
 26

CHAPTER 3

Performance Analysis and Experimentation

3.1 Performance Evaluation Model

 Following the methodology adopted by the original work on the TCP Friendly

marker, we use a performance model as suggested by Figure 3.1.1

Figure 3.1.1: Performance Evaluation Model

 We consider the system as a black box composed of the network and a set of flows

that traverse it from source to destination, while considering the inputs to the system

as being the specific configurations (defined by the traffic conditioning algorithm and

the buffer management scheme, as well as their parameters). In a similar fashion, the

outputs to our model correspond to the metrics that we used in order to assess the

benefits and superiority of one set of inputs over another. We will now discuss the

metrics to consider as well as the permutations on the configuration elements that

compose our input to the system.

 27

3.2 Metrics

 We aim to define a set of metrics that allow us to asses the performance under the

common best-effort approach on the Internet and the better than best-effort approach

that we propose with our implementation. We consider that the results of our scheme

should in fact benefit both the consumers of the network services (i.e. the common

end user) and the operators of the network resources. We appropriately partition our

set of metrics into what we call user metrics and operator metrics.

 The operator metrics refer to those of interest to the owners of the network,

presumably the ISPs26. It is known that an operator is willing to tradeoff buffer space

in the network for higher utilization as well as low packet loss probability. It is

intuitive that an operator would like its network to be fully utilized for as long as

there is traffic waiting to be sent. This will in turn result into a greater capacity to

accept traffic since the network will not stay idle if there is traffic to be served. On the

other hand, a low probability of loss inherently means less retransmissions flowing

through the network, while at the same time provides a much-desired marketing tool

used to attract its competitor’s business. Therefore, the operator metrics we consider

are:

• Timeouts: From the previous discussion we have established that instances of

timeouts result into increased transfer delays, and in some cases originate short

periods of underutilization of the network. We will use the number of timeouts as a

proxy to the increase in delays as seen by the end user. In addition, timeouts result

into increased data retransmission, which would not be needed otherwise. This metric

will also aid us in establishing the degree of retransmission traffic that takes up

resources from the network

• Byte Loss Probability: This quantity will provide us with a measurement of the

packet loss probability in the network.

26 Internet Service Providers

 28

 The user metrics, refer to those of interest to the customer who subscribes for

servicing of packets by the operator’s network. It is also intuitive that a user would

like to experience the largest possible goodput27 for its packets, as well as a low

probability of seeing the service degrading as the operator also services other

customers. That is, a customer would like to experience the same service regardless

of him/her being the first individual simultaneously trying to access a specific

website, or the 100th to do so. That will translate into uncertainties as to how long it

will take him/her to access the Internet’s desired destination. Therefore, the user

metrics we consider are:

• Average per-flow Goodput: This metric will assess the improvements in the net

data throughput of all the flows contending for the bandwidth resources of the

network. The larger this value, the better the network reacts to congestion.

• Coefficient of Variation of per-flow Goodput: This metric will evaluate the

predictability of network service, and the fairness of this servicing among all the

flows accessing its resources

3.3 Experimental Configuration

 The information on Figure 3.3.1 refers to the physical topology of the network used

for our experimentation. Figure 3.3.2 shows the logical topology of the

experimentation setup.

27 Goodput is defined as the throughput of new data that should not include retransmissions

 29

Figure 3.3.1: Experimental Physical Network Topology

Figure 3.3.2: Experimental Logical Network Topology

 30

 We have a single source machine (S) that generates multiple TCP flows destined

to a single machine (D) at the other end of the network. The source and destination

machines have large (1Mbyte) buffers that prevent them from loosing outgoing data

packets and outgoing acknowledgements, respectively. The source is connected to the

marking router (R0) through a 100Mbit/sec link and the marking router feeds into the

bottleneck gateway (R1) through a 100Mbit/sec link. It is clear that the traffic should

not experience any bottleneck congestion up until its arrival to R1. The bottleneck is

achieved by connecting R1 to R2 through a 10Mbit/sec link. We implement the

correspondent buffer management algorithms at the interface of R1 connecting to R2.

The link from R2 to the destination, supports a 100Mbit/sec speed, which clearly does

not generate congestion on the traffic from R2. Finally we implement a delay

component on the outgoing interface of the destination with the intention of

emulating a round trip delay of 200ms28 as seen by the source machine. The

implementation details for this delay component, as well as the motivations for its

inclusion in our experimentation are discussed in the Appendix.

