
Overlay Bandwidth Services: Basic Framework and an Edge-to-Edge
Closed-Loop Building Block1

David Harrison, Shivkumar Kalyanaraman, Sthanunathan Ramakrishnan

Department of ECSE, Department of Computer Science,

Rensselaer Polytechnic Institute.

harrisod@cs.rpi.edu, shivkuma@ecse.rpi.edu, sthanu@networks.ecse.rpi.edu

1 Introduction

QoS deployment in multi-domain, IP-based inter-networks has been an elusive goal partly due to

complex deployment issues [18]. This paper proposes a new overlay framework to support a limited

range of bandwidth services while being attractive from a deployment standpoint (see Figure 1). The

framework does not place implementation or upgrade requirements at bottlenecks; requires no new

packet-format reqts at the IP-level; and is incrementally deployable. It does require aggregate-level

isolation, bu�ers and bandwidth con�guration at potential bottlenecks (i.e. one queue for all overlay

tra�c) which can be satis�ed minimally by static methods. A new closed-loop building block is proposed

to e�ciently realize the overlay functionality (Eg: between nodes I and E in Figure 1). The building

block assumes internal FIFO queues, rate-based control and proposes a new per-loop accumulation-

based technique to transparently detect congestion without inducing packet-loss. In O(RTT) timescales,

the queues are distributed to the edge nodes. We present proofs of multi-bottleneck stability/fairness

and develop measurement procedures for this building block. At the edges a toolkit of stateful and

application-aware policies can customize services for end-to-end applications [26, 22]. A medium scale

site-to-site VPN is a sample target of this model.

Figure 1: Overlay Bandwidth Services Model

A key tradeo� is that this framework cannot o�er tight delay or jitter guarantees. The focus is on

1Submitted for conference review. Please do not re-distribute.

1

transparent edge-to-edge loss minimization and bandwidth assurances. Another tradeo� is that it

requires fairly large bu�ers for fully lossless operation and assumes relatively stable edge-to-edge paths.

However, this framework is not inconsistent and can co-exist with frameworks like int-serv, di�-serv,

MPLS, CSFQ [7, 5, 36] which can provide a wider range of services, but involve more coordinated

deployment. The closed-loop building block does not con
ict with deployment of TCP-ECN [31] (ECN

marking is una�ected by the scheme) and new end-to-end congestion-control schemes [15, 4, 3]. The

mapping of end-to-end
ows over edge-to-edge loops is safe because the latter positively a�ects end-

to-end performance (see section 7). The building block also provides a mechanism for edge-based

isolation of misbehaving
ows [14, 36, 34, 25]. While the basic scheme can operate assuming FIFO

queues everywhere (given aggregate-level isolation), ECN and AQM schemes [31, 16, 26] deployed at the

edges lead to signi�cant performance gain (see section 7). In summary, the framework and closed-loop

building block aims to complement, and not substitute the state-of-the-art.

Section 2 positions this work in the context of current QoS and congestion control literature. Sections 3,

4, 5 present the theoretical basis, stability and performance bounds of the scheme in terms of a
uid

ow model. Section 6 develops the packet-based algorithm, measurement techniques and parameter

settings. A sample of overlay service capabilities, illustrated with simulations are presented in Section 7.

Finally, section 8 discusses applicability, limitations and future work within the framework.

2 Inter-network QoS and Congestion Control: The Middle Ground

Contemporary QoS research has recognized the need to simplify and de-couple building blocks to

promote implementation and inter-network deployment. The int-serv and RTP work [7, 35] de-coupled

applications evolution from network support evolution. RSVP de-coupled inter-network signaling from

routing. MPLS [33] de-coupled forwarding mechanisms from the routing control plane, leading to tra�c

engineering capabilities [2]. The di�serv services [5, 20, 10] and core-stateless fair queuing (CSFQ) [36]

further simpli�ed core architecture and moved data-plane complexity to the \edges," and allowed a

range of control-plane options [33, 2, 6, 13]. Extending this trend, our proposed overlay framework

eliminates implementation and upgrade requirements at potential intermediate bottlenecks (Eg: at

peering points P in Figure 1), and further de-couples \edge" evolution from \core" evolution.

We propose to e�ciently realize the overlay capability using a new closed-loop building block. Given

the growth of optical networking, raw bandwidth and tra�c engineering options, our closed-loop block

is useful only if the loop actually encompasses bottlenecks, and if over-engineering is impossible, costly

or cannot assure zero bu�er over
ow. A multi-provider or an international environment may pose such

challenges justifying the applicability of this framework (Figure 1).

The closed-loop nature of our building block di�ers fundamentally from traditional blocks like schedulers

and shapers which are open-loop in nature [17]. The price we pay is O(RTT) adaptation and the lack

of delay/jitter assurances. Closed-loop blocks for services have been proposed in recent literature

2

[12, 30, 1]. But, most of these proposals suggest end-to-end operation which again faces deployment

hurdles. Also, some of these proposals are packet loss-based which excludes a range of customizable-loss

services, and may not be suited for assured bandwidth services.

The proposed building block has a useful set of properties: edge-to-edge overlay operation, stability,

bounded bu�er, lossless accumulation-based congestion detection, proportional fairness [22, 27, 23],

measurement feasibility, parameter-setting feasibility and
exible policy options which make it attractive

as a building block for overlay services. In contrast, TCP- and TCP-friendly congestion control [19,

15, 4, 3, 14] operate end-to-end using packet loss as a congestion indicator, and may require network

element support for performance enhancement [16, 26]. Our block di�ers from schemes like DECbit [32],

TCP-ECN [31], ATM ABR explicit-rate control [9], hop-by-hop control [1, 24], credit-based schemes

[24] and others which may require varying degrees of computation, bu�er management or �ne-grained

scheduling support at bottlenecks. Our notion of \edge-to-edge overlay" is motivated by the di�-serv

model [5], and therefore is neither \end-to-end" (like [19, 4, 8, 15]) nor \hop-by-hop" (like [1, 24]).

