4�6798+: , suppose we somehow detect
that the bottleneck is fully loaded at time ; . If there has
been no CI( � ) from the current CR for

3 4<67=8>: since ; , we
can say that the current CR is now inactive and needs to
be changed.

Let’s look at Figure 2. When the CR is still active,
we measure samples of

3 4<6
at the source, using feedback

packets only from CR. When the transmission rate reaches��	�� 4<6 ,"@?A� 4<6% 2, where ��	�� 4<6  and � 4<6% are the aver-
age and deviation of the current CR’s TRAC respectively,
we assume that bottleneck becomes fully loaded and start
to count. Let the current time be ;+B . At a later time ;DC ,
the first CI( � ) since ;>B arrives at the source from the CR.;EC&�F;�B is then a sample of

3 4<6
and we update the average

and deviation of
3 4<6

with EWMA.
3 4<6798+: is the average

value of
3G4<6

plus eight times its deviation3 . When the
CR is not active, for the duration of

3 4<6798>: since we start to
count, no CI( � ) will be received by the source. The source
then requests feedback from other receivers for new CR
selection, as described in Section III-A.4.

There is one small trick we use to bias the choice of
CR toward those receivers with higher RTTs. After a new
CR is chosen, we set a grace period of HJI 3K3 798>: , whereI 3K3 798+: is the maximum RTT the source has ever seen.
Within this period, if the source receives a CI from another
receiver with similar average TRAC as that of the CR, it
will update CR to this receiver, since this one tends to have
longer RTT. Grace period is not reset after CR switches
within grace period.

4) Feedback Suppression by Receivers: Effective
feedback suppression can reduce the risk of feedback im-
plosion, and allow a multicast congestion control schemeL

According to Chebychev Inequality, about 94% of the random sam-
ple are less than this value.M

We choose the value of 8 to be conservative.

to be used for large groups. In ORMCC, the source con-
veys the average ��	�� 4�6  and the deviation � 4�6% of the
CR’s TRAC to receivers whenever the CR is updated or��	�� 4�6  and � 4<6% are changed. Only if a receiver’s own
average TRAC ��	��� is less than ��	�� 4�6 9�N� 4<6% 4, will it
send CI( � )s. Note that a receiver does not maintain TRAC
deviation �#% because it is computed by the source with the
help of TRAC in CI( � )s.��	�� 4<6  and � 4�6% conveyed by the source can be set to
infinitely large values so that all receivers can send CI( � )s.
This is needed when the current CR is inactive and the
source needs to trigger feedbacks from all receivers for
new CR selection (Figure 2).

Clearly, no timer is involved in our feedback suppres-
sion, no knowledge of the whole group is needed. Un-
like other probabilistic timer-based feedback suppression
schemes, CI( � )s are not scheduled at all before being sup-
pressed. Yet, it is effective since the amount of CI( � )s sent
to the source is independent of the total receiver number.
More insight will be given in the theoretical analysis at
Appendix II-D.

5) Rate Adaptation: ORMCC is a rate-based scheme,
using the policy of additive increase and multiplicative de-
crease (AIMD). That is, if there are no CI( � )s from the
CR, the transmission rate is increased by OQPQI 3K3 per RTT,
where O is the packet size, I 3K3 is that between the source
and the CR. If a CI is received from the CR, let the TRAC
in this CI be � , we adjust the transmission rate to the min-
imum of R0� and the current rate. CI( � )s from other non-
CR receivers will be ignored, and at most one rate cut is
allowed per RTT.

The rate reduction factor R is an important parame-
ter of ORMCC. The larger the R , the more aggressive
is ORMCC. To keep ORMCC TCP-friendly, from a later
discussion in Appendix II-B, we will see that R must be at
least 0.5. Moreover, the exact value of R depends on how
ORMCC is implemented. According to the simulation
and experiment results, we suggest RTSVUAWYX[Z for imple-
mentation on user level, and R\S]UAW_^JZ for implementation
in system kernel. The reason is that, if ORMCC is imple-
mented on user level, due to the coarseness of timers, its
traffic is more bursty than that of TCP running in kernel.
To cancel that effect, R should be set lower.

6) RTT Estimation: Unlike a NAK, which includes
the sequence number of a lost packet, a CI( � ) of ORMCC
includes the sequence number of a packet upon the arrival
of which packet losses are detected. The source calculates
the difference between the sending time of this packet
and the arriving time of this CI( � ) to get a sample of RTT.`

We don’t use a,bdc&egf�aKbdc�h�i>e because we want to be conservative
and keep CR stable.
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By doing this, we avoid the unnecessary delay between
the supposed arriving time of a lost packet and the time
of its loss being detected. Nevertheless, since CI( � )s are
sent only when packet losses occur, RTT estimated by
CI( � )s includes the maximum bottleneck queueing delay
and thus is still the upper bound. On the other hand,
ACKs as those in TCP may or may not include bottleneck
queueing delay. Therefore, on average, RTT estimated
by CI( � )s is larger than that by ACKs under the same
situation. In fact, this is the reason why we set R to some
value higher than 0.5.

As we can see from the details above, ORMCC has the
following features:� �
	��� States The states maintained by source and re-

ceivers are ��	��� . That is, the number of states is
constant and independent of the number of receivers
in a multicast session.� Simple Operations Operations of source and re-
ceivers are all simple, without requiring intense com-
putation. In particular, there is no need to do per-
receiver RTT estimation.� Effective Feedback Suppression With our non-
probabilistic-timer-based feedback suppression
mechanism in place, the amount of feedbacks is
independent of the total number of receivers.

The pseudo code of ORMCC’s algorithm is provided in
Appendix I for reference. The code for �jO -2 and Unix can
also be found at [20].

IV. PROPERTIES ABOUT ORMCC PERFORMANCE

It is desirable to check the performance of a multicast
congestion control scheme by theoretical analysis. We
have done that for ORMCC to show the following proper-
ties:

Property 1 ORMCC is capable of tracking the slowest
receiver and select it as CR (Congestion Representative)
to direct rate adaptation.

