
 1

 

 

CHAPTER 1 

 

Introduction 

 

1.1  Background 

    In the recent years, there has been a great deal of research focused on achieving 

and sustaining certain guarantees (QoS)1 to the traffic that flows through the Internet. 

The support of these guarantees ultimately translates into the preferential treatment of 

certain flows of traffic, and the corresponding processing in order to achieve this 

behavior. The architecture known as “Integrated Services” (intserv)2 was first 

introduced as a mechanism for establishing QoS. Despite its mathematical proven 

success on guaranteeing queuing delays on routers along the path, its complexity for 

large-scale deployment (in terms of buffer resources and RSVP signaling) has given 

rise to another architecture known as “Differentiated diffserv)3. This new 

architecture features a more scalable approach, as complex operations are pushed 

towards the edges of the network and the core remains at a relatively simple 

complexity level. In addition, it does not require signaling among routers and 

provides flexibility on the implementation of new and distinct classes of traffic across 

many different domains within the Internet. 

    The diffserv architecture is based on the use of traffic conditioning and 

classification at the edges of the network, by appropriately marking the TOS4 field of 

the packet’s IP header. Subsequently, scheduling and buffer management algorithms, 

at the core of the network, forward packets according to their TOS value and the 

correspondent service level agreements that they are intended to support. The results 

                                                
1 Quality of Service 
2 [BCS94] 
3 [Bla98] 
4 Type of Service 
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translate into “better than best-effort” service that scales along with the growth of the 

Internet.  

 

    Throughout the study presented in this document, we focus on a specific type of 

traffic conditioner, the TCP Friendly marker5, and its effects on the overall 

performance of the traffic flows, especially during episodes of congestion. We couple 

the experimental implementation of the marker with the use of two buffer 

management algorithms. The first of them, RIO6, is implemented from an existing 

design that had been tested on simulation. The other one, FRIO, object of our own 

design, comes as a hybrid evolution of the existing FRED7 and RIO. The overall 

scheme consists in segregating the total flow of traffic into two classes and 

subsequently dropping the lower class with a higher preference in the event of 

gateway congestion. 

 

    We demonstrate the benefits of the marker, under several different scenarios and 

using two different versions of the underlying transport protocol. We show major 

improvements in terms of network utilization, timeouts, predictability of service, 

probability of packet loss, and net data throughput. We also prove the 

independence of the benefits from the version of TCP implementation and from 

complex flow classification at the core of the network. In addition we show that 

our approach is relatively insensitive to parameter misconfiguration and that 

scales gracefully as the flows into the system increases in number.  

 

 

 

 

 

 

                                                
5 [Fer2000] 
6 [CF98]  
 
7 [LM97] 
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1.2  Overview 

    This report is composed of six chapters. In chapter 2 we discuss the issues 

regarding performance of TCP Reno and SACK. We also argue the design of the TCP 

Friendly marker and its implementations issues. In addition, we talk about the buffer 

management schemes used in our experimentation and the specifics of their 

implementations. 

 

    In chapter 3 we present the basis of our performance analysis and the details of the 

experimentation setup. In particular, we discuss the metrics used in the evaluation and 

the configurations under which all of the experiments were carried out.  Later, in 

chapter 4, we present both tabular and graphical results that support our expectations 

from the analysis in earlier chapters. We show the results obtained under all of the 

configurations described in chapter 3.  

 

    In chapter 5 we argue the direction of future developments of our approach. 

Finally, on chapter 6, we make a summary of the conclusions of our study and the 

contributions to the overall area of TCP traffic management research with an 

emphasis on open source code solutions. 
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CHAPTER 2 

 

TCP-Friendly Traffic Conditioning and Buffer Management 

 

2.1 TCP Implementations 

    The original implementations of TCP established a stream-based reliable transfer 

protocol, which used a sliding window, and acknowledgement packets from the 

receiver to enable the transmission of new data by the source. They followed a go-

back-n model that required the source to retransmit data (on the assumption of it 

being lost during transport) at the expiration of a retransmit timer. These first 

versions8 of TCP worked reliably but were unable to maintain acceptable 

performance in a large shared, and possibly congested, network of hosts. 

 

    A later implementation, TCP Tahoe, introduced significant improvements for 

working over a shared network. Two algorithms9, slow start for congestion control 

and multiplicative decrease for congestion avoidance, were introduce to manage the 

transmission at the onset of any detected congestion. In addition, fast retransmit 

allowed the retransmission of new data on the presence of three duplicate 

acknowledgements (dupacks), without having to wait for timer expiration (timeout).  

The variable ssthresh was introduced to keep the threshold value for the size of the 

sending window (cwnd). This variable was initialized to the receiver's advertised 

window size and, after a timeout, was then set to half of cwnd while this last being set 

to one segment, signaling the beginning of the slow start phase. Subsequently, cwnd 

was increased by one segment for every ack received until it reached the value of 

ssthresh. At this point, the congestion avoidance phase begins and the window size is 

                                                
8 4.2 BSD, in 1983 
 

9 [Ste97] and [Jac88] 
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only increased by a fraction of the segment size, equivalent to an increment of one 

segment per round trip delay. 

 

    The subsequent TCP Reno introduced fast recovery10 to improve the performance 

after retransmission. As the third dupack is received, the Reno source sets ssthresh to 

one half of cwnd and retransmits the missing segment. This last is then set to ssthresh 

plus three segments, and later increased by one segment on reception of each dupack 

that continues to arrive after fast-retransmission. This new scheme allows the 

transmitter to send new data as cwnd is increased beyond its value before fast-

retransmission. When an ack arrives which acknowledges all outstanding data sent 

before the dupacks were received, cwnd is set to ssthresh so that the sender slows 

down the transmission rate and enters the linear increase phase. 