The property of detecting congestion without inducing packet loss was introduced in schemes like Vegas

[8, 28], Agrawal/Cruz et al [1] and Mo/Walrand [29]2. However, we propose a new accumulation-

based technique for congestion detection. Assuming no packet loss or system delay changes, the per-

loop accumulation is simply the backlog of that loop in the network, i.e., the di�erence between the

packets sent and received for a given loop (see section 3). It directly correlates to the conservation-of-

packets principle [19]. In combination with ingress rate-control, it allows the use of simple thresholding

techniques to detect congestion; and leads to a proof of stability and fairness in a
uid-
ow model.

The distinction between \accumulation" and other congestion measures is given in Section 3, but its

precise relationship with measures like \delay" under highly time-varying network conditions is yet to

be fully understood.

To summarize, the two key contributions in this paper are: an overlay framework (QoS architectural

contribution), and the development of an accumulation-based congestion detection technique to �t into

an edge-to-edge near-lossless control scheme (congestion control contribution).

3 Fluid Model

This section introduces the concept of \accumulation" in a
uid
ow model and motivates various

elements of the building block. Consider a network of queues fed by a system of
uid
ows f i g with

input rates �i(t) at the ingress, and output rates �i(t) at the egress (Figure 2). The circles in Figure 2

represent bottlenecks (i.e. capturing both the link and the queue). We assume in�nite bu�ers at the

bottlenecks. Let �ji(t) be the input rate, and �ji(t) be the output rate of
ow i w.r.t the jth bottleneck

at time t. Assume that this
ow goes through Ji bottlenecks. For notational simplicity, we denote Ji

2Our work was concurrently performed with that of the latter authors[28, 1, 29]

3

Figure 2: Fluid Flow Model of a Multi-Bottleneck Network with Out-of-Band Measurement

by J and ji by j in what follows3. Let the delay between bottlenecks j and j + 1 be dj . Now the

input rate of
ow i at any bottleneck j + 1, �(j+1)i(t) is the time-shifted version of the output rate of

the same
ow at the previous bottleneck j, i.e.,�(j+1)i(t) = �ji(t� dj). Note that �i(t � d0) = �0i(t),

and �Ji(t� dJ) = �i(t). The queue contribution of
ow i at bottleneck j at time t, qji(t) follows the

dynamics:

_qji(t) = �ji(t)� �ji(t)

De�ne the total accumulation of
ow i, ai(t) by the dynamics:

_ai(t) =
X
j

_qji(t�
JX

r=j

dr) = �i(t�
JX

r=0

dr)� �i(t) (1)

Here
PJ

r=0 dr = �fi is the forward propagation delay for
ow i. Let � bi be the reverse propagation delay.

We assume continuous out-of-band signaling of rate-measures between ingress and egress. The meaning

of continuous out-of-band is that control information is sent continuously, and received at the egress

after a delay �fi and returned to the ingress after a total delay �fi +�
b
i (i.e. out-of-band). Now, assuming

ai(0) = 0, ai(t) can be calculated at the egress knowing �i(t� �fi) and measuring �i(t) (as illustrated

in Figure(2). Consider an interval � > �fi + � bi for which the input rates �i(t) are held constant, and

that the intervals used by various
ows are equal and synchronized. Then, the system may be thought

of as progressing in cycles of length � at any node (ingress, bottleneck or egress), albeit time-shifted.

In other words, the output rate of a
ow i from bottleneck j in its path is the same as its input rate

to the next bottleneck j + 1, i.e.: 8j �ji(k) = �(j+1)i(k), and

ai(k) =
X
j

qji(k) (2)

3Eg: A term like �ji(t) really means �jii(t)

4

Equation (2) shows that the accumulation measured ai(k) is not necessarily equal to the
ow's contri-

bution at any one bottleneck on its path qji(k). Discretizing Equation (1), we obtain:

ai(k) = ai(k � 1) + (�i(k)� �i(k))� (3)

In a
uid model, if �ji(k) > 0 8 i, then for any positive queue at bottlenecks, there exists a positive

queue contribution of every participating
ow and vice versa. Moreover, the bottleneck queue is zero

i� the queue contribution of every participating
ow is zero. Therefore:

qj(k) > 0, 8i qji(k) > 0; and qj(k) = 0, 8i qji(k) = 0 (4)

From Equation (2) and (4), it follows that the accumulation measured by a
uid
ow ai(k) is positive

i� there is at least one bottleneck in its path with a non-zero queue; and ai(k) = 0 i� all the bottlenecks

in its path have a zero queue. That is,

ai(k) > 0, 9j qj(k) > 0; and ai(k) = 0, 8j qj(k) = 0 (5)

Therefore ai(k) is an indicator of congestion. In other words, with the
uid-model and continuous

feedback, using a zero-threshold for the entire queue at the bottleneck qj(k) is equivalent to using a

zero-threshold for the accumulation ai(k). Now we adopt the following policy for rate updation:

�i(k + 1) = �i(k) + �; ai(k) = 0 (6)

�i(k + 1) = minf�i(k); ��i(k)g; ai(k) > 0 (7)

Equations (6) and (7) represent the core policy of the proposed closed-loop building block. The pa-

rameters �; � are constants (� > 0; � < 1)a�ecting rate increase and decrease respectively. NETBLT

[11] shares the property of measuring output rates �i(k), but it detects congestion based on the rate-

di�erences �i(k) � �i(k), instead of the accumulation, ai(k) =
P

k(�i(k) � �i(k))T . Our policy is

peripherally similar to AIMD[19, 32], but uses the output rate �i(k) for rate-decrease during conges-

tion epochs. Hence we call this policy as AIMD-ER (AIMD-Egress Rate). Accumulation (
P

j qji(t))

is distinct from network delay (
P

j
qj(t)
Cj(t)

) used in schemes like Vegas, Mo/Walrand, Agrawal/Cruz

[8, 28, 1, 29], especially when Cj(t) varies. The precise relationship between these models under com-

plex conditions is an open issue. We now examine the stability and fairness characteristics of the

scheme.

4 Stability and Queue Bounds

Consider
ow i in congestion between cycles k = p and k = n. Since the
ow is uncongested at

k = p� 1, ai(p� 1) = 0. From Equations (3) and (7), we have:

ai(n) =
nX

k=p

(�i(k)� �i(k))�; and (8)

5

8k > p : �i(k) � ��i(k � 1) (9)

Substituting Equation (9) in (8), and combining terms we obtain:

ai(n) � (�i(p)� (1� �)
n�1X
k=p

�i(k) � �i(n))� (10)

Let us �rst prove stability for a single bottleneck j experiencing congestion from time k = p to n.

