
 53

BIBLIOGRAPHY

[BCS94] R. Braden, D. Clark and S. Shenker, “Integrated Services in the Internet
Architecture: an Overview”, Internet RFC 1633, June 1994.
http://sunsite.auc.dk/RFC/rfc/rfc1633.html

[Bla98] S. Blake et al., "An Architecture for Differentiated Services", Internet
RFC 2475, December 1998.
http://sunsite.auc.dk/RFC/rfc/rfc2475.html

[CF98] D. Clark and W. Fang, “Explicit Allocation of Best-Effort Packet
Delivery Service”, IEEE/ACM Transactions on Networking, Vol. 6, N.
4, pp. 362-373, August 1998.
http://www.cs.princeton.edu/~wfang/Research/expected-cap.ps

[Fer2000] A. Feroz, “A TCP-Friendly Traffic Marker for IP Differentiated
Services”, Master Thesis, Rensselaer Polytechnic Institute, February
2000.

[Fer1999] A. Feroz et al., “TCP-Friendly Traffic Conditioners for Differentiated
Services”, Internet Draft, draft-azeem-tcpfriendly-diffserv-00.txt, March
1999.
http://networks.ecse.rpi.edu/~amit/diffserv/tcpfriendly.ps

[FF96] K. Fall and S. Floyd, “Comparison of Tahoe, Reno and Sack TCP”,
Computer Communication Review, July 1996.
 ftp://ftp.ee.lbl.gov/papers/sacks_v2.ps.Z

[FJ93] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance”, IEEE/ACM Transactions on Networking, Vol.
1, N. 4, pp. 397-413, August 1993.
http://www.aciri.org/floyd/papers/red/red.html

 54

[Jac88] V. Jacobson, “Congestion Avoidance and Control”, ACM
SIGCOMM’88, pp.314-329, August 1988.
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z

[LM97] D. Lin and R. Morris, “Dynamics of random early detection”,
Proceedings of SIGCOMM’97, 1997.
http://www.pdos.lcs.mit.edu/~rtm/papers/fred.ps

[Man98] T. Mancill, “Linux WAN Routers. Musings of a Network
Linux Journal, N. 50, June 1998.

http://www2.linuxjournal.com/lj-issues/issue50/2928.html

[May99] M. May, “Reasons not to deploy RED”, Technical Report, June 1999.
http://www-sop.inria.fr/rodeo/personnel/mmay/may_red.html

[MMFR96] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, “TCP Selective
Acknowledgment Options”, Internet RFC 2018, October 1996.
http://www.aciri.org/floyd/papers/rfc2018.txt

[Sah99] S. Sahu et al., “On Achievable Service Differentiation with Token
Bucket Marking for TCP”, UMASS CMPSCI Technical Report, pp. 99-
72, November 1999.
ftp://gaia.cs.umass.edu/pub/Sahu99-tcp-tb.ps.gz

[Ste95] W. Stevens, TCP/IP Illustrated, Vol. I, Addison-Wesley, Reading, MA,
1995.

[Ste97] W. Stevens, TCP slow start, congestion avoidance, fast retransmit and
fast recovery algorithms”, Internet RFC 2001, January 1997.
http://sunsite.auc.dk/RFC/rfc/rfc2001.html

[WHK99] W. Almesberger, J. Hadi and A. Kusnetsov, “Differentiated Services on
Linux", Internet Draft, draft-almesberger-wajhak-diffserv-linux-01.txt,
June 1999.
ftp://lrcftp.epfl.ch/pub/linux/diffserv/misc/dsid-01.txt

 55

APPENDIX

Round Trip Time Delay Component

A.1 Motivations

 The experimentation process carried out in our Linux testbed lab, did not allow us

to perceive the performance differences between TCP Reno and TCP SACK. We

recall that one of the greatest benefits offered by SACK relies on the fact that

successfully received segments are never retransmitted by the source, under any

circumstances. This is not the case for Reno, for which, on the event of a timeout, the

pipe is essentially flushed out and all segments, since the last one acknowledged,

have to be retransmitted. We intuitively understand that the longer the link

communicating the source and the destination, the better the performance achieved by

SACK. Incidentally, for short links (with small round trip time delay), the

performance seen with SACK does not significantly change from that with Reno.

 In addition, we recall that TCP sets up its retransmission timers on the basis of the

round trip time for a connection. The calculation of this round trip time is done as

often as a time-stamped ack is received by the source. This resulted on a greatly

unstable round trip time estimate, since at some instances the congestion was much

worse than at some others. This is exacerbated by the fact that the round trip times are

usually very small (between 100 and 500 microseconds) but some other times much

longer. The final effect of this behavior was a large number of spurious timeouts that

did not correspond with the reality outside our experimentation environment. We

implemented this delay component in the network, in order to better emulate the real

behavior of our system on the backbone of the Internet.

 56

A.2 Delay Component Implementation

 We followed a similar basic approach as the one for realizing the buffer on the

TCP Friendly marker and the FRIO kernel implementations. We place a queue on the

outgoing direction of the destination (D) interface, and hold the packets for the time

specified on installation of the component. This results in effectively holding the acks

that leave the destination as to emulate that the round trip transfer of data has in fact

taken such amount of time. We note that neither the source nor the destination ever

know that the time of the transfer is in fact the time the data is being held at the

queue, but instead assume that the link is a much longer one.

 When we enqueue a packet, we record its arrival time into the queue. Later, when

the packet makes it to the head of the queue, we only dequeue it if the proper time has

elapsed. We append instances of a our own time data structure into a list, as packets

go in the queue and keep a one to one correspondence between the position of these

structures, in the list, and the position of the packets they belong to, in the buffer.

Finally, we note that it is critical to have a large enough buffer size, with size directly

proportional to the delaying time, to prevent this scheme from loosing packets as it

runs out of memory to hold them.