 

    Since its adoption, Reno has become the de facto standard implementation of TCP 

and it represents the largest installed based of TCP implementations for hosts on the 

Internet. Nonetheless, Reno exhibits a fundamental weakness determined by the lost 

of multiple packets within the same window of data. Dependent upon the size of 

cwnd and the round trip transmission time, as little as three packet drops in a single 

window trigger multiple timeouts and unnecessary reductions to ssthresh. 

Furthermore, anecdotal evidence has also established11 that, at the Internet’s major 

exchange points, multiple packet drops within one round trip time are of fairly 

common occurrence. This happens regardless of the use of RED-based gateways 

since at the onset of congestion, the dynamics of the dropping mechanism is not 

correlated with the interleaving of packets belonging to a single flow, but instead with 

the overall rate of traffic arriving at the gateway. Thus, packets from a single flow 

within the same window have a high likelihood of being dropped at the start of any 

instance of congestion, as interpreted by the RED buffer management algorithm. We 

will consider a solution to this fundamental problem that goes beyond the dynamics 

                                                
10 [Ste97] 
 
11 [FF96] 
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of Reno and exploits the capabilities of differentiated services architectures, 

supporting traffic conditioning at the edges of the network and its correspondent 

buffer management complement at the start of the dropping bottlenecks. 

 

    The analysis of such Reno weaknesses ultimately established that multiple packet 

drops in a single roundtrip time unavoidably required a timeout before the appropriate 

recovery mechanisms could be executed by the source. Simultaneously, a new 

evolution of TCP, SACK12, eliminated this requirement by implementing a new 

header option that is triggered as the receiver holds data segments that follow lost of 

previous segments. The receiver then sends dupacks that inform the source of the 

successfully received segments that arrived after the (supposedly13) lost ones. As the 

third dupack arrives, the source exclusively retransmits the missing segments, as well 

as any subsequent unacknowledged ones. The information carried by SACK dupacks 

allows the source to accurately estimate the number of sent data segments that have 

left the network (i.e. have arrived at the destination), which in turn enables injection 

of new data during the retransmission process. 

 

    The use of the SACK option allows for a sustainable high throughput over a 

network exhibiting high probability of loss. This behavior is better exploited in long 

delay links, as TCP SACK enters slow start much less often than its Reno 

counterpart. More importantly, the reluctance of SACK to wait for timeouts to act 

upon packet loss is certainly a critical factor influencing its greater performance. 

However, this performance improvement is optimal when the retransmissions have no 

probability of loss, and maximal when such probability is the lowest possible 

compared to the probability of the original transmission. We will consider this issue 

in the design of our diffserv solution to the pathology of this version of TCP.  

 

 

                                                
12 [MMFR96] 
 
13 Before 3 dupacks, out-of-order segments are not yet assumed lost by the source. 
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2.2 TCP-Friendly Packet Marker 

    From the previous analysis describing the issues of Reno and SACK, we consider 

the use of a previously proposed “TCP-Friendly” marker that acts as a traffic 

conditioner element to be used in the edge routers of a particular network domain. 

According to the reference14, the original marker is designed with the following 

purposes on mind: 

 

• Protect small-window flows from packet loss. 

• Maintain optimum spacing between “IN” and “OUT” tokens.  

 

    We have now introduced certain modifications to the original algorithm aimed to 

address the following issues: 

 

• Protect retransmissions. 

This refers to the idea of marking retransmitted packets (given enough tokens) as 

“IN” packets. We encounter that retransmissions, since occurring mostly during 

periods of large congestion, suffer from a significantly higher probability of loss than 

the overall data traffic. This, of course, worsens as the number of flows into the 

system increases. Therefore, this modification improves the performance of the data 

transport, as reducing loss of retransmissions will inevitably lead to less timeouts, 

under any TCP implementation. We mark retransmissions as "IN" to avoid them 

being dropped at the bottleneck gateway. 

 

• Establish a scheme to deal with new connections in an ongoing marking 

process. 

This refers to the fact that new connections will not be able to get a fair allocation of 

tokens before the new updating process gets executed. We solve this practical issue 

by initiating the updating process as soon as a packet from a new connection is 

                                                
14 [Fer1999] 
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identified, thereby allocating tokens for its future packets. However, this new scheme 

implies that the time interval between updates would not always be constant (as set by 

the user during configuration), but will instead sometimes be shorten by the arrival of 

SYN packets from a new connection. This in turn results into an inaccurate estimate 

of packets from existing flows, which ultimately translates into a lesser number of 

tokens being allocated for such flows. We solve this problem by exploiting the 

following two observations: 

 

1. The shorter15 the inter-updating time (time between successive executions 

of Algorithm 1, in Figure 2.2.1) the less accurate the byte traffic estimate 

is, for existing flows. This occurs because existing flows would not be 

able to introduce as many packets to the marker, on the shorter interval, 

as they would in the event of a longer and constant inter-updating time.  

2. The shorter the inter-updating time, the larger the number of remaining 

tokens after the allocation is completed. As the byte estimates get shorter 

(because of inter-updating time getting shorter) the number of tokens 

needed to fulfill these estimates is proportionally smaller. Therefore, 

meeting the needs of existing flows (on updating) after a shorter inter-

updating period will leave proportionally (to the shortening of the 

period) more tokens in the common pool. 