Denote the set of
ows passing through the bottleneck by Nb, with cardinality Nb. Since the bottleneck

is uncongested at k = p� 1 and from Equations (6),(7),(2),(10), we have:

X
i2N

�i(p� 1) � C;
X
i2N

�i(p) � C +Nb�

qj(n) =
X
i2N

ai(n) �
X
i2N

(�i(p)� (1� �)
n�1X
k=p

�i(k)� �i(n))� (11)

� (Nb�� (1� �)(n� p)C)� (12)

Therefore, the single bottleneck case is stable with queue bound Nb�� and the queue drain time is
Nb��
(1��)C .

Now, let us consider a general multi-bottleneck network which was uncongested for k < 0. The queue

at any one bottleneck j at time n > 0 is less than or equal to the sum of queues at all bottlenecks at

time n. Flows can be classi�ed into 3 sets:

CF -
ows congested from k = 0 to n,

CF e-
ows congested from k = 0 and upto k = m (0 < m < n).

CF b-
ows congested starting from k = p (p > 0):

The above notation is simpli�ed. We indeed assume that the time periods m and p are not necessarily

the same for all
ows in the sets. Also, the
ows which are a part of CF e may later become part of

CF b. The sum of queues at all bottlenecks is the same as the sum of accumulation of all the
ows.

Therefore:

qj(n) �
X

i2CF[CF e[CF b

nX
k=0

(�i(k)� �i(k))� (13)

The
ows belonging to set CF e do not add to the queue length at time n (follows from Equation (5)),

and the sets CF and CF b are disjoint. Therefore:

qj(n) �
X
i2CF

nX
k=0

(�i(k)� �i(k))� +
X

i2CF b

nX
k=pi

(�i(k)� �i(k))�

Applying Inequality(10) to the RHS:

6

qj (n) �
X
i2CF

�i(0)� � (1� �)

n�1X
k=0

�i(k)� � �i(n)�

!
+
X

i2CF b

0
@�i(pi)� � (1� �)

n�1X
k=pi

�i(k)� � �i(n)�

1
A

�
X
i2CF

�i(0)� +
X

i2CF b

�i(pi)� � (1� �)�

0
@X

i2CF

n�1X
k=0

�i(k) +
X

i2CF b

n�1X
k=pi

�i(k)

1
A� �

0
@X

i2CF

�i(n) +
X

i2CF b

�i(n)

1
A

The sum of input rates can be bounded by their access link capacities and hence
P

i2CF �i(0) +P
i2CF b �i(pi) � NC, where N is the number of sources in the entire network. Note that this in-

equality is true irrespective of pi and the relative distribution of
ows between CF and CF b. Also
4P

i2CF[CF b �i(k) � C: This is because when the
ows are congested the sum of output rates at some

bottleneck is equal to C, and there exists at least one bottleneck from which the output rates are

directly measured at the egress. For example, Figure 3 shows three coupled bottlenecks. If bottleneck

3 is congested initially,
ows 1 and 3 are congested and �1 + �3 = C. Suppose suddenly 1 and 2

become bottlenecks, and 3 becomes uncongested, then all three
ows are congested and �1 + �2 = C

and hence �1 + �2 + �3 � C. This example shows that as long as there is one congested
ow this

inequality is valid, irrespective of the bottleneck or the actual
ow getting congested. This means that

8k
P

i2CF �i(k) +
P

i2CF b �i(k) � C as long as the sets are not empty at time k.5 When we plug this

bound in Equation (14) above, we see that the queue bound decreases with n. So to obtain the worst

case we have to assume that the sets CF and CF b are empty for as large a k as possible. Clearly

the largest such k has to be n� 1 as at n there should be some congested
ows to result in a queue.

This means that the set CF should be empty and that all the
ows belonging to CF b should get into

congestion at k = n: Incorporating all this we get,

qj(n) � (N � 1)C� (14)

Figure 3: Coupled Bottlenecks: Lower Bound on Aggregate Egress Rate (
P

CongestedF lows �i(k)) is C

The last equation assumes equal capacities6, C. The maximum queue is given by qmax = (N � 1)C�;

which proves system stability. However, the above bound is weak7: O(NC�) where N is the number of

4If the capacities are di�erent then
P

i2CF[CF b �i(k) � minjfCjg
5Note that if k < pi, then that ith
ow is not yet an element of CF b. This confusion is the price we pay for the

notational simplicity.
6If capacities are di�erent then we replace NC by the sum of the link capacities
7Because our technique bounds any single queue by the sum of all queues, and assumes the maximum values for all �i.

7

ows in the entire network! The complex coupling between bottlenecks de�es exact analysis. However,

Section 5 shows that the system tends to proportional fairness. Therefore, we expect the sum of output

rates of
ows at any bottleneck to be bounded away from 0 by
P

iminkf�i(k)g (see ref.[29]) under steady

state conditions. Then, from Equation (11) we can derive qmax = (NbC�
P

iminkf�i(k)g)� = O(NbC�)

since
P

i2Nb
�i(p) is bounded by NbC.

This analysis assumes a �xed and equal � for
ows. Consider a setting of �i (for
ow i) larger than

its round trip propagation delay instead of an equal � for all
ows. Now, accumulation ai for any
ow

still measures the sum its queue contributions qji (from Equation (3), albeit at di�erent times and the

relations (4) hold at any instant. Therefore, accumulation is still a reliable indicator of congestion,

but the feedback is e�ected by the ingress nodes at di�erent times. Stability still holds because the

proof depends only upon the fact that �i(t) < ��i(t � �i) during congestion, and that
P

flows �i(t)

is upper-bounded by NC and
P

congestedflows �i(t) is lower-bounded by C throughout the congestion

epoch.