 Our set of experiments was composed of four major configuration settings with a

focus on analyzing the performance of our overall scheme using the two most

commonly deployed TCP implementations (Reno and SACK), as well as the setting

of appropriate and inappropriate RED-like parameters.

 We should discuss the meaning of “appropriate” and “inappropriate” in terms of

RED-like parameters. We consider “appropriate” parameters, those in which the max

and min threshold are relatively far apart, in order to allow the probabilistic dropping

phase of RED to be in effect during most of the time. That is, the closer together these

two parameters are set, the more RED behaves like tail drop. We assume that these

parameters should be sufficiently far apart in order to give RED a fair chance to do its

intended job. In addition the “appropriateness” of the parameters is greatly dependent

on the characteristics of the traffic across the gateway. Thus, parameters that were

28 Such delay corresponds to the typical round trip time of TCP transfer across the backbone of the
Internet, from the Eastern Time Zone to the Pacific Time Zone.

 31

appropriate in the past might not be so appropriate given the current traffic

characteristics. This last circumstance could be also thought of as parameter

misconfiguration. Using this premise, our RED-like parameters are:

Appropriate RED-like parameters:

• minimum threshold for OUT packets = 10Kbytes

• maximum threshold for OUT packets = 200Kbytes

• maximum probability of packet loss for IN packets = 0.25

• minimum threshold for IN packets = 50Kbytes

• maximum threshold for IN packets = 490Kbytes

• maximum probability of packet loss for IN packets = 0.005

Inappropriate RED-like parameters:

• minimum threshold for OUT packets = 10Kbytes

• maximum threshold for OUT packets = 30Kbytes

• maximum probability of packet loss for IN packets = 0.25

• minimum threshold for IN packets = 50Kbytes

• maximum threshold for IN packets = 490Kbytes

• maximum probability of packet loss for IN packets = 0.005

 The four configurations settings are:

• Configuration A: TCP SACK with appropriate RED-like parameters

• Configuration B: TCP Reno with appropriate RED-like parameters

• Configuration C: TCP SACK with inappropriate RED-like parameters

• Configuration D: TCP Reno with inappropriate RED-like parameters

 Finally, each one of the configurations included the following cases reflecting the

use of traffic conditioning markers and buffer management schemes. In addition, each

case was further examined using a total of 50 and 100 simultaneous flows.

 32

• Case 1: TCP Friendly marker and FRIO

• Case 2: TCP Friendly marker and RIO

• Case 3: Token Bucket marker and RIO

• Case 4: No marker and RIO (defaults to RED using OUT parameters)

 The parameters used for both markers, for all the experiments, are as follows:

• Number of byte tokens per interval = 296K

• Update interval = 400ms

 33

CHAPTER 4

Experiments Results

4.1 Configuration A: SACK & appropriate RED-like parameters

 Table 4.1 shows the values for the obtained metrics under this configuration. The

graphs presented in Figure 4.1.1 through Figure 4.1.4 represent a comparison between

all of the experimental cases in terms of the resulting values for the operator and user

metrics.

Table 4.1

 Configuration A

 100 flows 50 flows

 Operator Metrics User Metrics Operator Metrics User Metrics

Timeouts

Ploss
(%)

Average
Goodput

(bytes/sec)

Coefficient
of Variation

Timeouts

Ploss
(%)

Average
Goodput

(bytes/sec)

Coefficient
of Variation

TCP Friendly

& FRIO 41 4 11421 0.06 2 2.14 22236 0.03
TCP Friendly

& RIO 120 5.46 10575 0.12 9 2.67 20742 0.04
Token Bucket

& RIO 911 7.75 9705 0.33 253 4.13 18892 0.12
No Marker

& RED 1322 9.01 9015 0.38 491 5.25 17865 0.17

 34

Number of Timeouts: Configuration A

0

200

400

600

800

1000

1200

1400

50 flows 100 flows

of flows

o

f
ti

m
eo

u
ts TCP Friendly & FRIO

TCP Friendly & RIO

Token Bucket & RIO

No Marker & RED

Figure 4.1.1

Probability of Loss (%): Configuration A

0

1

2

3

4

5

6

7

8

9

10

50 flows 100 flows

of flows

P
L

o
ss

 (
%

) TCP Friendly & FRIO

TCP Friendly & RIO

Token Bucket & RIO

No Marker & RED

Figure 4.1.2

 35

Average per-flow Goodput: Configuration A

0

5000

10000

15000

20000

25000

50 flows 100 flows

of flows

b
yt

es
/s

ec

TCP Friendly & FRIO

TCP Friendly & RIO

Token Bucket & RIO

No Marker & RED

Figure 4.1.3

Goodput Coefficient of Variation: Configuration A

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

50 flows 100 flows

of flows

TCP Friendly & FRIO

TCP Friendly & RIO

Token Bucket & RIO

No Marker & RED

Figure 4.1.4

 36

 We clearly observe significant improvements achieved by the TCP Friendly marker

across all metrics. On the case of 100 flows we see a reduction of timeouts from 911

