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Abstract— Congestion-sensitie pricing schemedor wide
area networks have attracted significant attention over
the last decade. Several proposals have been made for
congestion-sensitie pricing of the Internet. One key im-
plementation obstaclefor thesedynamic pricing schemesds
the necessityof frequent price updates whereasthe struc-
tur e of wide areanetworks doesnot allow fr equentprice up-
dates since round-trip-times are very large for somecases.
As the networks allow infr equentprice updates, more con-
trol is achieved by the pricing schemeswith more frequent
price updates. Soan important issueto investigateis to find
a maximum value for the interval (i.e. pricing interval) over
which price updatesoccur, suchthat the level of congestion
control canremainin a desired range. This paper presents
our modeling and analysiswork for the length of pricing in-
tervals. To representthe level of control over congestion,
we usecorr elation betweenprices and congestionmeasures.
After developing an approximate model for the correlation,
we find and prove that the correlation degradesat mostin-
versely proportional to an increasein the pricing interval.
We alsofind that the correlation degradeswith an increase
in meanor variance of the incoming traffic.

Keywords— Network Pricing, Congestion-Sensitie Pric-
ing, CongestionControl, Quality-of-Service

|. INTRODUCTION

One proposedmethod for controlling congestionin
wide areanetworks is to apply congestion-sensiti pric-
ing [1], [2]. Many proposal$iave beenmadeto implement
dynamicpricing over wide areanetworks and the Inter
net[3], [4], [5]. [6], [7]. [8], [9], [10], [11], [12], [13],
[14]. Most of theseschemesimedto emplo/ congestion
pricing. The mainideaof congestion-sensite pricing is
to updateprice of the network servicedynamicallyover
time suchthatit increasegluring congestiorepochsand
causesusersto reducetheir demand.So, implementation
of congestion-sensie pricing protocolsmakesit neces-
saryto changehe price after sometime intenal, whatwe
call pricing interval

Clark’s ExpectedCapacityContracting/3] schemepro-
posedong-termcontractsasthe pricing intenvals. Kelly’'s
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paclet marking scheme[5] proposesshadw prices to

be fed back from network routerswhich hasto happen
over sometime internval. MacKie-Masonand Varians

SmartMarket schemd6] proposegrice updatesat inte-

rior routerswhich cannothappencontinuouslyand have

to happerover sometime interval. Odlyzko’s ParisMetro
Pricingschemd8] proposedixedpricesfor differentsub-
classesof network service,but congestion-sensitity of

the pricescan only be achieved by updatingthem over
sometime intenal. Wang and Schulzrinnes RNAP [9]

framewvork proposeso updatethe price at eachservice
level agreementvhich hasto happenover sometime in-

tenal. Hence,congestion-sensi pricing canonly be
implementedoy updatingpricesover sometime intenal,

i.e. pricing interval.

It hasbeerrealizedthattherearenumerousmplementa-
tion problemsfor dynamicor congestion-sensv pricing
schemeswhich canbe tracedinto pricing intervals. We
canlist someof theimportantonesasfollows:

» Users do not like price fluctuations: Currently most
ISPsemplqy flat-ratepricingwhichmalkesindividualusers
hapyy. Naturally mostusersdo not wantto have a net-
work servicewith a price changingdynamically In [15],

Edell and Varaiyaproved that thereis a certainlevel of

desirefor quality-of-service However, in [16] and[17],

Odlyzko provides evidencethat most userswant simple
pricing plansandthey easilygetirritatedby comple pric-

ing planswith frequentprice changes.So, it is important
that price updatesshouldhappenas lessas possible. In

otherwords,userslike a servicewith larger pricing inter

vals.

» Contwol of congestiondegradeswith larger pricing in-
tervals: Congestiorievel of the network changeslynami-
cally overtime. So,themorefrequentthepriceis updated,
the better the congestioncontrol. From the provider’s
side, it is easierto achieve bettercongestioncontrol with
smallerpricingintenals.