5 Fairness

In this section we take the approach used in [23, 22]. Lets assume that there is a given probability

P that a
ow is congested, independent of the
ow rate (holds for high degrees of multiplexing at

bottlenecks). Then the input rate of a
ow i in round k + 1 is given by:

�i(k + 1) = (1 � P)(�i(k) + �) + P��i(k) (15)

Recall that � > �fi + � bi . Now approximating the �nite di�erence as the derivative, we have:

_�i(t) = (1� P)
�

�
�
P

�
(�i � ��i) (16)

Kunniyur and Srikant [23] proved that this policy leads to a game in which the optimization function

for the entire network is given by:

max
f�ig

X
i

(
�(1 � P)

�P
) log �i � P

X
links

Z P�i

0
pj(C; �)d� � P

1� �

�
� (17)

where � is the vector of input rates, sum on the upper limit of the integral is over the the set of
ows

which pass through link j and pj(C; �) is de�ned by
P

links �ipj(C; �) = �i � �i. If � is very close to 1

and if P
(1�P)� is large, then the scheme approaches proportional fairness [22, 27]. This can be done by

setting � small. Also the weights for di�erent sources in the utility functions can be modi�ed by setting

di�erent values of � and �, thereby creating a weighted service to the
ows. The proportional fairness

property makes it similar to the window-based schemes in [29]. A future work item is to extend our

scheme to achieve (p; �)-proportional8 fairness [29] which tends to max-min fairness and is known to

be theoretically feasible for window-based control.

8The � here should not be confused with the rate-increase parameter

8

6 Measurement and Parameter Issues

Our task is now to extend the
uid-
ow model to account for packetized transmission, and in-band

control-
ow between the ingress/egress. For simplicity of exposition, lets consider equal-sized packets.

The building blocks can be modi�ed appropriately to support variable-size packets. The input rates

�i(k) are assumed to be regulated by token buckets with maximum burst size � = 1 packet. The �rst

problem that occurs is that at any queueing point, the queue even without overload can be upto n� at

any bottleneck,where n is the number of
ows through the bottleneck. This leads to randomness in the

accumulation measure, ai(k). Recall that a
uid-
ow could not have a queue during underload which

allowed a congestion detect threshold of zero, i.e., ai(k) > 0 signalled congestion. The mean number of

packets that are received in a time interval at the egress node is equal to that transmitted in the same

time interval (because the mean di�erence of queuing delays between packets is zero). The number of

packets can change only if a packet from outside the interval is received in this interval and vice versa.

Without a large degree of error, we can assume that the probability of two or more packets moving

out of an interval is very less. If p is the probability that a packet goes out of its interval, it can be

shown that the variance is 2p(1� p) which is upperbounded by 0:5. Also the average error in counting

of packets at the ingress and egress could be as much as 0.5 packets. To reduce the probability of false

congestion detections, we set the epoch-beginning threshold (Hthresh) to 2 pkts, and the end-of-epoch

threshold (Lthresh) at 1.5 pkt. This setting is robust, but a�ects the average and worst case queue

length.

6.1 Measurement of Accumulation

The critical element of the building block is the concept of \accumulation". A systematic error in

its measurement could lead to violation of conservation-of-packets (instability) or forever remaining in

congestion epoch (beat-down/under-utilization). The errors in accumulation could include e�ects of

in-band measurement, e�ects of interior queueing delays (present even in underload), and e�ects of

change in system delays (eg: routing, scheduling e�ects). For this paper, we do not examine issues

of control/data packet loss, reverse path congestion, clock skew/drift etc. Techniques like timeouts,

windows and GPS references could be used in careful combination with the techniques outlined below.

This section outlines the key aspects of the detection methods9

Recall that section 3 assumed a continuous out-of-band measurement model. In contrast, real measure-

ments happen with discrete in-band control packets. To emulate out-of-band control as far as possible,

the egress measures output rates over �xed intervals T which is used to compute accumulation when the

kth control packet arrives (Figure 4(a),(b),(c)). While this is similar to out-of-band measurement, it

does not correspond to out-of-band feedback. This is because the accumulation ai(k) can be calculated

only when both the estimates �i(k) and �i(k) are available, i.e. at the later of the two events (kth

9The pseudo-code was left out for space reasons.

9

Figure 4: Measurement of Accumulation At the Egress

control pkt receipt, kth egress interval expiry). While we have experimented with aggressive techniques

to compensate for this delay during overload, we do not present them for reasons of simplicity. A

perfect measurement with discrete in-band control packets is shown in Figure 4(a).

Measurement errors may also occur due to synchronization reasons. With in-band control packets, our

default assumption is that the egress node synchronizes its measurement intervals with the very �rst

control packet (eg: control pkt 0 in Figure 4(c)). If the network had a non-zero queue at this time,

throughout the epoch a real non-zero queue will be mis-interpreted as a zero or negative accumula-

tion. Therefore, it is necessary to add procedures for the accumulation estimate ai(k) to eventually

resynchronize and correlate to the real base queue. Beyond this, we could have system delay changes

(due to routing, scheduling etc) which result in errors in ai(k) (eg: see Figure 4(c)) which need to

be �ltered out. Any residual positive accumulation at the end of an epoch ai(k) is captured using a

\global accumulation" (aglobal) estimate. These estimation details are summarized below:

� The accumulation ai(k) is calculated only when both the estimates �i(k) and �i(k) are available,

i.e. at the later of the two events (kth control pkt receipt, kth egress interval expiry). To partially

�lter initial synchronization errors, we use a test phase, where the source holds its rate constant

at a supposedly \safe" value. If the accumulation goes negative during this phase, it is reset to

zero, and the measurement interval is resynchronized to this new control packet (Figure 4(c)).

10

The test phase is exited when the accumulation is non-negative. Now, since system queues cannot

grow without a�ecting ai(k) of participating
ows, the epoch is detected when ai(k) > Hthresh

(Figure 4(b) and (c)) and a boolean variable Epoch is set. The policy minf�i(k); ��i(k)g now

provisions drain capacity corresponding to the incremental accumulation, and the ingress latches

to the minimum ��i(k) over the course of the epoch which ensures consistent drain. The end-of-

epoch is detected using Lthresh (Figure 4(b)).