to only 41 when using the TCP Friendly marker over FRIO as opposed to the token

bucket marker over RIO. This corresponds to an improvement of almost two orders

of magnitude. We note, however, that there are timeouts when using SACK, which is

indeed designed to avoid instances of timeout. We encountered than under high

degrees of multiplexing (when the number of flows is large) SACK is still vulnerable

to timeouts. We now have seen dramatic improvements to this vulnerability when

using the TCP Friendly marker.

 For all of the cases the packet loss probability when using our marker over FRIO is

half of that when using the token bucket marker and RIO. In addition the goodput is

always higher when using our scheme and the coefficient of variation is also 1.5

orders of magnitude lower when using our own marker and FRIO.

 The graphs of the timeouts and the coefficient of variance show the enormous

gaps between the performance using the TCP Friendly marker and the

performance without it. The gaps are smaller for the probability of loss and the

average goodput, but still considerable in terms of performance improvement. These

improvements will undoubtedly translate into better utilization of the network and

fairer treatment of flows.

 In addition we note the scalability of our approach as the performance

enhancement increases with the number of flows introduced to the system. We

expect that a larger number of flows, as it is the case on the backbone routers on the

Internet, will result into a significant smaller degradation of network performance as

the one seen in the absence of marking or even in the presence of a token bucket

marker. Furthermore, we note that, even though the use of FRIO does enhance our

results, the TCP Friendly marker greatly improves the performance with RIO itself,

without the need for flow state information at the core of the network. This last

 37

observation certainly aids the feasibility of deployment of our approach, since we

support complex flow classification solely at the edges of the network.

4.2 Configuration B: Reno & appropriate RED-like parameters

 Table 4.2 summarizes our results obtained by replicating the previous

configuration with the use of TCP Reno. The graphs shown in Figure 4.2.1 through

Figure 4.2.4 represent a comparison between all of the experimental cases under this

second configuration.

Table 4.2

 Configuration B
 100 flows 50 flows

 Operator Metrics User Metrics Operator Metrics User Metrics

Timeouts

Ploss
(%)

Average
Goodput

(bytes/sec)

Coefficient
of Variation

Timeouts

Ploss
(%)

Average
Goodput

(bytes/sec)

Coefficient
of Variation

TCP Friendly

& FRIO 62 4.33 11391 0.07 8 2.49 22079 0.03
TCP Friendly

& RIO 176 5.47 10472 0.14 16 2.83 20635 0.04
Token Bucket

& RIO 1127 12.49 9660 0.31 350 6.66 18486 0.19
No Marker

& RED 1405 16.47 8807 0.37 610 9.63 17319 0.25

 38

Number of Timeouts: Configuration B

0

200

400

600

800

1000

1200

1400

1600

50 flows 100 flows

of flows

o

f
ti

m
eo

u
ts TCP Friendly & FRIO

TCP Friendly & RIO

Token Bucket & RIO

No Marker & RED

Figure 4.2.1

Probability of Loss (%): Configuration B

0

2

4

6

8

10

12

14

16

18

50 flows 100 flows

of flows

P
L

o
ss

 (
%

) TCP Friendly & FRIO

TCP Friendly & RIO

Token Bucket & RIO

No Marker & RED

Figure 4.2.2

 39

Average per-flow Goodput: Configuration B

0

5000

10000

15000

20000

25000

50 flows 100 flows

of flows

b
yt

es
/s

ec

TCP Friendly & FRIO

TCP Friendly & RIO

Token Bucket & RIO

No Marker & RED

Figure 4.2.3

Goodput Coefficient of Variation: Configuration B

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

50 flows 100 flows

of flows

TCP Friendly & FRIO

TCP Friendly & RIO

Token Bucket & RIO

No Marker & RED

Figure 4.2.4

 40

 We note that the results obtained using Reno are consistent with the improvements

seen with SACK. We see the number of timeouts go from 1127 down to only 62,

when using the TCP Friendly marker and FRIO instead of the token bucket marker

and RIO. We again see improvements of close to two orders of magnitude for the

timeouts (610 to 8) when using our scheme instead of best-effort approach (i.e. no

marking).