Proof: (See Appendix II-A.)

Property 2 ORMCC is TCP-friendly on the representa-
tive path, i.e. the path between the source and the CR.

Proof: (See Appendix II-B.)

Property 3 ORMCC is immune to drop-to-zero problem,
i.e. the sending rate won’t be reduced more than enough
and converge toward zero upon asynchronous congestion.

Proof: (See Appendix II-C.)

Property 4 Feedback suppression in ORMCC is very ef-
fective.

Proof: (See Appendix II-D.)

V. SIMULATIONS AND EXPERIMENTS

We have run simulations on �jO -2 [1] and experiments
in Emulab [18] to validate the performance of ORMCC.
The �jO -2 simulations checked the following aspects:

(1) TCP-Friendliness
(2) Drop-to-zero avoidance
(3) Multiple bottleneck fairness
(4) Slowest receiver tracking
(5) Feedback suppression
We also ran the same set of �jO -2 simulations for

PGMCC[15] and TFMCC[19] and compared the perfor-
mance of our scheme with theirs. For ORMCC and
TFMCC, we use ns2.1b7a, for PGMCC, we use ns2.1b5,
due to the restriction of its source code. In all simulations,
the data packet size is 1000 bytes, the bottleneck buffer
size is 50K bytes, the initial RTT is 100 milliseconds.

For experiments on real systems in Emulab[18], we im-
plemented ORMCC on top of UDP as a user level pro-
gram. TCP-friendliness and drop-to-zero behavior are
tested. The result is presented at the end of this section.

A. TCP-Friendliness and Drop-To-Zero Avoidance

We used a star topology (Figure 3) to generate asyn-
chronous and independent congestion on different paths.
There are 129 ends nodes in the topology. Between each
pair of source k and receiver k ( klS(�&WmWmW�XQ? ), there are



one TCP Reno flow and one single-receiver ORMCC flow.
Furthermore, there is a multi-receiver ORMCC flow from
source 65 to all 64 receivers. Therefore, on a path between
the router and any receiver, the multi-receiver ORMCC
flow competes with a TCP flow and a single-receiver
ORMCC flow.

Router

1Mbps, 20ms5Mbps,20ms

Receiver 2

Source 65

Source 1

Source 2

Source 63

Source 64

Receiver 1

Receiver 63

Receiver 64

Fig. 3. 64-RECEIVER STAR TOPOLOGY WITH TCP BACK-
GROUND TRAFFIC

We randomly chose a receiver node and plot in Fig-
ure 4(a) the over-time average rates 5 of all three flows go-
ing to it. The fact that the average rates of the TCP flow,
the single-receiver ORMCC flow and the multi-receiver
ORMCC flow are close to each other indicates that (1)
ORMCC is TCP-friendly, and (2) ORMCC does not suffer
from drop-to-zero problem.

We also conducted experiments on the same configu-
ration for PGMCC6 and TFMCC. Results in Figure 4 (b)
and (c) show that but the average rates of their multicast
flows deviate more from corresponding unicast flows.
B. Multiple Bottleneck Fairness

Rcvr group 1

Rcvr group 2

Rcvr group 3Src 3

Src 2

Src 1

1Mb, 20ms

1Mb, 20ms

5Mb, 20ms

5Mb, 20ms

5Mb,30ms

5Mb,30ms
5Mb,30ms

5Mb,30ms

Fig. 5. LINEAR NETWORK WITH MULTIPLE BOTTLENECKS
(TOTALLY 48 RECEIVERS)

In real world, there are usually more than one bottle-
neck on a path. It is desirable to check how long ORMCC
flows compete with short ones and what kind of fair-
ness ORMCC can achieve. we ran a simulation on Fig-
ure 5. There is a long multi-receiver multicast flow, goingn

Over-time average rate at time o is defined as the traffic volume
between p qsrto�u divided by o .v

For PGMCC simulations, since ns2.1b5 can only accommodate up
to 128 end nodes, we can only have 63 pairs of unicast source and
receiver instead of 64 pairs. Moreover, we only measure the sending
rate of original data packets, because repair packets for PGMCC are
routed by net elements to individual receivers whoever need them in-
stead of all receivers. Nevertheless, the proportion of repair packets
is less than 1/10 and is thus negligible. This has the same effect as
measuring sequence number increment in [15].

through two bottlenecks, from Src 1 to receivers in Group
1. There are also two short multicast flows going through
only one bottleneck from Src 2 to Group 2 and from Src
3 to Group 3 respectively. Each group has 16 receivers.
RED queues are used on the routers to reduce the effect of
RTT estimation.

According to proportional fairness, the long ORMCC
flow should get one-third of the bottleneck bandwidth,
0.33Mbps. The result in Figure 6 (a) shows that ORMCC
achieves approximately proportional fairness. Similar
fairness achieved by PGMCC and TFMCC in the same
configuration is also shown in the figure.

C. Slowest Receiver Tracking

Source

Router

Receiver 31
Receiver 1 Receiver 32

Receiver 2

Fig. 7. ONE-LEVEL TREE WITH 32 RECEIVER NODES

This simulation is used to test ORMCC’s capability to
quickly track the slowest receiver and select it as CR. In
the tree topology of Figure 7, there is an ORMCC flow
between the source and all the 32 receivers. There are
three dynamically generated bottlenecks using TCP Reno
flows. Denote link k as the link between the router and
receiver k�	�k�Sw�&WmWmWDx[Hy , each link has 2Mb bandwidth
and 20 ms delay. The simulation time is 1000 seconds.
During the whole simulation, one TCP flow runs on link
1; between 200th and 800th seconds, three TCP flows run
on link 2; between 400th and 600th seconds, seven TCP
flows run on link 3. The most congested bottlenecks and
the supposed CRs at different time are shown in Table I.