� However, since incremental accumulation could be caused by system delays as well, we need to

go beyond simple hysteresis thresholds to detect end of the epoch. We �rst assume that system

delay changes are smaller than T between re-synchronization points. This could be assured by

setting T large enough and periodically measuring the edge-to-edge round-trip time. Now the

test for the end of an epoch is by comparing a new short-term accumulation estimate, atemp with

Lthresh when the system is close to an epoch end (Figure 4(c)). Let I denote the count of intervals

(incremented at the end of intervals) and C denotes the count of control packets (incremented

upon receipt of control packets). During the epoch (Epoch == 1), the condition I � C � 0

calculated upon receipt of control packets in successive intervals portends an end of epoch. The

bound on system-delay changes made earlier ensures that I�C will indeed become non-positive.

The measure atemp is reset often to �lter system delay e�ects. This also forces the system to

either exit the epoch or add more accumulation. The combination of these techniques assures

that the system will come out of the epoch if congestion has indeed ended.

� Given these procedures ai(k) may be positive when congestion ends (Figure 4(c)). To avoid any

systematic bias, we capture max(ai(k); 0) in aglobal upon re-synchronization:

aglobal = aglobal +maxfai(k); 0g;

whold = min(aglobal; wmax);

aglobal = aglobal � whold;

whold is a hold-down window used to provision drain capacity for any residual positive accumulation

between re-sync points caused by system delays, measurement and/or initialization errors, i.e.,

compensate for residual conservation-of-packets errors and �lter out system-delay changes. The

price paid is transient under-utilization due to the hold-down mechanism. In particular, the

ingress enforces a rate-di�erence whold=T till the next re-synchronization point. Let us introduce

a new input rate control parameter is ri(k) and let �i(k) is the measured rate at the input,

�i(k)T � ri(k)T + � � whold. A simple way to enforce this is to reset ri(k) = ri(k) � whold=T ,

where whold

T
� wmax

T
< �, the rate-increase parameter. Observe that since ri(k) is increased based

upon �i(k� 1), and the transmission is regulated by a token-bucket, demand burstiness does not

a�ect the network queues signi�cantly. This also addresses the Use-it-or-Lose-it (UILI) problem

of taking away the ingress rate allocation if demand does not exist to use it [9].

11

6.2 Parameter Con�guration

Consider the parameters � (rate increase interval) and T (measurement interval at ingress/egress). The

factors a�ecting these parameters are: maximum edge-to-edge system delay (excluding queuing delays),

maximum changes in system delay, minimum transmission rate and maximum clock skews (all factors

relevant between re-synchronization points). Other factors include maximum queue desired, canonical

Hthresh settings, timer-granularity, overheads (computation and bandwidth) of control tra�c. A setting

of � larger than maximum system delay and a lazy adjustment for system changes (using RTT estimates

between edges) is assumed in this paper. Both T and � are assumed to be large compared to minimum

transmission time and maximum clock skews (a GPS reference or alternate mechanism could be used

to detect/bound skews) to minimize measurement error. In general, it may be preferable to set T < �

to sample the system often, and obtain rate-decrease indications faster than rate-increases. However,

in our simulations, we set T = � to the maximum edge-to-edge propagation delay.10.

The rate increase parameter � can be set to �=� to emulate TCP-like window increases. With this

setting, it can be shown that the single-bottleneck maximum queue is O(N�) where N is the number of

ows through the bottleneck. 11 The rate-decrease parameter � a�ects the queue drain time, the length

of the congestion epochs, and steady state utilization. Higher values of � may increase the coupling

between bottlenecks and hence increase the queue sizes indirectly. For example in a linear network

[27] if the bottlenecks get congested alternately, then the long
ow could be forever in congestion. So

to prevent this we could set � such that the time taken for a bottleneck to drain (drain time) is lesser

than the time taken for
ows to cause congestion again (rise time). If we assume the single bottleneck

expressions for both the rise time12 ((1��)C
Nb�

) and drain time (Nb�
(1��)C), we have:

(1��)C
Nb�

> Nb�
(1��)C

Therefore, � < 1� Nb�
C

. If Nb�
C

= 0:1, � can be set to around 0.9. In our simulations, we set it to 0.95.

7 Performance Characteristics and Overlay Service Capabilities

This section illustrates basic properties of the building block: multi-bottleneck operation, fairness,

e�ects of queue distribution to edges; and gives simple illustrations of service capabilities.13. Since

the closed-loop building block is positioned to complement, and not substitute the state-of-the-art,

our simulations will only show complementary behavior and not comparative behavior with schemes

like Vegas, ECN, FRED (congestion control)14 and assured services, guaranteed services (bandwidth

services). The common parameter settings used are as follows: Packet size = 1000 bytes, � = 0:95,

� = 1 pkt, Hthresh = 2 pkts, Lthresh = 1:5 pkts, Wmax = 0:2 pkts, T = � = maximum edge-to-edge

propagation delay. Simulations are run till steady state is reached (10-100 seconds usually).

10Setting � based upon individual loop RTTs is also admissible (see section 4, last para)
11Proof is a simple extension of that given in Section 4.
12Can be derived from Equation (12)
13A larger simulation suite; ns code; and Linux-prototypes will be made publicly available after the review period
14This also emphasizes the distinction between \end-to-end" and \edge-to-edge"

12

7.1 Performance Characteristics of the Building Block

Figure 5: Linear Network Con�guration to Illustrate Fairness

Consider the linear multi-bottleneck network with cross-
ows shown in Figure 5, a well-known con�g-

uration to illustrate proportional fairness [27]. We vary the number of bottlenecks M from 1 to 6, and

the number of cross-
ows K is 4. Bottleneck capacities C are 100 Mbps each. Figure 6(a) shows the

throughput achieved by the long
ow compared against the theoretically computed values for propor-

tional fairness (lowest curve) and min-potential delay fairness (highest curve) [27, 22, 23]. Observe that

the throughput achieved (middle curve in Figure 6(a)) lies between the two fairness curves, closer to

proportional fairness. The utilization in all cases (Figure 6(c)) is very close to 100% and the maximum

of all bottleneck queue lengths (Figure 6(b)) in every case is less than 40 packets. No packets are lost

in the network. The subsequent sections describe services using the building block.