 All of the graphs better show the improvements by evidencing the large gaps

between the metrics obtained with the TCP Friendly marker and any other approach.

 We observe that the absolute magnitudes of our metrics degrade in performance

with respect to those of SACK. Nonetheless, the performance improvements of the

TCP Friendly marker using Reno are even larger than those seen in SACK, clearly

decoupling the benefits of our marker to the use of any particular TCP

implementation. This once again suggests that our approach would in fact incorporate

significant benefits to the performance of currently installed TCP Reno systems, and

thereby the incentives for its immediate deployment.

4.3 Configuration C: SACK & inappropriate RED-like parameters

 Table 4.3 presents the metrics under this configuration. The graphs seen in Figure

4.3.1 through Figure 4.3.4 represent a comparison between the defined experimental

cases under this third configuration.

 41

Table 4.3

Number of Timeouts: Configuration C

0

200

400

600

800

1000

1200

1400

1600

1800

2000

50 flows 100 flows

of flows

o

f
ti

m
eo

u
ts TCP Friendly & FRIO

TCP Friendly & RIO

Token Bucket & RIO

No Marker & RED

Figure 4.3.1

 Configuration C

 100 flows 50 flows

 Operator Metrics User Metrics Operator Metrics User Metrics

Timeouts

Ploss
(%)

Average
Goodput

(bytes/sec)

Coefficient
of Variation

Timeouts

Ploss
(%)

Average
Goodput

(bytes/sec)

Coefficient
of Variation

TCP Friendly

& FRIO 92 5.02 10854 0.07 7 2.79 21687 0.05
TCP Friendly

& RIO 152 6.17 10168 0.13 10 3.63 20104 0.06
Token Bucket

& RIO 1200 9.16 9092 0.4 320 5.71 17277 0.22
No Marker

& RED 1864 10.75 8316 0.45 689 7.03 16825 0.25

 42

Probability of Loss (%): Configuration C

0

2

4

6

8

10

12

50 flows 100 flows

of flows

P
L

o
ss

 (
%

) TCP Friendly & FRIO

TCP Friendly & RIO

Token Bucket & RIO

No Marker & RED

Figure 4.3.2

Average per-flow Goodput: Configuration C

0

5000

10000

15000

20000

25000

50 flows 100 flows

of flows

b
yt

es
/s

ec

TCP Friendly & FRIO

TCP Friendly & RIO

Token Bucket & RIO

No Marker & RED

Figure 4.3.3

 43

Goodput Coefficient of Variation: Configuration C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

50 flows 100 flows

of flows

TCP Friendly & FRIO

TCP Friendly & RIO

Token Bucket & RIO

No Marker & RED

Figure 4.3.4

 The graphs for this configuration illustrate performance enhancements that are

consistent with the previously shown results. The graphs show that gaps between the

metrics with different schemes remain very large. The number of timeouts is 2000%

larger without marking and 1300% larger with a token bucket marker. The net

throughput is consistently larger when using the TCP Friendly marker and the

coefficient of variation is 600% larger when using the best-effort approach instead of

the scheme we propose.

 On close observation of the graphs, we notice that the usage of inappropriate

RED-like parameters does not significantly affect the improvements achieved by

our marking scheme. Even though there is performance degradation with respect to

the usage of appropriate RED-like parameters, the improvements accomplished are

sustainable even disregarding the complex analysis that results into setting

appropriate parameters. This is an important idea, since we now have a tool that

 44

does not depend on the accuracy of the RED-like parameters to support

improvements across all of the fundamental metrics.

 Furthermore, we see that adopting inappropriate parameters does in fact close the

gap between the performance of the TCP Friendly marker over FRIO and that of the

marker over RIO. Once again, we have demonstrated the powerful contributions of

our traffic-conditioning tool without depending on robustness of parameters or

complex flow state classification at the core of the network.

4.4 Configuration D: Reno & inappropriate RED-like parameters

 Table 4.4 shows the metrics obtained by replicating the previous configuration with

the use of TCP Reno. The graphs presented in Figure 4.4.1 through Figure 4.4.4

represent a comparison between all the experimental cases for this configuration.