The dynamics include both conditions causing CR
switches, i.e. (1) A slower receiver appears, (2) The cur-
rent slowest receiver is absent. RED and drop-tail queue
management policies are used separately in our simula-
tions. Simulation results are shown in Figure 8 (a) and
(d). Vertical dash lines show when the ORMCC source
switched CR. We can see that ORMCC updates CR and
adapts its transmission rate in a timely manner. Note that
when using RED queues, the ORMCC source sometimes
switched CR a little slower than drop-tail situation. The
reason is because RED queue drops packets in a random
manner, it takes longer for the slowest receiver to have a
lower average TRAC measurement.



0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

O
ve

r-
tim

e 
A

ve
ra

ge
 R

at
e 

(M
bp

s)

Time (sec)

Over-time Average Rates of TCP-Friendliness and Drop-To-Zero Simulation (ORMCC)

Multi-rcvr flow
Single-rcvr flow

TCP
Theoretical share

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

O
ve

r-
tim

e 
A

ve
ra

ge
 R

at
e 

(M
bp

s)

Time (sec)

Over-time Average Rates of TCP-Friendliness and Drop-To-Zero Simulation (PGMCC)

Multi-rcvr flow
Single-rcvr flow

TCP
Theoretical share

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

O
ve

r-
tim

e 
A

ve
ra

ge
 R

at
e 

(M
bp

s)

Time (sec)

Over-time Average Rates of TCP-Friendliness and Drop-To-Zero Simulation (TFMCC)

Multi-rcvr flow
Single-rcvr flow

TCP
Theoretical share

(a) ORMCC (b) PGMCC (c) TFMCC

Fig. 4. TCP-FRIENDLINESS AND IMMUNITY TO DROP-TO-ZERO (ORMCC is more TCP-friendly and avoids drop-to-zero better than
PGMCC and TFMCC.)
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Fig. 6. FAIRNESS OF SHARING BOTTLENECK BANDWIDTH (All three schemes achieve approximately proportional fairness.)

TABLE I
DYNAMICS IN SLOWEST RECEIVER TRACKING SIMULATION

0 - 200 sec 200 - 400 sec 400 - 600 sec 600 - 800 sec 800 - 1000 sec
Most congested bottleneck Link 1 Link 2 Link 3 Link 2 Link 1

Supposed CR Receiver 1 Receiver 2 Receiver 3 Receiver 2 Receiver 1

Under the same situation, as shown in Figure 8 (b),(c),
(e) and (f), PGMCC and TFMCC also track the slow-
est receiver, though sometimes with more representative
switches. We also noticed that there is much oscillation of
PGMCC’s rates due to its design of mimicking TCP, while
the rates of ORMCC and TFMCC have similar smooth-
ness.

D. Feedback Suppression

To check the effectiveness of the feedback suppression
mechanism in ORMCC, we refer back to the simulation
of TCP-friendliness and drop-to-zero avoidance. In to-
tally ten simulations, the average total number of CI( � )s
sent by all receivers is 816 (standard deviation is 14.8), the
average total number of suppressed CI( � )s is 34601 (stan-
dard deviation is 422.0). The average number of CI( � )s
would have been sent by a receiver if without suppres-
sion, is 	<xQ?zXJU{�9"}|A�sXy~PJXQ?
�]Z[Z[x . As we discussed in the
analysis (Appendix II-D), realistic measurement error can
lead to a little bit more CIs. Since |A�sX
�NH���Z[Z[x , we can
still say that the overall feedback volume with suppression
is approximately equal to that from a single receiver if

without suppression. The high ratio of CI( � )s suppressed,xQ?zXJU{��PA	<xQ?zXJU{�,"}|A�sXy/�\�mU[Uz���]���gW��{� , shows that our
feedback suppression is very effective.

For comparison, in a typical PGMCC simulation with
the same configuration, the total number of feedback
packets received by the source is 74830 (NAK 55222,
ACK 19608); for TFMCC, it is 5344. Their feedback vol-
ume is much larger.

E. Comparision with PGMCC and TFMCC in Heteroge-
neous Dynamic Network

32 receivers

8 layer−1 routers

16 layer−2 routers

Source

Fig. 9. HETEROGENEOUS DYNAMIC NETWORK

As the last simulation, we constructed a dynamic net-
work to test the stability and adaptability of ORMCC,
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Fig. 8. CAPABILITY OF TRACKING THE SLOWEST RECEIVER (ORMCC tracks the slowest receiver in time with fewer representative
switches.)

again compared with PGMCC and TFMCC. In Figure 9,
each link has 2Mbps bandwidth. 2 links at the first level,
4 links at the second level, and 8 links at the third level
has 200ms delay. All other links have 20ms delay, while
on any path between the source and a receiver, there is at
most one link of 200ms delay. On each link, two TCP
Reno flows are randomly turned on and off according to
Pareto distribution with average value of 60 seconds, and
two UDP flows of 200Kbps on and off with average value
of 1 second. These flows dynamically generate bottle-
necks and make the network heterogeneous. At last, there
is a multicast flow from the source to all the receivers.
The multicast flow can use either ORMCC, PGMCC or
TFMCC. Therefore, at any moment, there are at most five
flows on any link: one multicast flow, two TCP flows and
two UDP flows, and the multicast flow is expected to get
an average throughput rate of 500Kbps or so.

We ran 10 simulations for each of the three schemes. In
Table II we can see that with smaller amount of feedbacks,
ORMCC can achieve higher throughput. That means,
ORMCC has better stability and adaptability in hetero-
geneous and dynamically changing networks.