0

5e+06

1e+07

1.5e+07

2e+07

1 2 3 4 5 6

th
ro

ug
hp

ut

number of bottlenecks

proportional fairness
min potential delay fairness

throughput

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6

m
ax

 q
ue

ue
 le

ng
th

 in
 p

ac
ke

ts

number of bottlenecks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

ut
ili

za
tio

n

number of bottlenecks

Fairness Curves vs Simulated Throughput Max Queue Lengths Utilization

Figure 6: Illustration of Proportional Fairness Characteristics of the Building Block

7.2 Distributed Bu�er Management

The simplest service which can be implemented by the overlay framework is enhanced best-e�ort service.

The use of edge-to-edge loops simply distributes aggregate backlog among edge-nodes where a range

of bu�er management options can be used to customize the �nal loss assignment to users. By utilizing

potentially unused edge bu�ers, it lets the network handle a larger number of
ows during overload.

The basic behavior is illustrated in Figures 7(a),(b), a nam snapshot: N end-to-end TCP micro
ows (in

this case 4
ows) are spread over E edge-to-edge loops (in this case 2 loops). Without the edge-to-edge

13

loop operation, the entire queue builds at node 6 (Figure 7(a)). With the introduction of edge-to-edge

loop control, the queue and associated queue management decisions are distributed among E-nodes 4

and 5 (Figure 7(b)), and node 6 operates with a small steady state queue/full utilization. Except for

aggregate level isolation and su�cient bu�ers, no support is expected from node 6.

a) Queue at Bottleneck b) Queue distributed across edges

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350 400 450 500

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
in

 g
oo

dp
ut

number of TCP Reno connections

FIFO bottleneck
2 FIFO edge shapers

5 FIFO edge shapers
10 FIFO edge shapers

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300 350 400 450 500

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
in

 g
oo

dp
ut

number of TCP Reno connections

FRED bottleneck
2 FRED edges w/ FIFO bottleneck

5 FRED edges w/ FIFO bottleneck
10 FRED edges w/ FIFO bottleneck

c) FIFO b/neck vs Loops+FIFO Edges d) FRED b/neck vs Loops+FRED Edges

Figure 7: E�ect of Queue Distribution on End-to-End TCP Performance

Figures 7(c),(d) extend this study for N ranging from 1 to 500 and M 2 f0; 2; 5; 10g. The bottleneck

capacity C is 10 Mbps and all bu�ers are sized at one bandwidth-delay product (i.e. 50 pkts). Beyond

50
ows, the number of
ows is larger than the bandwidth delay product, an extreme case of congestion.

The graph plots coe�cient of variation (CoV = �
�
)15 of the per-TCP goodputs against the number of

TCP
ows, and using two queue management algorithms (FIFO and FRED [26]). The CoV is a

measure of the spread of best-e�ort service, and the goal is to minimize spread while maximizing the

mean per-TCP goodput. The mean per-TCP goodput in all cases was close to 100%, but CoV can

vary (in the 500
ow case) from CoV = 0:7 to CoV = 4! The biggest performance boost is achieved

by the simple, transparent distribution of queues away from node 6. Observe that for the 500
ow

case with just 2 edge-to-edge loops and FIFO everywhere (i.e. the curve which reaches CoV = 2.5, in

15�; � here denote the mean and standard deviation of per-TCP goodput

14

0

2e+07

4e+07

6e+07

8e+07

1e+08

0 10 20 30 40 50 60

ra
te

 (
bp

s)

time (seconds)

(a) TCP Reno (Well-Behaved)

0

2e+07

4e+07

6e+07

8e+07

1e+08

0 10 20 30 40 50 60

ra
te

 (
bp

s)

time (seconds)

(b) Misbehaving UDP Flood

Figure 8: Edge-to-edge Building Block Isolates Misbehaving Flows at Edges

Figure 7(c)) performs on par with FRED at the interior bottleneck (the curve which reaches CoV =

2.5, in Figure 7(d)). The performance of FIFO everywhere improves dramatically with the addition

of more edge-to-edge loops (CoV = 1:2 with 10 loops+FIFO). Use of FRED at the edge lowers CoV

down to 0:7. The intent of this illustration is not to suggest substitution of an AQM scheme like FRED

with FIFO, but to recognize the additional scalability (factor of 4 improvement in CoV) o�ered by

complementing FRED at the edge with edge-to-edge control.

We have experimented with numerous AQM schemes, TCP-aware techniques [16, 26] and TCP-ECN

[31] at the edge complemented with edge-to-edge loops and found consistent order-of-magnitude im-

provements in CoV, and signi�cant net reduction in overall loss rate and TCP timeouts. This suggests

that TCP end-to-end loops do not interact negatively with edge-to-edge aggregate control, and the net

bene�t is indeed very positive. In general, application-aware or even active/programmable techniques

can be used at the edge, possibly in cooperation with the end-system to customize on an application-

by-application basis.

7.3 Isolating Misbehaving Flows

Consider a simple misbehaving
ow scenario involving one bottleneck and two end-to-end
ows: one

UDP and one TCP. The use of overlay control can isolate the UDP
ow's excess tra�c at the edge

and o�er a fair share to TCP (see Figure 8). In a more general scenario, the edge-to-edge aggregate

(which may include some misbehaving micro-
ows) will be o�ered its fairshare in competition with

other edge-to-edge
ows. The misbehavior of micro-
ows within the aggregate does not a�ect other

edge-to-edge
ows. Further �ne-grained isolation and penalty-box techniques can be performed at the

edge [14, 16, 36, 25]. This edge-based isolation capability could be extended to provide model-based

isolation support for new experimental end-to-end schemes (eg: Vegas, pricing [22, 8, 28]).

15

7.4 Assured Service and Quasi-Leased Line Emulation

The assured service [10, 5] can be emulated on our overlay framework by backing o� the portion of the

ingress departure rate that exceeds the assurance, Ai. In other words, the new rate decrease policy is:

�i(k + 1) = min (Ai + �(�i(k)�Ai);
�i(k); �i(k)) where � <
 < 1

In Figure 9 we show results from a simulation using the single bottleneck con�guration used in

Section 7.3 except the bottleneck is 10Mbps and the TCP connection has 4Mbps of assured bandwidth.