 

    We then establish the policy that when a flow runs out of its allocated tokens (line 

73 in Algorithm 2, Figure 2.2.2), it attempts to use any left over in the remaining 

pool of tokens (lines 74 and 75). Therefore, in the event of a flow running out of 

tokens because of a misprediction on its number of packets, there will likely be 

tokens left over in the common pool and the flow will still be able to get its fair 

allocation. 

 

                                                
15 Below its configuration setting 
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    We further assume that the average lifetime of a flow is significantly shorter than 

the average interarrival time for new connections. In other words, the vast majority 

of the times, the token allocation for a flow will not be affected by the arrival of new 

flows. This valid assumption makes our practical solution a very efficient one. 

 

    Even though our approach to dealing with new connections is efficient and 

appropriate given the characteristics of the flows, other alternative approaches could 

be used to allocate tokens for incoming connections. One such approach could 

consist on "borrowing" tokens from the future common pool in order to protect the 

new connections until the next updating process. Nonetheless, we have not evaluated 

this alternative, and do not make any remarks about its feasibility or efficiency. 

 

    The complete algorithm for the TCP Friendly marker token allocation process is 

presented in Figure 2.2.1. Figure 2.2.2 shows the correspondent packet marking 

behavior. 
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 Algorithm 1: TCP Friendly Marker Token Allocation (i.e. Updating Process) 
 

1 T = The Marking Interval 
2 N = Number of flows 
3 M = Number of Tokens (in bytes) available for the N flows in T seconds 
4 Wi = Window Estimate for Flow i 
5 Ei = Smoothed estimate (α=0.9) of the number of bytes flow i sends in the marking interval T 
6 Si = Number of consecutive OUT bytes between every two IN bytes for flow i 
7 Pi = Number of bytes flow i sent on the previous interval 
8 in_counti = Allocation of IN tokens for flow i in time T seconds 
9 left_over_toks = Number of remaining tokens at the end of the complete updating process 

10 available = Number of available tokens per interval after small window flows get their share 
 

 Step I   
11 for each flow i {  
12     Ei = α Pi + (1-α) Ei ; /* Get byte estimates for all flows */ 
13     in_counti =  0 ; /* Reset allocated tokens */ 
14     if (Wi  < k){ /* If tiny flow (window less than k) (k defaults to 4) */ 
15         available - = M - Ei ; /* Calculate toks left if all tiny flows get their max  */ 
16         tiny_list = append(i); } /* Append tiny flow into the list of tiny flows */` 
17     else /* If not-tiny flow */ 
18         not_tiny_list = append(i); } 

 
/* Append not-tiny flow into list of not-tiny flows */ 

 Step II  
19 if(available <=0){ /* If no tokens left for not-tiny flows */ 
20     for each flow i in not_tiny_list /* If not tiny flow */ 
21         in_counti =  0 ; /* Do not allocate tokens */ 
22     fair_allocation (tiny_list , M); } /* Perform fair allocation on all tiny flows */ 
23 else{ /* If tokens left for not-tiny flows */ 
24     for each flow i in tiny_list /* If tiny flow */ 
25         in_counti = Ei ; /* Allocate max number of tokens */ 
26     fair_allocation (not_tiny_list , available);} 

 
/* Perform fair allocation on all not-tiny flows */ 

 Function definition /* Function performs fairest allocation */ 
27 fair_allocation (list, toks){ /* Allocate toks among all flows in list */ 
28     num_flows = sizeof (list); /* Get how many flows to distribute among */ 
29     num_full = 0; /* Reset the number of flows full to zero */ 
30     while ((toks!=0) || (num_full!=num_flows)){ /* While there are toks left or flows aren’t full */ 
31         fair_share = (toks/(num_flows- num_full)); /* Calculate fair share on this round */ 
32         for each flow i in list { /* Consider each flow in the list */ 
33             if( in_counti < Ei){ /* If the flow is not already full */ 
34                 in_counti += fair_share; /* Give fair share to the flow */ 
35                 toks -= fair_share; /* Discount toks just given from the total */ 
36                 if (in_counti > Ei ){ /* If flow is has now more than it needed */ 
37                     toks+= in_counti - Ei; /* Take away any extra from the flow */ 
38                     in_counti = Ei ; /* Set the flow to be full */ 
39                     num_full++; } } /* Acknowledge there is one more flow full */ 
40             if (in_counti != 0) /* If the flow has at least 1 token */ 
41                 Si  = (Ei / in_counti) – 1 ; }} /* Calculate appropriate spacing */ 
42     left_over_toks = toks ; } /* Record the number of remaining tokens */ 

Figure 2.2.1 
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 Algorithm 2: TCP Friendly Packet Marking 

 
43 out_counti = Per-flow variable used to count of min number of bytes that should be marked as OUT 
44 temp_out_counti = Per-flow variable used count of number of OUT bytes so far (reset to 0 on update) 
45 last_time = Time of last update 
46 interval_time = Inter-updating time 

 
 