« Userswantprior pricing: It is alsodesiredby the users
that price of the servicemustbe communicatedo them
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Fig. 1. A samplecustomeiprovidernetwork.

beforeit is chaged. This makesit necessaryo inform
the usersof the network servicebeforeapplyingary price
update.So,theprovider hasto handlethe overheacbf that
price communication.Theimportantthing is to keepthis
overheadaslessaspossiblewhichcanbedonewith larger
pricing intenals.

Hence lengthof pricing intenalsis a key issuefor the
implementatiorof congestion-sensie pricing protocols.
In this particularwork, we focuson modelingandanalysis
of pricingintenvalsto comeup with a maximumvaluefor
it suchthatthelevel of congestiortontrolremainsn anac-
ceptablerange. Beyond this range,pricing could be used
to regulatedemandput it becomesessusefulasatool for
congestiormanagementl herestof thepapetis organized
asfollows: In Sectionll, we first explore steady-stately-
namicsof congestion-sensit pricingwith adetailedook
at the behaior of pricesandcongestiorrelative to each
other We thendevelop anddiscussan approximateana-
Iytical modelfor the correlationof pricesand congestion
measuresn Sectionlll. In SectionlV, we validatethe
modelby simulationexperimentsand presentthe results.
Finally, in SectionV we discussthe implicationsof the
work andpossiblefuturework.

Il. DYNAMICS OF CONGESTION-SENSITIVE PRICING

This section explains the behaior of congestion-
sensitve pricesand congestiormeasureselative to each
otherin a steady-statesystem. A samplescenariois de-
scribedin Figurel1. The provider emplgys a pricing in-
ternval of T' to implementcongestion-sensite pricing for
its service. The customerusesthat serviceto sendtraf-
fic to the destinatiorthroughthe provider’s network. The
provider obseresthe congestionevel, ¢, in the network
core and adjustsits adwertisedprice, p, accordingto it.
Notethatc andp arein factfunctionsof time (i.e. ¢(t) and
p(t) wheret is time), but we usec andp throughouthepa-
per for simplicity of notation. It is a realisticassumption
to saythatthe provider canobsere the network coreover
small time intenals, i.e. afew round-trip-times(RTTS).
To understanceffect of pricing intenal to the dynamics
of congestion-sensite pricing, we look attherelationship

4p,
l —_———T - —_—— _—— T - ——
ACQT /ATZ. —_—
AP2+ —_— T == — ‘i' —_ _
Optimum Price, p
= = == Price, p
Congestion Measure, ¢
Fig. 2. Congestionmeasurerelative to congestion-sensite

pricesin asteady-stateetwork beingpriced.

between: andp overtime.

Assumingthat we have continuousknowledgeof con-
gestion level, ¢, we can representthe dynamics of
congestion-sensite pricing asin Figure2. Figure?2 rep-
resentsthe relationshipbetweenc and p for two differ-
ent pricing intenal lengths,7; > T5. For both lengths,
thesteady-statbehaior of congestion-sensit pricingis
representedT he adwertisedprice, p, variesaroundan op-
timum price, p*.

When the provider seesthat the congestionlevel has
beendecreasingt decreasethead\ertisedpricesuchthat
the network resourcesare not underutilized. Then the
customeistartssendingmoretraffic in responseo the de-
creasen price, andcongestiorevel in the corestartsin-
creasingaccordingly The congestionlevel continuesto
increasauntil the priceis increasedy the provider at the
beginning of the next pricing intenal. Whenthe provider
increaseprice becaus®f theincreasedongestiorin the
last pricing intenal, the customerstartssendinglesstraf-
fic thanbefore. Then congestionevel startsdecreasing.
This behaior continueson in steady-stateThis explains
how congestion-sensite prices can control the conges-
tion in a network. Theimportantdifferenceis thatwith a
largerpricingintenal thecongestiorievel oscillatedarger
asrepresenteth Figure?2.