Notice that the TCP connection obtains its 4Mbps assurance plus half of the remaining 6Mbps for a

total of 7Mbps. The above result assumed no over-subscription of the bottleneck in terms of assured

rates. With over-subscription, this service simpli�es to a relative priority service where one class of

tra�c competes much more aggressively for bandwidth than another. The di�erence between this

service and regular assured service, frame-relay CIR/PIR service and simple priority is that the packet

losses are ultimately assigned at the edges (where more intelligence can reside for service customization

during contention) and not at the interior bottleneck. As mentioned in section 5, we can also vary the

increase/decrease parameters (�; �) to o�er weighted proportional fair services [23, 22, 12, 30].

0

2e+06

4e+06

6e+06

8e+06

1e+07

0 10 20 30 40 50 60

ra
te

 (
bp

s)

time (seconds)

Ingress 0 Shaper Stats Versus Time

rho
assured

target

0

2e+06

4e+06

6e+06

8e+06

1e+07

0 10 20 30 40 50 60

ra
te

 (
bp

s)

time (seconds)

Ingress 1 Shaper Stats Versus Time

rho
target

(a) TCP w/ 4Mbps Assured + 3Mbps Best-E�ort (b) UDP w/ 3Mbps Best-E�ort

Figure 9: Assured Service for TCP versus UDP

With the addition of admission control, edge-to-edge control can provide rate guarantees as well as quick

convergence for premium loops that are guaranteed minimum capacity. More speci�cally, a source can

suddenly send at a guaranteed bitrate without a linear increase/slow-start phase, and without backing

o� once congestion is detected upto its guaranteed rate. This service assures peak bandwidth and

near-zero loss, but does not provide jitter or delay assurances. This service is called the Quasi-leased

line (QLL). The backo� policy is:

�i(k + 1) = maxfAi; Ai + �(�i(k) �Ai)g

Observe that unlike the assured service emulation, the QLL service cannot be over-subscribed. If

this QLL service is over-subscribed, the above control policy will become unstable. Hence some form

of edge-based admission control is required. The service behavior is illustrated again with a simple

16

example of two-loops, one best-e�ort, and one QLL. At time t = 2 seconds, the QLL
ow appears and

starts at 50 Mbps. The rate graph (Figure 10(c)) shows the background best-e�ort
ow backing o�

quickly, allowing the QLL to reach its minimum guarantee. The loss-less assurance in the QLL service

depends upon the bu�er provisioning since a large transient queue develops (Figure 10(b)). A simple

single-bottleneck analysis16 yields a queue bound of qmax = b
1�b , which increases dramatically beyond

b = 0.5. Figure 10(a) shows the simulated queue bound with the scheme closely matches this simple

analysis.

0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

b, share allocated to guaranteed traffic

IEC Simulations
Analytic Bound

0

2e+07

4e+07

6e+07

8e+07

1e+08

0 1 2 3 4 5

ra
te

 (
bp

s)

time (seconds)

Analytic vs Simulated QLength Bottleneck queue length Rate of Best-e�ort Background Flow

Figure 10: Behavior of a virtual link and QLL for b = 0:5

8 Discussion and Limitations of the Overlay Framework

Complex deployment issues of bandwidth services in inter-provider networks were the motivation behind

this work. This section examines residual issues and limitations of the framework.

Design Philosophy: The edge-to-edge operation is inspired by the end-to-end principle which limits

the coordination required to a pair of edges. While the scheme does not place implementation

or upgrade requirements at bottlenecks, it does place con�guration requirements (eg: aggregate

isolation, minimum bu�ers, minimum bandwidth) which can be satis�ed by static methods (eg:

SNMP), lightweight signaling [6] or policy control [13] mechanisms. The scheme does not assume

VC-based, connection-oriented or symmetric paths and hence can be overlaid on top of a range

of networks (IP, MPLS, ATM, Frame-relay etc).

Loop Setup/Mapping Issues: The loop-setup and mapping of end-to-end
ows to edge-to-edge
ows

can be done by initially exchanging the site's set of CIDR address pre�xes among other sites.

When a packet arrives, a classi�cation into an edge-to-edge aggregate can be done based upon

its source-destination pre�x-pair, compared to the sites' pre�x-list pairs. Loops need to be setup

only between pairs of sites belonging to a VPN or extranet. Thus, a site of company A does not

setup a loop with a site of company B, avoiding N2 meshing problems seen in BGP-4 and other

routing protocols.

16Excluded for space reasons

17

Incremental deployment can be performed on a customer-by-customer basis. When the sites of

a new customer are identi�ed and routes mapped, the potential bottlenecks on the path must

con�gured with a separate overall class and bu�ers (a new class is not required if one already

exists). Note that over-engineered clouds are not considered potential bottlenecks.

Limited Heterogeneity: In an inter-provider scenario, paths/potential bottlenecks may be mapped

by looking at BGP-4 and IGP routing information within each provider's network. For bandwidth

assurances, additional con�guration information must be exchanged to ensure proper provision-

ing. Though the information exchange is small, it is not zero, and hence may limit the degree of

heteregeneity supported by the framework.

Scalability: The framework scalability depends upon the maximum multiplexing of loops Nb at any

bottleneck (a�ects bu�er size), the number of loops managed by any edge, number of loop-setups

required for all VPNs supported by an ISP, and the number of potential bottlenecks to be re-

con�gured. A subset of this control-plane complexity could be centralized at a policy server [13],

directory or management system.

Rate- vs Window-control: The building block uses rate-based control because it allows a simple

thresholding scheme on the \accumulation." However, it can be further enhanced by window-

control and timeouts to strictly enforce the conservation of packets principle. Control packets

in this case will be bipolar, i.e., they will dictate both increases and decreases of rate-/window-

parameters, and could be used to piggyback clock skew estimation information. One can also

imagine hybrid schemes by combining the candidate congestion indicators: packet loss, accumu-

lation (
P

j qji(t)), network delay (
P

j
qj(t)
Cj(t)

) etc. Such hybrid techniques could tolerate a greater

spectrum of vagaries, and could reduce bu�er reqts for fully lossless operation. Our current work

is focussed on understanding the inter-relationships between these control parameters and con-

gestion indicators under highly variable network conditions. We are implementing these various

alternatives in a Linux-based testbed and will report experimental and comparative results soon.