47 if(packet not TCP){ /* If packet does not contain a TCP segment */ 
48     mark packet as OUT ; /* Mark packet as OUT */ 
49     exit ;} /* Do no process any further */ 
50 now=gettime( ) ; /* Get the time of arrival */ 
51 if(now – last_time >= interval_time){ /* If it is time to reallocate tokens */ 
52     updating process ; /* Execute the updating process */ 
53     last_time = gettime( ) ;} /* Record time of updating for later comparison */ 
54 if(packet is SYN){ /* If packet indicates new flow*/ 
55     insert flow in tree ; /* Insert new flow information into tree of flows */ 
56     updating process ; /* Reallocate tokens to account for new flow */ 
57     last_time = gettime (  ) ; /* Record time of updating for later comparison */ 
58     mark packet as IN ; /* IMPORTANT: mark SYN as IN */ 
59     exit ;} /* Do not process any further*/ 
60 if(packet is FIN){ /* If packet indicates end of flow */ 
61     remove flow from tree ; /* Remove all kept information about that flow */ 
62     mark packet as IN ; /* IMPORTANT: mark FYN as IN */ 
63     exit ;} /* Do not process any further */ 
64 flow.cwnd = packet.cwnd ; /* Update the congestion window for the flow */ 
65 flow.interval_bytes += packet.bytes ; /* Add pack size to this flow bytes in this interval */ 
66 if(flow.max_seq >= packet.seq_num){ /* If this is a retransmission */ 
67     if(flow.in_count > packet.bytes){ /* If there are sufficient tokens */ 
68         mark packet as IN ; /* Mark packet as IN */ 
69         flow.in_count -= packet.bytes ; /* Discount the tokens used for this packet */ 
70         exit ;}} /* Do not process any further */ 
71 else /* If not a retransmission */ 
72     flow.max_seq = packet.seq_num ; /* Update the largest sequence sent */ 
73 if(flow.in_count < packet.bytes){ /* If there are no available tokens */ 
74     if(left_over_toks >= packet.bytes){ /* If there are any left from the last update (line 42) */ 
75         mark packet as IN ; /* Mark packet as IN */ 
76         left_over_toks -= packet.bytes ;} /* Discount amount used from the remaining pool */ 
77     else /* If none left from the last update */ 
78         mark packet as OUT ; /* Mark packets as OUT */ 
79     exit ;} /* Do not process any further */ 
80 if(flow.S == 0){ /* If spacing for the flow is 0 */ 
81     mark packet as IN ; /* Mark packet as IN */ 
82     flow.in_count -= packet.bytes ; /* Discount the tokens used for this packet */ 
83     exit ;} /* Do not process any further */ 
84 if(first flow packet since update){ /* If packet is the first for the flow since last update */ 
85     mark packet as IN ; /* Mark packet as IN */ 
86     flow.in_count -= packet.bytes ; /* Discount the tokens used for this packet */ 
87     flow.out_count = (flow.S * packet.bytes) ; /* Calculate number of OUT bytes before IN again */ 
88     exit ;} /* Do not process any further */ 
89 if(flow.temp_out_count >= flow.out_count){ /* If sufficient bytes have been marked as OUT */ 
90     mark packet as IN ; /* Mark packet as IN */ 
91     flow.in_count -= packet.bytes ; /* Discount the tokens used for this packet */ 
92     flow.temp_out_count = 0 ; /* Reset count of OUT bytes since last IN packet */ 
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93     flow.out_count = (flow.S * packet.bytes) ; /* Calculate number of OUT bytes before IN again */ 
94     exit ; } /* Do not process any further */ 
95 else{ /* If not enough bytes have been marked as OUT */ 
96     mark packet as OUT ; /* Mark packets as OUT */ 
97     flow.temp_out_count += packet.bytes ; /* Update count of OUT bytes since last IN packet */ 
98     exit ; } /* Do not process any further */ 

Figure 2.2.2 
 

 

    The token allocation mechanism (Algorithm 1) consists on two major steps. We 

highlight the following major operations from each one of them. 

 

Step I (lines 11 through 18) 

•• Calculate the per-flow expected amount of bytes (line 12): The number 

of bytes that every flow is expected to send during the next time interval is 

calculated as a weighted average of the previous estimate (10% weight) and 

the number of bytes sent during the immediate interval preceding the 

updating process (90% weight). 

 

•• Reset the tokens allocated in the past (line 13): We take away any 

remaining tokens that the flows might still have from the interval that just 

ended. 

 

•• Identify flows as tiny or not-tiny (lines 14 through 18): We append the 

flows to two different lists depending on whether or not they are tiny flows. 

A tiny flow is one that has a value of less than k for its sending congestion 

window, at the time of update. The comments on line 13 mention that the 

default for k is 4. We approximate each flow's window size by considering 

the last acknowledgement seen from that flow.  We subtract the value of the 

most recently acknowledged byte from the value of the last byte sent, and 

divide the resulting number by the segment size established at the start of the 

connection. 

 

•• Calculate the tokens needed by all tiny flows (line 15):  We subtract, 

from the total amount of tokens, the amount needed to fulfill the estimates of 

all the tiny flows. This is to find out whether we would have any tokens left 
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after protecting all the tiny flows, by giving them as many tokens as they 

need. 

 
Step II (lines 19 through 26) 

• Determine whether we can fully serve the tiny flows (line 19): If there 

are not enough tokens for all the tiny flows, we do not even consider giving 

any tokens to the not-tiny flows.  

 

• Serve not-tiny flows according to the availability of tokens (lines 21 

and 26): In the case of not (or just) enough tokens for the tiny flows, we do 

not give tokens to their not-tiny counterparts (line 21). If all tiny can be fully 

served, then we fairly divide the rest among the not-tiny ones (line 26). 