Anotherimportantcharacteristiof congestion-sensie
pricing is thatthe price mustbe oscillatingaroundan op-
timum price, p*, to guarantedoth congestiorcontroland
high utilization of network resourceslin otherwords,the
averageof adwertisedpricesmustbe equalto the optimum
pricevalue.Assumingthatthe customehasabudgetof B
for network serviceperunit time andthenetwork hasa ca-
pacityof Cap perunittime, we canformulatetheoptimum
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Fig. 3. Pricesandcongestiormeasurefor subsequentbsena-
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Notice that the customemwill sendlesstraffic which will
undetutilize network resourcesvhenp > p*, andthe
customemwill sendexcessie traffic thanthe network can
handle which will causeuncontrolledcongestionwhen
p < p*. Sothe provider needsto satisfy the condition
thattheaverageof adwertisedpricesequalgo theoptimum
pricestatedn Equationl, whichrequiresaccurag in bud-
getestimation.Inaccurag in budgetestimatiormayresult
in uncontrolledcongestioror very large transientphases
beforethe congestion-sensite pricing algorithmfindsthe
optimumpricevalue.

The importantissueto realizeis that congestioncon-
trol becomedbetterif thesimilarity betweertheadvertised
priceandcongestiorievel is higher Becausef theabore
explainedimplementatiorconstraintsthe adwertisedprice
cannotbeupdatecdcontinuously This resultsin dissimilar
ity betweenthe price and congestiorievel. Intuitively, if
the correlationbetweerthe adwertisedpricesandthe con-
gestionmeasuress higher fidelity of controlover conges-
tion becomeshigher Again by intuition, the correlation
becomesmallerif thepricingintenal is larger.

Anotherimportantissueis the price oscillation caused
by the discontinuougrice updates.As the pricing inter
valsgetlarger, theoscillationin pricealsogetslarger This
in effect leadsto oscillationin userdemand(i.e. traffic)
correspondingly So, larger oscillationsin price are ex-
pectedto causelarger oscillation and higher variancein
incomingtraffic. Then,moreoscillatedtraffic causesnore
oscillatedcongestionevel. Thisbehaior is representedh
Figure2 with thecasethat Ac; > Ace andAp; > Apo.

In the next section, we will develop an approximate
model of correlationbetweenthe adwertised prices and
congestiommeasureganalyticallyandfind thelargestvalue
for the pricing intenal suchthatthe systemfunctionsin a
desiredrangeof service.

I1l. ANALYTICAL MODEL FOR CORRELATION OF
PrICES AND CONGESTION MEASURES

A. AssumptionsandModel Development

Assumethe length of pricing intenal staysfixed at T’
overn intenals. Also assumehe provider canobsene the
congestiorlevel at a smallertime scalewith fixed obser
vation intenals, ¢. AssumethatT = rt holds, wherer
is thenumberof obsenrationsthe provider makesin a sin-
gle pricing interval. Assumethatthe queuebacklogin the
network coreis anexactmeasuref congestion[18]

We assumehatthe customeihasafixedbudgetfor net-
work serviceandhe/shesenddraffic accordingo a count-
ing processwhichis acontinuougime stationarystochas-
tic processA(7),7 > 0 with first andsecondnomentsof
A1 and )\, respectiely. In reality, A; is notfixed,because
thecustomerespondso pricechange®y changingts A;.
However, sincewe assumesteady-statand fixed budget
for the customerit is reasonabléo saythatthe customer
will sendat a constantrate over a large numberof pric-
ing intenals. Let m;; be the numberof paclet arrivals
from the customerduring the j th obsenration intenal of
sth pricing interval, where: = 1..n andj = 1..r. Sothe
total numberof pacletarrivalsduringtheith pricinginter

val is
T
m; = Zmis
s=1

Also assumehatthepacletsleave afterthenetwork ser
vice accordingto a countingprocesswhich is a continu-
oustime stationarystochastigprocessB(7),7 > 0 with
first andsecondmomentsof p; anduo respectrely. Let
k;; bethe numberof paclet departuresiuring the jth ob-
senation intenal of ith pricing intenal, wherei = 1..n
andj = 1..r. Sothe total numberof paclet departures
duringtheith pricing intenal is

T
ki = ki
s=1

Assumingthat no drop happensn the network core, the
first momentsof the two processesre equalin steady-
statej.e. A\; = p1, butthesecondnomentsarenot.