In summary, the isolation requirement, limited heterogeneity support and limited scaling characteristics

of the building block excludes it from general end-to-end use. The technique does not solve public inter-

network congestion control or QoS problems. However, within the scope of private networking on the

Internet, the framework can support a useful (though limited) spectrum of services and application-

level service customization. Further, it can potentially serve as a platform for pricing schemes (eg: [22]),

dynamic point-to-set or programmable services (eg: [10]). These represent a rich set of \edge-to-end"

problems for future study.

References

[1] Agrawal R., et al, \Performance Bounds for Flow Control Protocols," ACM/IEEE ToN, Vol. 7,

No. 3, June '99, pp. 310{323.

18

[2] Awduche D., et al, \A Framework for Internet Tra�c Engineering," Internet Draft, Work-in-

progress, July 2000.

[3] Balakrishnan H., et al, \An Integrated Congestion Management Architecture for Internet Hosts,"

SIGCOMM '99, Aug '99.

[4] Bansal D. and Balakrishnan H., \Binomial Congestion Control Algorithms," INFOCOM 2001,

Apr '01.

[5] Blake S., et al., \An Architecture for Di�erentiated Services" RFC 2475, Dec '8.

[6] Braden R., et al,\Resource Reservation Protocol (rsvp) - V1 Functional Spec.," RFC 2205, Sep

'97.

[7] Braden R., et al, \Integrated Services in the Internet Architecture: an Overview," RFC 1633,

June '94.

[8] Brakmo, L., and Peterson L., \TCP Vegas: End to End Congestion Avoidance on a Global

Internet," IEEE JSAC, Vol 13, No. 8 (Oct '95) pp. 1465-1480.

[9] Charny A. and Ramakrishnan K., \Time-scale Analysis and Scalability Issues for Explicit Rate

Allocation in ATM Networks," IEE/ACM ToN, Vol. 4, No. 4, Aug '96.

[10] Clark D. and Feng W., Explicit Allocation of Best-E�ort Packet Delivery Service, IEEE/ACM

ToN, Vol. 6, No. 4, Aug '98, pp. 362-373.

[11] Clark D., et al, \NETBLT: a bulk data transfer protocol," SIGCOMM, '87 pp.353-359.

[12] Crowcroft, J., and Oechslin, P., \Di�erentiated End-to-end Internet Services using a Weighted

Proportional Fair Sharing TCP," CCR, Vol. 28, No. 3, July 1998.

[13] Durham D., et al, \The COPS (Common Open Policy Service) Protocol," RFC 2748, Jan '00.

[14] Floyd S. and Fall K., \Promoting the Use of End-to-End Congestion Control in the Internet,"

IEEE/ACM ToN, Aug '99.

[15] Floyd S., et al, \Equation-Based Congestion Control for Unicast Applications," SIGCOMM '00,

Aug '00.

[16] Floyd S. and Jacobson V., \Random Early Detection Gateways for Congestion Avoidance,"

IEEE/ACM ToN, Vol. 1, No. 4, Aug '93, pp. 397{413.

[17] Guerin R. and Peris V., \Quality-of-Service in Packet Networks: Basic Mechanisms and Direc-

tions." Computer Networks, Vol. 31, No. 3, Feb '99, pp. 169-179.

[18] Huston G., \Internet Performance Survival Guide: QoS Strategies for Multiservice Networks,"

John Wiley, ISBN 0471-378089, Jan '00.

19

[19] Jacobson, V., \Congestion avoidance and control," SIGCOMM '88, Aug '88, pp. 314{329.

[20] Jacobson V., et al, \An Expedited Forwarding PHB," RFC 2598, June '99.

[21] Jain R., \A delay-based approach for congestion avoidance in Interconnected Heterogeneous Com-

puter Networks," ACM CCR, Vol 19, No. 5, Oct '89, pp. 56-71.

[22] Kelly F., et al, \Rate control for communication networks: shadow prices, proportional fairness

and stability," J. of Opn. Research Soc., Vol.49, No. 3, Mar '98, pp. 237-252.

[23] Kunniyur S. and Srikant R., \End-to-end congestion control schemes: utility functions, random

losses and ECN marks," INFOCOM '00.

[24] Kung H.T. and Morris R., \Credit-Based Flow Control for ATM Networks," IEEE Network Mag-

azine, Vol. 9, No. 2, March/April '95, pp. 40-48.

[25] Lefelhocz C., et al, \Congestion control for best-e�ort service: Why we need a new paradigm,"

IEEE Network, Vol. 10, Jan '96, pp. 10-19.

[26] Lin D. and Morris R., \Dynamics of Random Early Detection," SIGCOMM '97, Aug '97.

[27] Massouli�e L., and Roberts J., \Bandwidth sharing: objectives and algorithms," INFOCOM '99 .

[28] Mo J., et al, \Analysis and comparison of TCP Reno and Vegas," INFOCOM'99, Apr '99.

[29] Mo,J., and Walrand J., \Fair end-end Window based Congestion Control," IEEE /ACM ToN,

vol.8, '00, pp. 556-567.

[30] Nandagopal T., et al, \Scalable service di�erentiation using purely end-to-end mechanisms: Fea-

tures and limitations," IwQoS '00 .

[31] Ramakrishnan K., Floyd S., \A Proposal to add Explicit Congestion Noti�cation (ECN) to IP,"

RFC 2481, Jan '99.

[32] Ramakrishnan K.K. and Jain R., \A Binary Feedback Scheme for Congestion Avoidance in Com-

puter Networks," ACM TOCS, Vol. 8, No. 2, May '00, pp. 158-181.

[33] Rosen E., et al, \Multiprotocol Label Switching Architecture," RFC 3031, Jan '01.

[34] Savage S., et al, \TCP Congestion Control with a Misbehaving Receiver," ACM CCR, Vol 29, No.

5, Oct '99.

[35] Schulzrinne H., et al, \RTP: A Transport Protocol for Real-Time Applications," RFC 1889, 1997.

[36] Stoica I., et al, \Core-Stateless Fair Queueing: A Scalable Architecture to Approximate Fair

Bandwidth Allocations in High Speed Networks," SIGCOMM '98, Aug '98.

20