 

• Serve tiny flows according to the availability of tokens (lines 22 and 

25): If all tiny flows can be fully served, then we simply set their allocation 

of tokens to the amount they are expected to use (line 25). Otherwise, we 

fairly divide all the tokens exclusively among the tiny flows (line 22). 

 

    The fair allocation process is exclusively performed on either the tiny flows or the 

not-tiny ones.  Its purpose consists on giving all the flows, on which it is called upon, 

the same number of tokens. It should be done without using any more tokens that the 

ones given to it as argument, and without allowing any flows to have any more tokens 

that it is expected to use. We now highlight the major operations of this allocation. 

 

Fair Allocation Function (lines 27 through 42) 

•• Determine the number of flows to consider in the sharing (lines 28 and 

29):  We find out how many flows we need to allocate tokens to. We initially 

assume that all of the flows are empty and wait to be given tokens. 

 

•• Do an iterative equal sharing among flows not full (line 30 through 

35): We set up an iterative loop (of rounds) that will keep on giving tokens 

for as long as there any left, and there are flows that need them. At every 
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round, we calculate the equal amount to give to each flow (not full). A flow 

is considered full if it has as many tokens as it is expected to use. 

 

• Subtract extra tokens from the flows and make them available for 

sharing (lines 36 through 39): We check if the flows have be given more 

than they need, and subsequently discount the extra amount from their 

allocations and add such amount to the total tokens available. We also mark 

these flows as full as to not consider them in future rounds of the allocation. 

 

•• Update the byte spacing to be enforced in the marking (lines 40 and 

41): As we give more tokens to the flows, we recalculate the marking byte 

spacing as a function of the estimate of their traffic and the amount of tokens 

they currently have. 

 

• Record the number of tokens left after the complete allocation (line 

42): This is done in order to use these tokens (if any) in the event of a flow 

running out of the number allocated to it. 

 
    The marking process (Algorithm 2) is done according to the allocation we have 

already detailed. We now draw attention to the following major operations of the 

marking procedure. 

 

• Mark not-TCP packets as OUT (line 47 through 49): When a packet 

comes into the marker, we first check if it contains a TCP segment. If it does 

not, we simply mark it as OUT and put it in the forwarding queue. 

 

• Update token reallocation on the time of packet arrival specifying 

interval expiration (lines 50 through 53):  On packet arrival, we record the 

time in order to determine whether it is the moment for reallocation of 

tokens. If it is time, we call up the updating process and then record the 
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ending time of the update, for further comparison, to determine when to 

update next. 

 

• Mark SYN packets as IN and process the start of a new connection 

(lines 54 through 59): If the packet contains a SYN segment, we insert the 

new flow information into the flow-state data structure and call up the 

update routine. We then mark the packet as IN and put it inside the queue for 

forwarding. 

 
• Mark FIN packets as IN and process the end of an existing connection 

(lines 60 through 63): If the packet contains a FIN segment, we remove the 

flow information from the data structure, mark the packet as IN, and put the 

FYN segment in the forwarding queue. 

 

• Update flow’s congestion window and byte traffic for the interval 

(lines 64 and 65):  We update the congestion window for the flow and the 

number of bytes seen from that flow during this interval. This information 

will be use during the next reallocation of tokens for all the flows. 

 

• Mark retransmissions as IN (lines 66 through 72): If the packet contains 

a retransmission, we check for the availability of tokens for that flow, and 

mark the packet as IN. If the packet does not contain a retransmission, we 

update the highest sequence number for the flow, in order to identify future 

retransmissions. 

 

• Mark packet as IN or OUT according to the availability of tokens and 

enforcing the correspondent byte spacing (lines 73 through 98): If the 

flow does not have enough tokens and neither does the common pool of 

possible remaining tokens (from the last updating process), we simply mark 

the packet as OUT (lines 73 through 79). If there are tokens, and the spacing 

of bytes to enforce is zero, we mark the packet as IN (lines 80 through 83). If 

there is some spacing to enforce, we mark the first packet from the flow 
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(during this interval) as IN and calculate the number of bytes (from that 

flow) that have to be marked as OUT before we can mark another of its 

packet as IN (lines 84 through 88). This last number is kept in 

flow.out_count (line 87).  We then continue to mark packets as OUT until 

the number of bytes marked as OUT is at least equal to flow.out_count (lines 

95 through 98), at which time we mark the next packet as IN, and recalculate 

flow.out_count (lines 89 through 94). 

 

     The implementation of the marker was included in the kernel code of an edge 

router, running Linux 2.2.10. The marker was configured as a module, which allowed 

us to make changes to the algorithm and debug the implementation without having to 

recompile the whole kernel but instead inserting the new module into the operations 

of the kernel. The communication between the kernel code, that included setting of 

parameters and obtaining statistics, was performed using the netlink interface 

provided by the operating system. We incorporated new functionality to the “tc”16 

program in order to be able to handle the new traffic-conditioning element. More 

specifically, the parameters to be handled were the limit (in bytes) of the queue 

holding the packets to be marked, the number of tokens (in bytes) to make available 

for a single time interval and the correspondent time interval (specifiable in seconds, 

milliseconds or microseconds). Similarly we are able to obtain (at any instance of 

time) the number of bytes marked as “IN” and the number of bytes marked as 

“OUT”, as well as some other statistics used for debugging of the implementation. 