F. TCP-Friendliness and Drop-To-Zero Avoidance Test in
Emulab

To do a preliminary check of ORMCC’s performance
in real world and understand the issues of implementa-
tion, we implemented ORMCC in C++ on top of UDP as

a user level program and ran it in Emulab [18] 7. The op-
erating system we used is RedHat 7.1, and mrouted[11] is
used for multicast routing. On the topology shown in Fig-
ure 10, the links between the peripheral nodes and their
parent nodes have 50 ms propagation delay and 1.0Mbps
bandwidth. All other links have 100Mbps bandwidth and
0 ms propagation delay.8 From the center node to any
peripheral node, there is a single-receiver ORMCC flow
and a TCP flow. Also, there is a multi-receiver ORMCC
flow from the center node to all 36 peripheral nodes. The
experiment time is 1000 seconds.

Since we implemented ORMCC on user level, its traffic
is more bursty than that of TCP running in kernel. As de-
scribed in Section III-A.5, the rate cut factor ( R ) should be
adjusted accordingly. We tried three different values: 0.5,
0.65 and 0.75. According to Figure 11 9, when R�S�UAWYZ ,
the TCP flows got more bandwidth; when R�S�UAW_^JZ , the
ORMCC flows are more aggressive. R�S(UAWYX[Z works
the best, where the multi-receiver ORMCC flow got al-
most the same bandwidth as TCP flows did, and thus
TCP-friendly. Moreover, among all the values tested forR , the average rates of the multi-receivers ORMCC flow
and single-receiver ones are always close, showing that
ORMCC is immune to drop-to-zero problem.�

Emulab is accessible at http://www.emulab.net.�
The propagation delay here means the delay artificially introduced

by some particular software.�
The mean and confidence interval are calculated out of all the flows

of the same category.



TABLE II
COMPARISON OF AVERAGE THROUGHPUT AND FEEDBACK VOLUME IN HETEROGENEOUS DYNAMIC NETWORK

(ORMCC HAS HIGHER THROUGHPUT AND LESS FEEDBACK.)

ORMCC PGMCC TFMCC
Average Throughput 415.4 Kbps 126.6Kbps 226.7Kbps

Average Feedback Number 866.9 5009.6 (NAK only) 3312.9
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Fig. 11. TCP-FRIENDLINESS AND DROP-TO-ZERO TEST RESULT IN EMULAB (ORMCC is TCP-friendly and avoids drop-to-zero on
real systems with proper � setting.)

Fig. 10. TOPOLOGY USED IN EMULAB FOR TCP-
FRIENDLINESS AND DROP-TO-ZERO TEST (36 receiver nodes)

VI. CONCLUSION

We have proposed a single-rate multicast congestion
control scheme in this paper. It uses an conventional con-
cept of representative named Congestion Representative
(CR) here. However, by leveraging a new metric TRAC,
the whole scheme is simple while still capable of effec-
tively addressing the problems of TCP-friendliness, drop-
to-zero, slowest receiver tracking and feedback suppres-
sion. The states maintained by source and receivers are�
	��� ; operations of source and receivers are all simple

without requiring intense computation, in particular there
is no need to measure RTTs between all receivers and the
source; non-probabilistic-timer-based feedback suppres-
sion is highly effective. To confirm the performance of
ORMCC, we have not only provided theoretical analy-
sis, but also run simulations to compare our scheme with
PGMCC[15] and TFMCC[19]. Furthermore, we have im-
plemented ORMCC on top of UDP and run it on real sys-
tems in EMulab[18]. The results are promising. As an
emphasis, we summarize the comparison with PGMCC
and TFMCC in simulations in Table III. We can see that
ORMCC achieves better performance than PGMCC and
TFMCC under most situations. Code for �jO -2 and Unix
is available at [20] for public test.
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APPENDIX I
ALGORITHM

A. Source Operations
Variables :�

: Transmission rate� : Throughput rate at congestion (TRAC) in the received
CI( � )�&� � hti>� : Average TRAC of the CR� hti� : Deviation of the CR TRAC� : Packet size�{���Q�¡ ~¢

: Maximum RTT����� hti : RTT between the source and the CR� h�i : CR response time when the bottleneck is fully loaded�&�_� hti � : Average of
� h�i� h�i� : Deviation of
� hti4<6 £ 8+¤Y¥§¦ : Indicates whether the CR is valid�

: The receiver sending the received CI( � )

Ininitialization:
cr valid = false����� �g ~¢)¨ B

Event every
�{��� hti :

if There is no rate reduction within the recent
�{�©� hti then�9ª«��¬ �! �{�©� h�i

if
�=® �&� � hti � ¬G¯ � h�i� and CR checking timer is not running then
Start CR checking timer with time length

�&�_� hti � ¬�° � h�i�± ª
the current time

endif
endif

Event when the CR checking timer expires:
cr valid

ª
false

Send packet:
if cr valid is true then

Send a packet with real
�&� � hti � and � h�i�

else
Send a packet with invalid values for

�&� � hti � and � h�i�
endif

Subroutine : CutRate ()
if
�

has not been cut within the most recent
����� h�i then�²ª}³#´¶µ � �J· BD¸ ¹�º � �

Stop CR checking timer
endif

Event upon receipt of CI( � ):
if
�

is CR then
cr valid

ª
true

if CR checking time is running then» ª
current time ¼ ±

Update
�#�Y� hti~� and

� hti� with
»

endif
Update

�&� � hti>� and � hti� with �
Update

����� hti
if
����� �g ~¢²½ ����� hti then����� �g ~¢ ª ����� hti

endif
Stop CR checking timer
do CutRate ()



return
endif

/* The CI( � ) is NOT from CR if reach here */
if cr valid is false then

Choose
�

as the CR
Start CR grace period as ¾ �{��� �g ~¢

else if In CR grace period then
if The RTT sample measured by this CI( � ) is larger than

����� hti then
Choose

�
as the CR

endif
/* NOT in CR grace period */
else if � ½ �&� � hti>� ¼ � hti� then

Choose
�

as the CR
endif

if CR has been changed at the receipt of this CI( � ) then
cr valid

ª
true

Update
�&� � h�i � and � hti� with �

Update
�{��� h�i

if
�{���Q�¡ ~¢ ½ �{�©� h�i then�{���Q�¡ ~¢ ¨ �{�©� h�i

endif
do CutRate ()

endif

B. Receiver Operations
Variables :� : A throughput rate at congestion (TRAC) sample�&� � � : Average TRAC of this receiver�#� � hti � : Average TRAC of the CR� hti� : Deviation of the CR TRAC