Table 4.4

 Configuration D

 100 flows 50 flows

 Operator Metrics User Metrics Operator Metrics User Metrics

Timeouts

Ploss
(%)

Average
Goodput

(bytes/sec)

Coefficient
of Variation

Timeouts

Ploss
(%)

Average
Goodput

(bytes/sec)

Coefficient
of Variation

TCP Friendly

& FRIO 130 6.33 10668 0.08 13 3.43 21315 0.05
TCP Friendly

& RIO 239 6.97 10214 0.15 19 4.01 20168 0.06
Token Bucket

& RIO 1410 13.98 8954 0.43 413 7.8 17112 0.33
No Marker

& RED 2163 20.58 8046 0.5 844 11.2 16152 0.35

 45

Number of Timeouts: Configuration D

0

500

1000

1500

2000

2500

50 flows 100 flows

of flows

o

f
ti

m
eo

u
ts TCP Friendly & FRIO

TCP Friendly & RIO

Token Bucket & RIO

No Marker & RED

Figure 4.4.1

Probability of Loss (%): Configuration D

0

5

10

15

20

25

50 flows 100 flows

of flows

P
L

o
ss

 (
%

) TCP Friendly & FRIO

TCP Friendly & RIO

Token Bucket & RIO

No Marker & RED

Figure 4.4.2

 46

Average per-flow Goodput: Configuration D

0

5000

10000

15000

20000

25000

50 flows 100 flows

of flows

b
yt

es
/s

ec

TCP Friendly & FRIO

TCP Friendly & RIO

Token Bucket & RIO

No Marker & RED

Figure 4.4.3

Goodput Coefficient of Variation: Configuration D

0

0.1

0.2

0.3

0.4

0.5

0.6

50 flows 100 flows

of flows

TCP Friendly & FRIO

TCP Friendly & RIO

Token Bucket & RIO

No Marker & RED

Figure 4.4.4

 47

 The results on this final configuration support all of the ideas previously discussed.

We observe consistent improvements across all metrics independent of the RED-

like parameters and the TCP implementation used. We see some minor

degradation on the absolute performance with respect to Configuration C, which is

expected simply because of the superior nature of SACK. Nonetheless, we continue

to demonstrate the powerful capabilities of our marking scheme in terms of reducing

timeouts and probability of packets loss, as well as increasing per-flow goodput

and favoring fairness among all flows. All this without a basic need for flow state

classification in the core of the network. We stress the feasibility of our approach

since it is beneficial for all TCP implementations and counteracts the inherent

sensibility of RED to its parameters.

4.5 Summary of the results

 In this chapter we have shown the detailed results obtained for all of the cases we

considered. We now present a synopsis of the benefits achieved by the architecture

we have proposed:

•• Reductions of two orders of magnitude on the number of timeout

instances.

•• Consistently larger net data throughput for all TCP flows.

•• Halving of the probability of packet loss across all instances of

implementation.

•• Increments of 200% on the predictability of service by the network.

•• Improvements immunity to the inappropriate configuration of RED-

like parameters.

•• Improvements independence from version of TCP implementation.

•• Scalability of the results to any number of TCP flows through a

gateway.

 48

•• Improvements independence from flow classification at the core of the

network.

 We finish the presentation of our experimental results, by arguing the validity of

our findings. These results are not the product of software-based simulations that

ultimately depend on the correctness of the model assumed, and disregard any of the

details and limitations that are to be considered when implementing a scheme on the

operating system of a router. These results are the outcome of real traffic monitoring

as it occurs daily in the Internet. We have used our testbed lab to emulate long delay

transfers. Nonetheless, the results using longer links and more hops in the path ought

to translate into improvements of the same level.

 We do not base our scheme on anything not already deployed on the Internet. The

routers for the corporate world and the world of the ISP’s do already support TOS

byte marking and TOS byte retrieval. They also support standard RED and other

proprietary buffer management techniques. The porting of our code towards the

operating system of those routers is a relatively simple step, given the already existent

functionality.

 Furthermore, we have completed a running implementation of these algorithms that

could be instantly deployed in any portion of the network that uses Linux-based

routers. In the recent years, there has been a tendency29 to accept the widespread

growth of Linux routers as a reliable and economical alternative to the use of the now

common proprietary-system routers. It is expected that such a growth will

aggressively compete with the use of the now more common routers and will aid to

the potential of instant deployment of the implementation of our work.

29 [Man98]