As representeth Figure3, let p; bethead\ertisedprice
andc;; is the congestiormeasurgqueuebacklog)at the
endof the jth obserationin theith pricingintenal. In our
modelwe needa genericway of representingherelation-
ship betweerpricesandcongestion We assumedhatthe
congestion-sensite pricing algorithmcalculatesheprice
for theith pricing interval accordingto the following for-
mula

()

®3)

(4)

Pi = aC(i—_1)r
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where a, pricing factor, is a function of pricing inter
val and obsenration intenal definedby the congestion-
sensitve pricing algorithmitself. In our modeling,we as-
sumethat a is only effectedby the interval lengths,not
by the congestiormeasures Notice that this assumption
doesnotrule outthe effect of congestiormeasuresn the
price,ratherit splitsthe effect of congestiormeasuresnd
intenal lengthsto the price.
Within this contet, thefollowing equationgold:

i—1 J
cij = cor + ) (my —
u=1

+ Z(mzs

s=1

—kis) (5

K3
Cir = Cor + Z(m (6)
j=1

wherei > 1. ReasoningehindEquationss and6 is that
thequeuebacklog(whichis thecongestiommeasureatthe
endof anintenal is equalto the numberof pacletarrivals
minusthenumberof pacletdeparturesluringthatintenal.

Let the averageprice bep andthe averagequeueback-
log bee. By assuminghatthesystems in steady-stateve
canconcludethatthefollowing equationis satisfied

()

Sincethe systemis assumedo bein steady-stateye can
assumethe initial (right beforethe first pricing intenal)
congestiormeasureequalsto the averagequeuebacklog,
ie.

p=ac

Cor =C (8)

We want to approximatethe model of correlationbe-

tweenp andc accordingo theabore assumptionsWe can

write the formulafor correlationbetweenp ande¢ over n
pricingintenalsas

Enl(c—2)(p —
E,[(c —©)?|m,k]E,

p)lm, k]
wl(p — D)2, k]

assuminghattotal of m paclet arrivalsandk paclet de-
partureshapperduringthen rounds.

We can calculatethe numeratorterm in Equation9 as
follows:

Corry, =

9)

Ep[(c—¢)(p—p)|m, k] =

ZZPz

zl]l

) (10)

Czy

By applyingEquations4, 7 and8 into Equation10 we can
get

En [(C—E)(p —Dp)lm, k] =

n

- Z Z ac(i—1)r — G’COT)(CZ]

11]1

cor) (11)

Thenby applyingEquationss and6 into Equationll, we
getthefollowing

Enl(c—2)(p —D)Im, k] =

n 1—1
—ZZ(COTJera—ke —)
=1

i=1j5=1
i— 1
u= 1
After going throughthe derivation, we can put Equation
12 into thefollowing form

_k +Zmzs_ is ) (12)

E,[(c—¢)(p —Dp)|m, k] = 4
[(c =) (p = P)lm, k] = — ;JZZI
i—1 J
(Hl + Z(me - ka) Z(mzs - k'zs)) (13)
=1 s=1
whereH; = 32, (my—ku)*+3, D vt 2y —ky) (Mo —

ky),u=1.i—1andv =1..i — 1.
We can calculatethe varianceof congestionrmeasures
similarly asfollows:

1 n T

2 2 e =)

i=1j=1

E,[(c —¢)?|m, k] = (14)