Event upon receipt of a packet:
if
�&� � hti � and � hti� has been changed then
Update the local copy of

�&� � hti � and � hti�
endif
if This packet indicates packet losses then

Meaure � and update
�&� � �

if
�&� � h�i>� and � h�i� are invalid or

�&� � � ½ �#� � hti>� ¼ � h�i� then
Send CI( � )

endif
endif

APPENDIX II
THEORETICAL ANALYSIS

A. Capability of Tracking The Slowest Receiver

In this part, we are going to show that an ORMCC flow
always track the slowest receiver, i.e. the receiver behind
the most congested path. For convenience, we are going
to refer the path between the source and the CR as Repre-
sentative Path.

Let’s consider a multicast session using ORMCC. Sup-
pose there are ¿ ( ¿ ÀÁ� ) different paths on the mul-
ticast tree. Let I ¥ be the receiver behind path k . With-
out loss of generality, assume IÂC is the current CR. The
source will choose another receiver I5ÃÄ	§ÅÇÆSÈ�� as the new
CR only if IKÃ sees a lower throughput rate at congestion
(TRAC) than that seen by IÂC . To see when a IKÃ will see
a lower TRAC on average, first we are going to calculate
the TRACs on all paths from 1 to ¿ , given the instan-
taneous ORMCC sending rate at which a burst of packet
losses begins.

For the analysis, we have the following definitions (allk are from 1 to ¿ ):É ¥ · ± : Instantaneous sending rate of the ORMCC
flow at time ; on path k .� ¥ · ± : Instantaneous throughput rate of the
ORMCC flow corresponding to

É ¥ · ± .É�Ê¥ · ± : The sum of instantaneous sending rates of all
other flows sharing the bottleneck on path k
at time ; .Ë ¥ : Bandwidth of the bottleneck on path k .Ì

: Buffer size of a bottleneck. Here we assume
that all bottlenecks have the same buffer size.
If a queue is constantly non-zero, we will
treat the part which is emptied and (partly)
filled as the whole queue.O : Packet size. We assume that all the packet
sizes are equivalent.I 3K3 ¥ : RTT of path k .Í

: The sending rate increment of the ORMCC
flow per unit time.

Í S]OJPQI 3K3 C À�U .Í ¥ : The sum of the sending rate increments per
unit time of all but the ORMCC flows shar-
ing the bottleneck on path k , without packet
losses occuring at the bottleneck, assum-
ing all do AIMD. In reality, most likely

Í ¥
changes randomly, therefore we consider its
average value in an aggregate sense.

Í ¥ À�U .Î ¥ : Î ¥ S Í ¥ P Í .
Moreover, we assume that sending rates are increased

continuously, as well as that all packet losses are due
to congestion. Also, drop-tail buffer management is as-
sumed for bottlenecks.10

∆1 =γ ∆1

λ 1,t1
o

λ 1,t1

λ 1,t0

Bottleneck buffer
begins to be filled.

λ 1,t0

Aggregate of
all other flows

∆= s/RTT1
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Fig. 12. EVOLUTION OF THE ORMCC FLOW’S SENDING RATE
ON THE REPRESENTATIVE PATH

Let’s consider path 1 first (Figure 12). Suppose at time;+C , there is a burst of packet losses. The bottleneck queue2ÔÓ
Although our analysis is based on drop-tail routers, ORMCC also

works well with RED routers. It has been confirmed by simulations,
though for space reason, the results are not included.



must be full at this moment. The sum of sending rates of
all the flows going through the bottleneck,

É C · ± 2 " É�Ê C · ± 2 ,
must be larger than the bottleneck bandwidth

Ë C . Recall
that

Í À�U and
Í C-ÀÕU , meaning that without packet

losses at the bottleneck, the sum of sending rates keep in-
creasing. Consequently, at an earlier moment ;EB , the send-
ing rate sum must be equal to

Ë C , i.e.,ÖA×�Ø ÙÛÚ�Ü*ÖÞÝ×�Ø ÙÛÚ²ßáà ×
(1)

Since the sending rate of the ORMCC flow grows by
Í

per unit time,Ö ×~Ø Ùdâ ß Ö ×�Ø Ù ÚgÜ �Ôã ×�ä ã<åm�çæ�è Ö ×~Ø Ù Ú ß Ö ×~Ø Ùdâgä �Ûã ×�ä ã<å��çæ
(2)É Ê C · ± grows by

Í C S Î C Í per unit time, therefore,ÖéÝ×~Ø Ùdâ ß ÖÞÝ×~Ø Ù Ú Ü �Ôã × ä ã å �çæ × ß ÖéÝ×~Ø Ù Ú Ü �Ûã × ä ã å �<ê × æ
(3)

From (1), (2) and (3), we have,ÖÞÝ×~Ø Ù â(ß à × ä � Ö ×~Ø Ùdâ ä �Ûã × ä ã<åD��æ�� Ü �Ôã × ä ã<å��<ê × æß à × ä ÖA×~Ø Ù â Ü �Ôã × ä ã å �>�ç� Ü ê × �çæ
(4)

We also assume that at ;~B , the bottleneck queue size is
zero. Since at ;DC , the queue is full, the queue is filled by
sending rate increments during ë ;+BJì~;+C�í . Recalling that the
total sending rate grows by

Í " Í C²Sî	���" Î CD Í per unit
time, and the assumption of all flows’ doing AIMD, we
have,�ï �Ûã × ä ã å ��ð��ç� Ü ê × �çæ ßòñ èóã × ä ã å ß�ô ï ñ��� Ü ê × �çæ