 

    In order to keep the flow state information we built our own data structure aimed to 

minimize insertion and retrieving time. Specifically, we implemented a binary tree 

structure where every node in the tree has an ID field containing the source port 

number of one or more flows in the marking system at any time. In addition every 

tree node contains a linked list where the other three unique identifiers of a flow 

                                                
16 [WHK99] 
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(source address, destination address, and destination port) are included into every 

node of the linked list. 

 

A graphical representation of this data structure is included below, in Figure 2.2.3. 

 

 

Figure 2.2.3: Graphical representation of flow data structure 

 

    We make the valid assumption that at any state of the marking system, the amount 

of unique source port numbers is always less than the amount of any other of the three 

identifiers. Therefore as more flows are introduced into the marking system, the 

number of tree nodes grows much faster than the number of list nodes in any single 

list. This, of course, keeps the retrieval of flow information, as well as the insertion 

and removal of flows, to be an O(log n) operation, which does not degrade the 

efficiency of the gateway when the marking process is implemented. 
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    Finally, we value the superiority of the TCP Friendly marker with respect to a 

simple token bucket marker, as considered by previous research in the area17. The 

issues addressed by the TCP Friendly marker could not be solved with the use of the 

token bucket marker, and our experimental results imply that the targeting of these 

issues are in fact a key element on achieving better than best effort for the Internet. 

 

 

2.3  FRIO: A New Buffer Management Scheme 

    In earlier discussions on differentiated services, we established the need for buffer 

management algorithms at selected points in the core of the network, where the 

multiplexing of traffic gives rise to congestion. At these bottleneck gateways, the 

utilization of buffers approaches a constant 100%, and mechanisms like RED18 are 

implemented to support random probabilistic drop in order to avoid the exhaustion of 

buffer resources and lessen the performance degradation that policies like tail drop 

have on the network. 

 

    Nonetheless, it has been shown19 that basic RED presents a series of weaknesses in 

its operation. One such weakness corresponds to the idea that the unbiased 

proportional dropping contributes to unfair link sharing for fragile connections. The 

basic fact that all flows experienced the same loss probability at the congested 

gateway inherently means that even flows using less than their fair share will still 

have their packets dropped. To overcome this issue, a variant of RED, known as 

FRED, has been proposed20 in the past.   This new buffer management discipline 

introduces preferential drop for packets belonging to flows that have a large number 

of them buffered at the congested gateway. FRED uses a variable called minq that 

corresponds to the minimum number of packets that any flow is allowed in the queue 

before the probabilistic dropping behavior of RED starts even considers dropping 

                                                
17 [Sah99] 
18 [FJ93] 
19 [May99] 
 
 
20 [LM97] 
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packets from a flow. It also introduces maxq as being the maximum number of 

packets a flow is allowed in the buffer before further of its packets are 

deterministically dropped. Finally, it maintains an estimate of the per-flow packet 

average in the queue (avgcq) as well as the number of times (strike) that a flow has 

had it packets dropped because of exceeding maxq. Simulation analysis of FRED has 

shown that it is often fairer than RED and results into a lower goodput coefficient of 

variation for distinct types of flows that traverse a congested gateway.  

 

    Also, as suggested by the ongoing discussion, the need for a core buffer 

management that supports preferential drop of “OUT” packets over “IN” packets, is 

essential for the overall differentiated services dynamics of the approach here 

proposed. The original work on the TCP Friendly marker established RIO (“RED 

with In and Out”) as the buffer management algorithm used in the core for their 

simulations. We instead have combined the benefits of FRED with the need for RIO 

into a new buffer management discipline we call FRIO (short for “Flow RIO”). 

 

    We have made some modifications to the original version of FRED that we 

considered21 resulted into better performance and fairer queuing for low rate TCP 

flows. These modifications are summarized as follows: 

 

• Use of instant queue size to approximate the per-flow number of 

packets (avgcq) in the buffer (line 126 in Algorithm 3, Figure 2.3.1): The 

original FRED uses average queue size in order to approximate this value. 

We encountered that the calculation of avgcq, required the use of the 

instantaneous queue length in order to achieve a fairer performance for slow 

TCP connections. 

 

• Estimation of average queue length exclusively on arrival of packets 

(lines 110 and 114 in Algorithm 3): The original FRED claimed that the 

                                                
21 Through experimentation with our own Linux implementation 
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average queue length must be calculated both on arrival and departure of 

packets into and from the buffer. They argue that the omission of 

recalculating average queue length on departure resulted into low link 

utilization due to unnecessary packet drops. We encountered that the 

standard implementation of RED for Linux22, avoided this problem by 

“hand” modeling the arrival of packets into the queue (for periods of no 

arrivals). They use this model for the calculation of average queue length, 

done exclusively on arrival. We exploited this approach and do not 

recalculate average queue length on departure, differing from the original 

FRED. 

 

 We have subsequently merged the dynamics of this new FRED with the dynamics of 

the preferential dropping achieved by RIO. The resulting algorithm, FRIO, exhibits 

the following characteristics 

 

•• Support of probabilistic preferential dropping, allowing the 

transformation of a single buffer into two virtual queues that 

materialize the differentiation of the servicing of two distinct classes of 

packets. 

 

•• Support of deterministic preferential dropping, allowing the 

performance of fragile and slow TCP connections not to degrade on the 

presence of non-adaptive connections that are unresponsive to gateway 

congestion.  

 

    In order to better understand the relationship between the buffer management 

disciplines here discussed, we make the simple analogy that FRED is to RED as 

FRIO is to RIO. 

 

                                                
22 By Alexey Kuznetsov. See http://lxr.linux.no/source/net/sched/sch_red.c 
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    The complete algorithm for FRIO is presented in Figure 2.3.1 shown below. 