By applying Equations5 and 8 into Equation14 we can
get

z 1

2
J
- ku) + Z(mzs - kzs)) (15)
s=1

Eu[(c — )% m, k] = 1

-

u=1

After going throughthe derivation, we can put Equation
15into thefollowing form

1 n T

E,[(c—¢)%m, k] =

u=1

2—1 j
(Hl + Ho + 2 Z(mu - ku) zj:(mzs -

ki5)>16)

where Hy = Y (mis — kig)? + Xy 2,5 2(mis —
kis)(miy — ki), s =14,z = 1..5.
Wefinally cancalculatethevarianceof priceasfollows:

ZZ P’

11]1

Ey[(p — p)*|m, k] = (17)
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By usingEquationst, 6 and7 into Equationl7 we canget
thefollowing

ag n 1—1 2
En[(p _p)lea k] = E Z (Z(m] - k])) (18)

i=2 \j=1
Similarly aftergoingthroughderwvation,we canput Equa-
tion 18into thefollowing form

2 n

Eyl(p —7)’lm. K = T3 Hy
1=2

(19)

Now we can relax the condition on m and k by
summing out probabilities on Equations13, 16, and
19. Specifically we need to apply the operation

Enlz] = %, 20 Sp ™9™ Eulalm, K| Prob{A(t) =
mij; B(t) = k;;} foralli = 1.n andj = 1..r. This op-
erationis non-trvial becausef the dependencbetween
the processesi(7) andB(7). Whenwe considerthe sys-
tem asa queue,we know thatonly M/M/1 systemwill
have thepropertyof independenarrival anddeparturegro-
cesseq19]. Sinceit hasbeenproven that the Internet
traffic cannotbe Poissonmodeled[20], we canconclude
that there shouldbe somedependeng (i.e. correlation)
betweerthe arrival anddepartureprocessesf a network.
However, theremight alsobe casesvherethe correlation
is ngyligible. For example,if the distancebetweerarrival
anddeparturepointsis more,thenthe lag betweenhe ar-
rival and departureprocesseslso becomesmore which
lowersthe correlationbetweenthem. In ary case this is-
sueneedsseriousinvestigationwhich is out of scopeof

this paper So, for simplicity, we assumendependence

betweerthe arrival anddeparturgprocessesndderive an

2 (23)
(Ao + po)(rn 4+ 1) = 2tA2(1 + r — 72 + 72n)

Assumingthato? is thevarianceof thearrival processand
0% is thevarianceof the departureprocessye canfinally
rewrite 23 asfollows:

Corr, = —
" at

1
- (24)
(A2 + M) (rn+1) —tA (1 + 7 —r2 +7r2n)

In the next section,we discussthe implicationsof the
modelandits beneficialuse.

B. ModelDiscussion

Assumingthat the otherfactorsstaysfixed, the corre-

lation modeldevelopedin the previous section(Equation
24)impliesthreeimportantresults:
1. Thecorrelationdegradesat mostinverselyproportional
to anincreasein pricing intervals(7’): For thesmallestn
value(i.e. 1), denominatoof Equation24 will haver + 1
asafactorwhichimplieslineardecreasén thecorrelation
valuewhile thepricinginterval, T' = rt, increasesinearly.
Noticethatits effectwill belesswhenn is larger.

2. Increasein traffic variances(c% and %) degradesthe
correlation: From Equation24, we canobsere that the
correlationdecreasesvhenthe varianceof the incoming
or outgoingtraffic increases.

3. Increasein traffic mean(\;) degradesthe correlation:

we relax the condition on m and k, andthen substitute
w1 = A1 becausef thesteady-stateondition,andgetthe
followings:

Balle—)(p—P)] = - (n—1)(2tr\3 —Xo — i) (20)

Fal(c— o) = 5

[()\2 +pu2)(rn+1) — 2N (1 +7r—r? + TQTLX]Z].)

a’tr

En[(p—p)°]= T(” — 1)(2trA] = A2 — p2)

By substitutingEquations20, 22, and21 into 9 we get
the correlationmodelfor thefirst n roundsasfollows:

(22)

Corr, = —
" at

decreasewhile themeanof theincomingtraffic increases.