Together with (4),Ö Ý ×�Ø Ùdâ ßáà ×#ä Ö ×~Ø Ùdâ Ü-õ ï æ ñ �ç� Ü ê × �
(5)

Assuming all flows going through the bottlenck have
the same priority, since at time ; C the bottleneck is work-
ing at its full load, we knowö ×~Ø Ùdâ ß ÖÞ×~Ø Ù âÖA×~Ø Ù â ÜÇÖ Ý×~Ø Ù â à ×÷_ø!ùß Ö ×~Ø Ùdâ� Ü ×ú â õ ï æ ñ ��� Ü ê × � (6)

On any other path Åû	§ÅlS�H=WmWmWD¿\ , since the ORMCC
source ignores the congestion indications on this path
(Figure 13), the sending rate of the ORMCC flow still
grows by

Í
per unit time. With ;�C of the same meansing

as before, according to a derivation similar to that above,
we have, öÞü Ø Ù â ß Ö ü Ø Ù â� Ü ×ú&ý õ ï æ ñ �ç� Ü ê ü � (7)

Consider
É ¥ · ± 2 ( k5Sþ�&WmWmWD¿ ). Assume that the sending

rate of the ORMCC flow varies between
É 79¥ ÿ and

É 798+:

(Figure 13), then
É ¥ · ± 2 is a sample value of a random vari-

able
� ¥ with sample space as ë É 7²¥�ÿ ì É 798+: í . Due to the

randomness in the realistic networks, we can assume that� ¥ ’s are identically distributed, and their expected values
are the same, i.e. ��	 � ¥ #S���	 � Ã /	�k5ÆS�Åé .

Let receiver k be the receiver behind path k . � ¥ · ± 2	�kÂS �&WmWmWD¿\ is the TRAC measured at receiver k . Ac-
cording to (7), � ¥ · ± 2 is a function of

É ¥ · ± 2 , and thus is a
random sample. Denote the corresponding random vari-
able as � ¥ . Assuming that

Ë ¥ , Ì , O are constant, and thatÎ ¥ and I 3K3 C in steady state have small deviations and
thus can be treated as constant, we have,��� ß � �� Ü ×ú�� õ ï æ ñ �ç� Ü ê � �� � � � � ß � � � � �� Ü ×ú � õ ï æ ñ �ç� Ü ê � �

As designed in ORMCC, for Å�S H=WmWmWE¿ , only upon
detection of ��	��0ÃQ�����	��²C� (the average TRAC of the
current CR receiver 1) will receiver Å send congestion
indication (CI) packets back to the source, which then
update the congestion representative (CR) to receiver Å .
From the expression of ��	�� ¥  above, we have,� � � ü �
	 � � � × �� � � � ü �� Ü ×ú&ý õ ï æ ñ �ç� Ü ê ü � 	 � � � × �� Ü ×ú â õ ï æ ñ ��� Ü ê × �� à üõ � Ü ê ü 	 à ×� � Ü ê × since

� � � ü � ß � � � × � (8)

We can see that
Ë ¥ P� �9" Î ¥ 	�k�S �&WmWmW+¿1 indicates

the degree of congestion on the bottleneck of path k . In
fact, if the bottleneck has less bandwidth, i.e.

Ë ¥ is
smaller,

Ë ¥ P� �9" Î ¥ has a lower value; if more flows
are sharing a bottleneck, the sum of their per-unit-time
rate increments

Í ¥ is higher, Î ¥ S Í ¥ P Í is then larger,
which in turn also makes

Ë ¥ P� �9" Î ¥ lower. Therefore,
(8) actually shows that as long as a non-representative
path (path Å ) experiences a more serious congestion than
the representative path (path 1) does, the receiver behind
path Å will see lower average TRAC ��	��jÃJ , and will send
CI( � )s back to the source, making the source change CR.
Namely, an ORMCC flow always tracks the slowest re-
ceiver.

B. TCP-Friendliness on Representative Path

By representative path, we mean the path which the
congestion representative (CR) is behind. In the follow-
ing, we are going to show that an ORMCC flow is friendly
to a TCP flow on the representative path, by showing that
they get approximately equal share of the bottleneck band-
width, with the assumption that their RTT estimations and
packet sizes are the same. More strictly speaking, we want



A: Moment when there are packet losses on representative path
B: Moment when there are packet losses on non−representative path
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Fig. 13. THE ORMCC SOURCE ONLY CONSIDERS THE CONGESTIONS ON THE REPRESENTATIVE PATH FOR RATE ADAPTA-
TION

to show that, with proper choice of rate reduction factor R
for ORMCC, �������± P�� � ���± oscillates around 1, where� �����± and � � ���± denote the sending rates of the TCP
flow and ORMCC flow at time ; respectively. Those two
flows are assumed to be the only flows on the representa-
tive path. A sample of the rate evolution is given in Fig-
ure 14.
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Fig. 14. EVOLUTION OF THE SENDING RATES OF TCP AND
ORMCC FLOWS

Like other TCP throughput analysis papers [14] [10]
have done, our analysis focuses only on TCP’s congestion
avoidance behavior. During congestion avoidance period,
when without packet losses, a TCP source increases its
congestion window by ��PD¿ packet upon the receipt of per
ACK, where ¿ is the current congestion window size. A
TCP source transmit all the packets in its congestion win-
dow in one RTT, therefore, the window grows by 1 packet
per RTT, 11 which corresponds to the fact that its sending
rate is increased by OJPQI 3K3 per RTT, where O is the packet
size. An ORMCC source increases its sending rate at the
same pace, as covered in scheme description. At packet
loss, a TCP source will reduce its congestion window by2<2

We assume that a TCP receiver sends an ACK per received packet.

half, which is equivalent to cutting its sending rate by half.
Assume that congestion is the only reason for packet

losses. Let
Ë

be the bottleneck bandwidth. It is obvious
that packet losses can occur only if � � ���± "�� �����± � Ë .
Suppose some packets are lost and both flows reduce their
transmission rates at ;�C (Figure 14). Before the losses,
since both � � ���± and � �����± keep increasing, there must
be a moment ;~B when � � ���± Ó "��������± Ó S Ë