 

 Algorithm 3: FRIO Buffer Management 
 

99 max_q = Maximum allowed per-flow queue packet size 
100 min_q = Minimum per-flow queue packet size before probabilistic drop is considered (default is 4) 
101 avgcq = Average per-flow queue packet size 
102 Nactive = Number of flows with packets in the queue 
103 minthreshIN = RED min threshold for IN packets (in bytes) (average packet size is 1024 and tunable) 
104 minthreshOUT = RED minimum threshold for OUT packets (in bytes) 
105 maxthreshIN = RED maximum threshold for IN packets (in bytes) 
106 maxthreshOUT = RED maximum threshold for OUT packets (in bytes) 
107 temp_qlen = Temp variable to hold the number of packets in the queue for a particular flow 
108 temp_strike = Temp variable, holds number of times a flow is penalized for too many packets in buffer 

 
 On enqueuing:  

109 If (packet marked as IN){ /* If this is an IN packet */ 
110     avg_qlen = RED(avg_qlenIN) ; /* Calculate usual RED avgqlen for IN packs */ 
111     minthresh = minthreshIN ; /* Set the minthresh to use to be the IN one */ 
112     maxthresh = maxthreshIN ;} /* Set the maxthresh to use to be the IN one */ 
113 else{ /* If this is an OUT packet */ 
114    avg_qlen=RED(avg_qlenIN)+RED(avg_qlenOUT); /* RED avgqlen for both IN and OUT packs */ 
115     minthresh = minthreshOUT ; /* Set the minthresh to be the OUT one */ 
116     maxthresh = maxthreshOUT ;} /* Set the maxthresh to be the OUT one */ 
117 if(packet is TCP){ /* If this contains a TCP segment */ 
118     find flow in the tree /* Find state of flow to which packet belongs */ 
119     if(flow not found){ /* If this is a flow not active in the queue */ 
120         temp_qlen = 0 ; /* Set its number of packs in queue to zero */ 
121         temp_strike = 0 ;} /* Set its number of strikes to zero */ 
122     else{ /* If this is an active flow in the queue */ 
123         temp_qlen = flow.packets  ; /* Get its number of packs in the queue */ 
124         temp_strike = flow.strikes; } /* Get its number of strikes */ 
125     max_q = (minthresh / average packet size) ; /* Calculate max_q as minthresh for packets */ 
126     avgcq = (instant qlen) / (Nactive | 1) ; /* Set avgcq to packs in queue per active flow */ 
127     if(((temp_qlen >= max_q) || /* If qlen will be larger than max allowed or */ 
128        ((temp_qlen > avgcq)&&(temp_strike > 1))) /* qlen will be larger than per-flow avg and */ 
129        &&(flow exists in the tree)){ /* this flow has been penalized and is active */ 
130         flow.strike ++ ; /* Penalize the flow */ 
131         goto DROP routine ;}} /* Drop the packet */ 
132 if(avg_qlen < minthresh){ /* If avg_qlen is below minthresh */ 
133     goto ENQUEUE routine ; /* Enqueue the packet */ 
134 if(avg_qlen >= maxthresh){ /* If avg_qlen is on or above maxthresh */ 
135     if((packet is TCP)&&((temp_qlen < 2) || /* If flow qlen is only 1 packet or less than */ 
136          ((temp_qlen < 4)&&(temp_strike <1)))) /* 3 packets but has not been penalized */ 
137         goto ENQUEUE routine ;     /* Enqueue the packet */ 
138     else /* Otherwise */ 
139         goto DROP routine ;} /* Drop the packet */ 
140 else{ /* If avg_qlen between min and max thresh */ 
141     if((packet is TCP)&&(temp_qlen <= min_q)      /* If flow qlen is less than the per-flow min */ 
142      &&((temp_qlen < avgcq) || (temp_qlen <= 2))) /* and less than per flow avg or 2 */ 
143         goto ENQUEUE routine ; /* Enqueue the packet */ 
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144     else{ /* Otherwise */ 
145         calculate RED probability of drop; /* Do normal probabilistic drop as RED */ 
146         if (probability says we should drop) /* If it came out drop */ 
147             goto DROP routine ; /* Drop the packet */ 
148         else /* If it came out enqueue */ 
149             goto ENQUEUE routine ;}} 

 
/* Enqueue the packet */ 

 ENQUEUE routine: /* This routine process as we enqueue packets */ 
150 enqueue the packet ; /* Simply enqueue the packet in the buffer */ 
151 if(flow does not exist in the tree){ /* If packet is from flow not active in queue */ 
152     insert flow in the tree ; /* Insert flow info into the tree */ 
153     Nactive ++ ; /* Update the number of active flows */ 
154     flow.packets = 1 ;} /* Account for the packet we just enqueued */ 
155 else /* If packet is from active flow */ 
156     flow.packets ++ ; /* Account for the packet we just enqueued */ 
157 exit ;} 

 
/* Do not process any further */ 

 DROP routine: /* This routine process as we drop packets */ 
158 drop the packet ; /* Simply drop the packet */ 
159 exit ; 

 
/* Do not process any further */ 

 On dequeuing:  
160 if(packet is TCP){ /* If this contains a TCP segment */ 
161     find flow in the tree /* Find state of flow to which packet belongs */ 
162     flow.packets -- ; /* Account for packet we are now dequeueing */ 
163     if (flow.packets == 0){ /* If flow is becoming not-active in queue */ 
164         Nactive -- ; /* Update the number of active flows */ 
165         remove flow from the tree ;}} /* Remove flow info from the tree */ 
166 dequeue the packet ; /* Simply dequeue the packet */ 
167 exit ; /* Do not process any further */ 

Figure 2.3.1 

 

    The FRIO buffer management scheme performs operations on the enqueuing and 

dequeuing of packets into and from the buffer. We now highlight the major 

operations of the scheme. 

