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APPENDIX 

 

Round Trip Time Delay Component 

 

A.1 Motivations 

    The experimentation process carried out in our Linux testbed lab, did not allow us 

to perceive the performance differences between TCP Reno and TCP SACK. We 

recall that one of the greatest benefits offered by SACK relies on the fact that 

successfully received segments are never retransmitted by the source, under any 

circumstances. This is not the case for Reno, for which, on the event of a timeout, the 

pipe is essentially flushed out and all segments, since the last one acknowledged, 

have to be retransmitted. We intuitively understand that the longer the link 

communicating the source and the destination, the better the performance achieved by 

SACK. Incidentally, for short links (with small round trip time delay), the 

performance seen with SACK does not significantly change from that with Reno. 

 

    In addition, we recall that TCP sets up its retransmission timers on the basis of the 

round trip time for a connection. The calculation of this round trip time is done as 

often as a time-stamped ack is received by the source. This resulted on a greatly 

unstable round trip time estimate, since at some instances the congestion was much 

worse than at some others. This is exacerbated by the fact that the round trip times are 

usually very small (between 100 and 500 microseconds) but some other times much 

longer. The final effect of this behavior was a large number of spurious timeouts that 

did not correspond with the reality outside our experimentation environment. We 

implemented this delay component in the network, in order to better emulate the real 

behavior of our system on the backbone of the Internet. 
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A.2 Delay Component Implementation 

    We followed a similar basic approach as the one for realizing the buffer on the 

TCP Friendly marker and the FRIO kernel implementations. We place a queue on the 

outgoing direction of the destination (D) interface, and hold the packets for the time 

specified on installation of the component. This results in effectively holding the acks 

that leave the destination as to emulate that the round trip transfer of data has in fact 

taken such amount of time. We note that neither the source nor the destination ever 

know that the time of the transfer is in fact the time the data is being held at the 

queue, but instead assume that the link is a much longer one. 

 

    When we enqueue a packet, we record its arrival time into the queue. Later, when 

the packet makes it to the head of the queue, we only dequeue it if the proper time has 

elapsed. We append instances of a our own time data structure into a list, as packets 

go in the queue and keep a one to one correspondence between the position of these 

structures, in the list, and the position of the packets they belong to, in the buffer.  

Finally, we note that it is critical to have a large enough buffer size, with size directly 

proportional to the delaying time, to prevent this scheme from loosing packets as it 

runs out of memory to hold them. 