. For short,
let �������± Ó S�� , then � � ���± Ó S Ë ��� . For the first step
of analysis, we will show that with appropriate R ,�� � � 	 à ä � è �"! � à ä � �
	�#%$'&(&Ù â ! #%)*&(+Ù â

�-, à ä � è �"! � à ä � � , # $'&(&Ù â ! # )*&(+Ù â (9)

Let the moment just before the rate reduction at ;sC be;/. C . Because the TCP and ORMCC flows share the same
path, we assume that they detect packet losses and reduce
transmission rates approximately at the same time. For
the TCP flow, suppose that at ;0. C , its transmission rate has
been increased by

Í
since ;>B , i.e.# )1&2+Ù43 â ß-à ä � Ü æ

After a reduction by half,# )*&(+Ù â ß #5)1&2+Ù43 â ï ß à ä � Ü æï
Since the ORMCC flow increases its rate at the same

pace, we have, # $'&2&Ù43 â ß � Ü æ
Assume that both flows have the same priority and are

almost synchronous, i.e. their packets are forwarded by
the bottleneck with the same probability. In consequence,
at ;6. C , the ORMCC CR sees an approximate receiving rate
of #5$'&(&Ù43 â# $'&2&Ù43 â Ü # )1&2+Ù43 â à ß � Ü æà Ü ï æ à

According to the rate adaptation policy of ORMCC,# $'&(&Ù â ß87 � Ü æà Ü ï æ à



Therefore,#9$9&(&Ùdâ# )*&(+Ùdâ ß87 � Ü æà Ü ï æ à;: à ä � Ü æï
Now let’s compare ��PA	 Ë �8�1 and �������± 2 P�� � ���± 2 .<= ¼ < ¼?>A@CB*BD â>FE BHGD â¨ ¾= ¼ < ¬ »IKJ0L C¾ ¼ M == ¬ ¾ »'N < ¬ L <¾ �O= ¼ < � ¼ M == ¬ ¾ »'N »AP

(10)

Since
Ë À;� and

Í � U , HyPA	 Ë �%�1" Í /À�U , and the
positivity of (10) is decided by its second factor between
square brackets. If we choose a value for R carefully so
that, 7�ß �ï à Ü ï æà

The second factor of (10) becomesQSR � Ü æ ï�T �à ä � ä �VU ß æ ï�T �à ä � ä �VU
(11)

It is easily seen that, if � À Ë �W� , (11) À]U so that
(10) ÀóU ; while if � � Ë �X� , (11) �óU so that (10)��U . That is exactly what we want for (9).

With (9) eastablished, we can go further. Assume that
at ; ¥ , k
S �&WmWmWZY , both the TCP flow and the ORMCC
flow reduce their rates (Figure 14), and their rates af-
ter reduction are � � ���±4[ and � �����±4[ respectively. Also
assume that ; ¥ · B is the closest moment before ; ¥ so that� � ���±4[]\ Ó "^�"�����±4[4\ Ó S Ë

. Recall the meanings of � andË �8� , (9) actually indicates that,�� � #%$'&2&Ù �4_ Ú 	8#5)1&2+Ù �4_ Ú è`#%$'&2&Ù �4_ Ú ! #a)1&2+Ù �]_ Ú 	�#9$'&2&Ù � ! #5)1&2+Ù �#%$'&2&Ù �4_ Ú , #5)1&2+Ù �4_ Ú è`#%$'&2&Ù �4_ Ú ! #a)1&2+Ù �]_ Ú , #9$'&2&Ù � ! #5)1&2+Ù �
(12)

Let’s consider the situation that � �����±4[]\ Ó �b� � ���±4[]\ Ó first,
which is shown in Figure 14. Note that for any k ,# $'&2&Ù �dc â _ Ú\ß # $9&(&Ù � Üfe%g # )*&(+Ù �dc â _ Ú²ß # )1&2+Ù � Ühe e , Q

So, #%$'&(&Ù �# )*&(+Ù � 	 #%$'&(&Ù � Ühe# )*&(+Ù � Ühe ß #%$'&2&Ù �ic â _ Ú# )1&2+Ù �ic â _ Ú ÷ × ð ù	 #%$'&(&Ù �dc â# )*&(+Ù �dc â
Similarly, if � �����±4[4\ Ó Àj� � ���±4[]\ Ó ,#%$'&2&Ù �# )1&2+Ù � , #9$'&2&Ù �dc â# )1&2+Ù �ic â
As the result, if the ORMCC flow rate is less than that

of the TCP flow, it will grow until it exceeds the latter;

likewise, if the ORMCC flow rate is more, it will get
less and less until it is below the TCP flow rate. Hence,� �����± P�� � ���± oscillates around 1. In conclusion, we say
that ORMCC is approximately TCP friendly, given that
the rate reduction factor R is properly chosen.

With regard to the value of rate reduction factor R , re-
call that above in the analysis, we need to have that7
ß �ï à Ü ï æà

Since
Í � U , R needs to have a value greater than UAWYZ .

Consider the fact that TCP uses ACKs to measure RTTs.
It can have lower RTT estimation than that of ORMCC
which uses NAKs for this purpose. Thus, TCP can in-
crease sending rate faster than ORMCC. For compensa-
tion, ORMCC at packet losses can reduce its transmission
rate by less using larger value of R . In our implementa-
tion, we use a value of 0.75 and it works fine in simula-
tions.