 

Enqueuing (lines 109 through 149) 

• Determine priority of the packet and consider thresholds and average 

queue length accordingly (lines 109 through 116): We find out if the 

packet is either IN or OUT, and set the RED thresholds to be the respective 

ones for IN or OUT packets. We also calculate the average queue length as 

the usual RED but in the following manner: 



 23

- If the packet is marked as IN, we set the average queue length to the 

average length of the virtual queue of IN packets. 

- If the packet is marked as OUT, we set the average queue length to the 

sum of the average length of the virtual queue of IN packets and the 

average length of the virtual queue of OUT packets. This is in practice 

the same as considering the average queue length of the entire buffer. 

 

• Perform core of “Flow operations” exclusively on TCP packets (lines 

117 through 131): We intuitively understand that the inherited FRED 

functionality can only be applied to packets containing TCP segments. We 

give all other packets the usual RED treatment, with the distinction of using 

either IN or OUT parameters (depending on the nature of packet) in 

determining whether to drop or enqueue. 

 

• Penalize unresponsive connections (lines 125 through 131): We 

calculate the maximum number of packets that any flow is simultaneously 

allowed in the buffer as a function of the RED minthresh for the type of 

packet (line 125). We drop any packets that attempt to violate this upper 

bound and record the fact that an active23 connection has tried to break the 

established bound. We also approximate the per-flow average number of 

packets in the buffer, and drop any packets that would make a penalized 

flow go beyond this average (lines 126 through 131).  

 

• Protect fragile and slow TCP connections (lines 135 through 137 and 

141 through 143): In the event of deterministic drop by RED (i.e. average 

queue size larger than maxthresh) we introduce an exception to the rule that 

favors flows with a small number of packets in the queue. Specifically, if the 

packet belongs to a flow that has less than 2 packets in the queue, we do not 

drop the packet. Similarly, if it belongs to a flow with less than 4 packets, 

                                                
23 An active connection, in this context, is one that currently has at least one packet in the queue. 
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that has not been penalized (since last becoming active), we also enqueue the 

packet (lines 135 through 137). 

 

     In the same fashion, but a little more aggressively, we also protect flows 

when RED is probabilistically dropping packets (i.e. average queue size is 

between minthresh and maxthresh). In our particular case, we never drop the 

packet if it belongs to a flow with less than 5 packets in the queue. To that 

effect we do not even compute the probability of drop for a packet in such 

circumstances (lines 141 through 143). 

 

•• Maintain status of flow activity (lines 150 through 157): Every time we 

choose to enqueue a TCP packet, we record information about the flow it 

belongs to. Specifically, we increment by 1 the number of packets in the 

buffer for that flow. In the event of the packet belonging to a flow with no 

packets in the queue, we insert the flow into the flow data structure and 

update the number of active flows accordingly. 

 

Dequeuing (lines 160 through 167) 

• Update flow status information (lines 160 through 167):  On dequeuing 

of packets, we simply decrement by 1 the count of the packets that the flow 

has inside the queue.  Incidentally, if the flow has no more packets in the 

queue, we remove its information from the tree flow data structure and say 

that the flow has become inactive. 

 

   The implementation of FRIO was done using the Linux 2.2.10 kernel in a similar 

fashion as with the TCP Friendly marker. We based our work on an existing 

implementation of GRED24 (Generic RED), which is included in the distribution of 

the kernel. GRED is able to support up to 16 preferential drop priorities and exhibits a 

switch (referred to as “grio”) that enables the calculation of the average queue length 

                                                
24 By Jamal Hadi [WHK99] 
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of a single priority to include the average queue lengths of all the priorities above it. 

This goes in concordance with RIO that establishes that the calculation of the average 

queue length for OUT packets should include the average queue length of IN packets, 

while the opposite not being the case. In order to maintain flow information we used 

the same data structure we had developed for the TCP Friendly marker, which has 

been already discussed.  

 

    One important final consideration is worth mentioning in our discussion of buffer 

management algorithms. All of the schemes discussed here are fundamentally just 

variants of RED. They evolve with a focus on addressing the issues of preferential 

dropping of classes (IN and OUT) and fairness among types of TCP connections 

(fragile and unresponsive). Nonetheless there are still some other well-identified 

weaknesses of RED that are carried on by these evolutions One such difficulty, 

corresponds to the lack of proven guidelines in the setting of RED-like parameters25 

such as the minimum threshold, maximum threshold, buffer size, and maximum 

probability of drop. Furthermore, it has been shown that the performance of RED is 

highly sensitive to its parameters and the characteristics of the traffic flowing through 

it, and in many cases it performs drastically worse than the simple and stateless tail 

dropping mechanism. In our experimentation we will consider the fundamental cases 

where “appropriate” and “inappropriate” parameters are used for our RED-based 

buffer management disciplines, in order to discuss the resulting differences in 

performance of the two approaches to parameter setting. We will also provide a better 

insight as to what we consider “appropriate” and “inappropriate”. 

                                                
25 [May99] 