Theseabove resultsimply that lower pricing intenals
mustbe emplgyed whenvarianceand/ormeanof the traf-
fic startsincreasing We validatethesethreeresultsin Sec-
tion IV by experiments.Note thatthe modelrevealsnon-
intuitive effect of traffic meanon the correlation. Also,
obsere thatthe modelincorporatesiot only the effect of
pricing intenals on the correlation,but alsothe effects of
statisticalparameterge.g.traffic meanandvariance).

As previously mentioned, the correlation between
pricesand congestiomrmeasuress a representationf the
achieved control over congestion. Congestion-sensie
pricing protocolscan use sucha model to maintainthe
control at a predefinedlevel by solving the inequality
Corry, > Corry, for r, which definesthe lengthof the
pricingintenal. If feedbackrom theotherend(i.e. egress
nodein DiffServ[21] terminology)is provided,thensuch
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amodelcanbeimplementedn real-time. o% canbe cal-
culatedby usingthefeedbackgrom the otherend,ando?
and); canbecalculatedy observingheincomingtraffic.

IV. EXPERIMENTAL RESULTS AND MODEL
VALIDATION

A. ExperimentalConfiguation

We useDynamic CapacityContracting(DCC) [22] as
the congestion-sensi pricing protocol in our simula-
tions. DCC providesa contractingframework over Diff-
Servarchitecture. The provider placesits stationsat the
edge routers of the DiffServ domain. The customers
cangetnetwork servicethroughthesestationsby making
short-termcontractswith them. The provider stationpro-
videsavariety of short-termcontractdo the customerand
the customeiselectghe contractwhich maximizeshis/her
utility. During the contractsthe stationrecevesconges-
tion information aboutthe network core at a time-scale
smallerthan contracts. The stationusesthat congestion
information to updatethe serviceprice at the beginning
of eachcontract. Several price calculationscan be im-
plementedin that framavork. In our simulationexperi-
ments,we usea simple price calculationformula which
is basedon estimatedcustomerudgetandestimatechet-
work capacityasstatedn Equationl. Thebudgetestima-
tionis justaveragingof therevenuegerunittraffic volume
earnedin previous contracts.We make network capacity
estimationby usingthe receved congestioninformation.
The estimatedcapacitylowers when congestiorwas de-
tectedduring the last contract,and vice versa. The con-
tractsin DCC correspondgo the pricing intervals in our
modeling.

Figure4 representshe topology of network in our ex-
periments.Thereare5 customerdrying to sendtraffic to
the samedestinationover the samebottleneckwith a ca-
pacity of 1Mbps. Customersiave equalbudgetsandtheir
total budgetis 150units. We obsene the bottleneckqueue
lengthanduseit ascongestiormeasure.The obseration
intenal is fixedatt = 80ms andRTT for a customer

Mean Queue Length

10 20 25

Fig. 5. Meanqueuelength(in paclets)asthe pricing interval
(in numberof obsenations)increases.

is 20ms. We increasethe pricing intenval by increment-
ing the numberof obserations(i.e. r) per contract. We
run several simulationsand calculatecorrelationbetween
theadvertisedpricesduringthe contractsandthe obsered
bottleneckgueudengthsduringthe simulations.
Customerssendtheir traffic with a fixed variancebut
changingmeanaccordingto the adwertisedpricesfor the
contracts.We assumehat the customerdave fixed bud-
getspercontractwith additionalleftover from theprevious
contract. The customersadjusttheir sendingrate accord-
ing to theratio B /p whereB is the customess budgetand
p is theadwertisedpricefor thecontract.So,customersn-
creaseor decreasé¢heir sendingrateright beforethe con-
tract startsaccordingly Notice that sincethe customers’
budgetis fixed, the sendingrate of the customerss ac-
tually fixed on long run, which fits to the fixed average
incomingtraffic rate(\;) assumptionn themodel.