C. Immunity To Drop-to-zero Problem

The cause of drop-to-zero problem is the asynchronous
packet losses on multiple paths. If a multicast source re-
duces the transmission rate too much on the losses, the
rate will stay very low or even converge to zero. How-
ever, in nature, the source in ORMCC adapts the transmis-
sion rate according to the congestion on one single path
while ignoring that on all others, there will be no drop-to-
zero problem for ORMCC. In more details, if a receiver
other than the current congestion representative (CR) sees
a packet loss rate lower or equal to that by CR, it won’t
send CI( � )s back to the source. The source won’t see any
CI( � )s from it, thus of course won’t reduce the transmis-
sion rate. Even if the source gets CI( � )s from different
receivers because there is a change of the most congested
bottleneck, once it chooses a receiver as the new CR after
a very short period of time (several RTTs), it will ignore
CI( � )s from all other receivers. Consequently, we can say
that ORMCC is immune to drop-to-zero.

D. Effectiveness of Feedback Suppression

Without support from internal nodes, which is the sit-
uation that we assume for reality, most multicast feed-
back suppression schemes (e.g. [6], [16], [19], [7], [13])
use random timers for delaying receivers’ feedback before
sending them. However small it is, there is some feedback
latency which may bring performance penalty. Since our
feedback suppression is not based on timers, it does not
suffer from this problem. Also, there is no need to know or
estimate the total number of receivers like [7]. Moreover,
we are going to show below that in ORMCC, the total
number of feedbacks (i.e. CI( � )s) sent to the source by all



receivers in a multicast session, is independent of the total
number of receivers. Instead, it depends on the switching
frequency of the most congested bottleneck, as well as
the number of receivers behind the new most congested
bottleneck, plus the minimum RTT between them and the
source. For convenience, we use the acronym MCB for
most congested bottleneck in the following discussion.

We assume that there is only one MCB at any mo-
ment12. To begin the calculation, the following notations
are needed13 .¿ : Total number of receivers behind the new

most congested bottleneck (MCB).I ¥ : Receiver k behind the new MCB. ( k(S�&WmWmWE¿ )I 3K3 ¥ : RTT between the source and I ¥ .I 3K3lk¥ : Forwarding (downstream) part of I 3K3 ¥ .I 3K3 7²¥�ÿ : The minimum of all I 3Ä3 ¥ ’s.m : Packet loss rate seen by receivers behind the
new MCB.n : Average transmission rate of the ORMCC
flow.
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after bottleneck change is
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First burst of packet losses
after bottleneck change occurs.

The source gets CIs from the closest receiver,
change CR and notify all receivers.
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Fig. 15. FEEDBACK SUPPRESSION

Whenever there is a new MCB, according to the pre-
vious discussion of ORMCC’s following the most con-
gested path, only those receivers behind the new MCB
will send CI( � )s back to the source, and all of them ex-
cept one will stop sending CI( � )s once one of them is
chosen as the new CR. More specifically, the source will
first see the CI( � )s from the receiver with I 3K3 7²¥�ÿ , then
change CR and tell all receivers of the change. For anyI ¥ except the new CR, the duration of sending CI( � )s is
between the moment ; ¥ · B when they first detect packet loss
after bottleneck change and the moment ; ¥ 2 when they
know the new CR. According to Figure 15, ; ¥ 2 ��; ¥ Ó S2dL

There can certainly be multiple bottlenecks which have similar de-
gree of congestion and are all most congested. However, the discussion
still holds.2ÔM

Since the receivers involved here are all behind MCB, we can as-
sume that they see the same degree of congestion and thus the same
packet loss rates.

I 3K3 k¥ "�I 3K3 7²¥�ÿ �«I 3K3 k¥ SîI 3K3 7²¥�ÿ . Therefore, be-
fore a new CR is decided, the number of CI( � )s sent from
this receiver k is thus m2n I 3K3 7²¥�ÿ , and the total number of
CI( � )s sent by all receivers behind the new MCB is,op �iq¡×HrHsutCvwvyx �iz ß s{r1| R t}v�v~x �iz

Once a new CR is decided, only one receiver, namely
the new CR, will send CI( � )s. Let’s call the period be-
tween two successive MCB switchings MCBSP (MCB
switching period). During a MCBSP of length ; , the
total number of CI( � )s sent to the source is, assuming; � I 3Ä3 79¥ ÿ ,s{r1| R t}v�v~x �dz0Ü s�r �Ôã ä tCvwvyx �iz � ß s�r �Ûã Ü � | ä �D� tCvwvyx �iz �

If a Poisson process with parameter
É 14 is assumed for

MCB switching, for a multicast session of duration
3

, on
average, the total number of CI( � )s transmitted is approx-
imately, Ö v R s�r T �Ö Ü � | ä �D� t}v�v x �iz U (13)

We can see that, for a ceratin
3

,�i�d���� å Ö v R s{r T �Ö Ü � | ä �D� tCvwvyx �iz Uß s{r*v Üj�i�i���� å Ö s�rHv � | ä �D� t}v�v x �iz ß s�rHv (14)

That means, if during a multicast session, there is no
MCB switching, the total number of CI( � )s transmitted is
approximately equal to the number of CI( � )s sent from a
single receiver behind the MCB. To make it clearer: if the
MCB does not change during a multicast session, the vol-
ume of feedback is on the same level of unicast feedback!

Also, from (13), we find that the total number of trans-
mitted CI( � )s is independent of the total number of re-
ceivers in a multicast session (Note that ¿ is (13) is not
the total number of receivers but the number of receivers
behind the MCB). It depends on how fast MCB switches
and the amount of receivers behind the new MCB, as
well as the smallest RTT between those receivers and the
source. Usually, MCB switches only once in many mul-
tiple I 3K3 7²¥�ÿ ’s, and the amount of receivers behind the
new MCB is much less than the overall number. More-
over, I 3K3 79¥ ÿ is almost a negligible duration. Conse-
quently, our feedback suppression mechanism is effective.

Finally, we must say that due to measurement errors
in reality, the total number of CI( � )s sent can be a little
higher than what we have derived here. However, the dif-
ference won’t be significant.2 `

Considering the reality, we can assume that MCB switching does
not occur too frequently and ���{��f?�A��� ��[d� .