B. Results

In this section,we presenseveral simulationresultsfor
validationof the modelandthethreeresultsit implies.

Figures5 and6 shav meanandvarianceof the bottle-
neckqueudength.We canseesignificantincreasdatleast
linear)in meanandvarianceof thebottleneckqueueasthe
pricing interval increaseginearly. FurthermoreFigure7
shavs the changein the coeficient of variation for the
bottleneckqueuelengthasthe pricing interval increases.
Notethatanincreasean the coeficient of variationmeans
a decreasen the level of control. We can obsere that
the coeficient of variationincreasessthe pricing inter
val increaseauntil 10r, and staysfixed thereafter This
is because¢he congestion-sensite pricing protocollooses
control over congestionafter a certainlength of pricing
intenal, whichis 10r in this particularexperiment.These
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resultsin Figuresb to 7 validateour claim aboutthedegra-
dationof controlwhenpricing interval increasesFurther
more, they alsoshav that dynamicpricing doesnot help
congestiorcontrolwhenthepricing intenval is longerthan
acertainlength.

To validatethe model, we presentthe fit betweenour
correlationmodel and experimentalresultswe obtained
from abore mentionedsimulationconfiguration.Figures3
and9 representhe correlationsobtainedby insertingap-
propriateparametenaluesto the modeland correspond-
ing experimentalcorrelations,respectrely for the cases

0.9
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0.4
0.3
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— Model
x Experimental

Correlation

0 10
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Fig. 8. Fitting analyticalmodelto experimentakesultsfor sim-
ulationtime of 15 pricingintervals.

0.9
0.8
0.7
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0.5 )
. ¢ Experimental
0.4

0.3
0.2
0.1

Correlation

20

30

Fig. 9. Fitting analyticalmodelto experimentakesultsfor sim-
ulationtime of 25 pricingintervals.

model.

We now validatethethreeresultsimplied in Sectionlll-
B. Figures8 and 9 shov that the correlationdecreases
slowerthanl/r whenthepricingintenal (i.e. r) increases
linearly. This validatesthe first result. Figure 11 repre-
sentsthe effect of changen the varianceof incomingand
outgoingtraffic (i.e. 0% ando%) onthe correlation. The
horizontalaxis shavs theincreasean variancef boththe
incoming and outgoingtraffic. The resultsin Figure 11
for differentvaluesof n obviously shaw thatanincrease
in traffic variancesauseslecreas@ thecorrelation.This

n = 15 andn = 25. Noticethatthe modelis dependent validatesthe secondresult. Finally for validation of the

on the experimentalresultsbecausef the parametersor
incomingandoutgoingtraffic variancegi.e. 0% ando%),
pricing factor (i.e. a), and meanof the incoming traffic
(i.e. \1). Wefirst calculatethe parameters?, 0%, a (ratio
of averageprice by averagebottleneckqueuelength)and
A1 from theexperimentakesults,andthenusethemin the

third result, Figure 10 representshe effect of changein
the meanof the incomingtraffic (i.e. A;) onthe correla-
tion. We canseethatincreasan \; causeslecreasen the
correlation. Anotherimportantrealizationis that the cor
relationis more sensitve to variancechangeghan mean
changessit canbe seerby comparingFigureslOandl11.
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Before concludingthis section,we would like to stress
on the relationshipbetweenthe correlationand the level
of congestioncontrol. As we previously stated,Figures
8 and9 shaw the effect of increasingpricing intervals on
the correlationfor differentvaluesof n. We canseethat
the correlationvalue staysalmostfixed after the pricing
intenal reachedgo 10r. Also, Figure 7 shaws the coef-
ficient of variationfor the bottleneckqueuelengthin the
experiments. Remembetthat coeficient of variation for
thequeudengthrepresentthelevel of congestiorcontrol
beingachiezed. We obsere in Figure7 thatit reachego
its maximumvalue(approximatelyl) whenthepricing in-
terval reachego 10r, which is the samepoint wherethe
correlationstartsstayingfixedin Figures8 and9. So, by
comparingFigure7 with Figures8 and9, we canobsere
thatthe correlationdecreasewhenthelevel of congestion
controldecreasesndalsoit staysfixedwhenthelevel of
congestioncontrol staysfixed. This shavs that the cor
relationcanbe usedasa metric to representhe level of
congestiorcontrol.

V. CONCLUSIONS AND DISCUSSIONS

We investigatedsteady-statelynamicsof congestion-
sensitve pricingin a custometprovider network. With the
ideathat correlationbetweenpricesand congestiormea-
suresis ameasuremerfor level of congestiorcontrol,we
modeledthe correlation. We found that the correlation
decreasesat mostinverselyproportionalto anincreasen
pricing interval. We alsofound thatthe correlationis in-
verselyeffectedby the meanand varianceof the incom-
ing traffic. This impliesthat congestion-sensit pricing
schemeseedto employ very small pricing intenals to
maintainhigh level of congestioncontrol for currentin-
ternettraffic with high variance[23].
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Fig. 11. Effect of changen the varianceof theincomingand
outgoingtraffic to the correlationfor a pricing interval of
800ms, i.e.r = 10.

From the model and also from the simulation experi-
mentswe obsenredthatthecorrelationbetweerpricesand
congestiormeasuredropsto very smallvalueswhenpric-
ing interval reachedo 40 RTTs even for a low variance
incomingtraffic. Currently we usually have very small
RTTs (measuredoy milliseconds)in the Internet. This
shawvsthatpricingintervalsshouldbe2-3secondgor most
casedn theInternet,which is not possibleto deploy over
low speedmodems. This resultitself meansthat deploy-
mentof congestion-sensi pricing over the Internetis
highly challenging.As the link speedsaregettinghigher
andRTTsaregettingsmaller it becomesarderto deplg
congestion-sensit prices. The resultsobviously shav
thattherewill be needfor intermediatemiddle-warecom-
ponentgi.e. intermediariespetweerindividual usersand
ISPs,when ISPsdeplg/ congestion-sensie pricing for
their service. Thesemiddle-ware componentwill be ex-
pectedto lower price fluctuationssuchthat price changes
will be possibleémplementover low speednodems.This
scenariosuggestghat congestion-sensie pricescanbe
implementedamonglISPsto control congestionput there
hasto be middle-ware componentsvhich canhandlethe
transitionof the congestion-sensit pricesto theindivid-
ual customersn a smoothway. Alternatively, insteadof
usingcongestion-sensiie pricing directly for the purpose
of congestiorcontrol,it canbeusedto improve fairnessof
anunderlyingcongestiorcontrol mechanismWe believe
that the secondapproachis morerealisticway of imple-
mentingcongestion-sensii pricing over theInternet.

Futurework will includecomplex modelingof the dy-
namicsof congestion-sensit pricing by relaxingsomeof
the assumptions For example,a modelwithout fixed ar-
rival rate assumptiorwould representhe behaior of the



IEEE

INFOCOM 2001

systemmoreappropriatelyAlso, betterbudgetmodelsare
neededn the model. Additionally, the assumptiorof in-

dependencdetweenthe arrival and departureprocesses [

mustberelaxedto make exactmodelingof the system.
Anotherimportantissueto explore is how much con-
gestioncontrol canbe achieredwith exactly whatlevel of
correlationbetweenprices and congestionmeasures.In
this papemwe assumedhatthe correlationvalueis adirect

repr
achi

esentatiof the level of congestiorncontrol that was
eved. Although we supportedhis ideaby providing

the match betweenthe correlationand the coeficient of
variationin SectionlV-B, thisissueneedsmoreinvestiga-

tion.
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