
1

On Randomizing the Sending Times in TCP and
other Window Based Algorithms

K. Chandrayana, S. Ramakrishnan, B. Sikdar, S. Kalyanaraman, A. Balan, O. Tickoo
Department of ECSE, Rensselaer Polytechnic Institute

Abstract— Current implementations of TCP suffer from
performance problems like bias against flows with higher
round trip times (RTTs), synchronization of windows, phase
effects in flows and correlated losses leading to throughput
degradations with Drop Tail queues. In this paper we pro-
pose a solution to these issues by introducing randomiza-
tion into the network through end-to-end congestion con-
trol protocols. For the TCP case we call it Randomized TCP.
Instead of sending back-to-back packets, Randomized TCP
spaces successive packet transmissions with a time interval
� � ��� �� � �������, where � is a zero mean random
number drawn from an Uniform distribution. Randomized
TCP, by introducing randomization in the network, reduces
synchronization, phase effects and bias against bursty traffic
and longer RTT flows, prevalent with current implementa-
tions of TCP and Drop Tail Gateways. Our results suggest
that by randomizing the sending times we can successfully
emulate almost all the beneficial features of RED except con-
gestion avoidance. Moreover, these benefits of randomiza-
tion can be achieved even when it is partially deployed. We
also introduce randomization in Binomial schemes and show
performance improvements with Drop Tail queues.

I. INTRODUCTION

Current TCP implementations have been known to suf-
fer from a number of phenomena which limit their effec-
tiveness and degrade performance, the primary amongst
them being: synchronization of congestion windows (or
correspondingly the loss instances) causing alternate over-
loading and underloading of the bottleneck [12], [14],
[15]; phase effects wherein a certain section of flows face
recurrent losses [6]; unfairness to flows with higher RTTs
[5]; delays and losses due to the bursty nature of TCP traf-
fic [15], [2]. In this paper we look at a comprehensive so-
lution to all these issues by randomizing the packet trans-
mission times in TCP flows.

Synchronization of windows and loss events for flows
sharing common links causes alternating periods of over-
load and underload thereby leading to inefficient resource
utilization. Synchronization can be attributed to two rea-
sons: (1) the sliding window flow control of the TCP,
which produces bursts of packets and (2) the Drop Tail
queue at the bottleneck, which drops all packets when the
buffer is full [8]. Phase effects refer to conditions where in

the bandwidth-delay product of the path of a flow is not an
integral multiple of the packet size [6]. Phase effects cause
a specific section of competing flows to experience recur-
rent drops causing unfair distribution of bandwidth and in-
creased latency. Phase effects are manifested in the net-
work preferentially dropping packets from a specific sub-
set of flows thereby reducing their throughput.

Random Early Drop or RED [7], tries to solve the prob-
lem of full queues, flow synchronization and phase effects
by dropping packets probabilistically if the queue length is
above some threshold thereby avoiding burst losses. How-
ever, it was shown in [11] that the number of consecutive
drops is higher with RED than Tail Drop, suggesting RED
might not help as anticipated with the synchronization of
flows. TCP Pacing was proposed in [15] to solve the prob-
lem of bursty losses by pacing the packet transmission
times at the sender. In [2], it is shown that while pacing
reduces synchronization for long flows, short Paced TCP
flows get synchronized. Also, it was shown that paced
TCP cannot compete fairly when placed together with TCP
Reno flows. The effect of pacing in solving the phase ef-
fects has not been investigated in literature.

The basic idea behind our scheme is that introducing
randomization into the system can break synchronization.
Also by introducing the randomization, we avoid burst
losses, thereby making the loss events “distributed”. This
then helps in solving the problem of phase effects. Though
RED can introduce randomization in networks to some ex-
tent, it is not widely deployed due to variety of reasons
[10], [11]. In this paper, we propose a modification to TCP,
called Randomized TCP, as a mechanism for introducing
randomization into the network. In Randomized TCP, in-
stead of sending back to back packets, the packet sending
times are randomized. Specifically, successive packets of
a window are sent after an interval of ��� ��� �������,
where cwnd is the congestion window in packets and x is
a random number drawn from an Uniform distribution on
[-I,I]. We call I the randomization interval. This solution
is distributed, can be implemented at the end systems and
thus is very attractive from an implementation perspective.

The increased randomization increases the entropy of
the system which correspondingly reduces the queue sizes

2

thereby improving the stability of the system [17]. Our
results show that Randomized TCP reduces phase effects
and synchronization even when multiplexed with TCP
Reno flows. Also it substantially reduces burst losses and
removes the bias against longer RTT flows. In addition,
the benefits of randomization can be reaped even when it is
partially deployed. Randomized TCP performs better than
or as well as Paced TCP and TCP Reno, independent of
the capacity and buffer size at the bottleneck and for both
short and long flows. The performance improvements can
be seen in throughput, fairness, loss rates, timeouts and
latency of the flows. We also investigate the impact of ran-
domization on a class of slowly varying congestion control
schemes called Binomial schemes [3] and show that by in-
corporating randomization in these schemes, the fairness
increases dramatically when competing with TCP flows in
drop tail queues.

In other words our scheme can emulate the beneficial ef-
fects of RED in a distributed manner without the complex-
ities and unfavorable aspects of parameter tuning of RED.
However, we wish to emphasize that unlike RED which is
a congestion avoidance scheme, Randomized TCP is just
a congestion control scheme. Thus Randomized TCP does
not emulate the congestion avoidance features of RED, at
best it provides the other beneficial features of RED which
were achieved by introducing randomization in the net-
work (by dropping packets probabilistically).

In short, the main contributions and conclusions of this
paper are as follows:
� It proposes a distributed (end system based) mechanism
to introduce randomization in network flows to prevent
synchronization and phase effects
� Phase effects with Drop Tail queues which persist with
TCP Reno are removed if Randomized TCP is used
� Synchronization of windows which persist with TCP
Reno and Drop Tail queues are reduced
� The presence of a single Randomized TCP flow can re-
move the bias against longer RTT flows at the bottleneck
thereby motivating incremental deployment
� Randomized TCP, instead of burst losses, distributes
losses over time, emulating beneficial aspects of RED
� Randomized TCP reduces the bias against flows with
longer RTTs in Drop Tail queues
� Randomization considerably improves fairness of bino-
mial schemes even with Drop Tail queues

The rest of the paper examines the Randomized TCP in
detail. In Section II we discuss previous work in this area.
Section III describes the Randomized TCP scheme, the in-
tuitive reasons as to why it works and the evaluation of an
optimal randomization interval. Section IV describes the
implementation details, performance metrics and the sim-

ulation setup. Comparison of the performance of Random-
ized TCP, Paced TCP and TCP Reno is described in Sec-
tion V while Section VI evaluates the bias against longer
RTT flows, phase effects, synchronization and burst losses
for Randomized TCP and TCP Reno. Finally we present
the conclusions and future work in Section IX.

II. BACKGROUND AND RELATED WORK

Rate based schemes, in contrast to window based
schemes, send out packets at regular intervals thus avoid-
ing burst transmissions. Since rate based schemes loosely
observe the packet conservation principle they can at times
be less responsive to network congestion. TCP Pacing [15]
is a hybrid approach between window based schemes and
rate based schemes. In pacing, packets to be sent in a win-
dow are spaced by � � ��������. This spacing of
packets avoids back to back transmissions and hence re-
moves the burstiness of TCP.

Pacing was first suggested in [15] as a correction for the
compression of ACKs due to cross traffic. Since then the
concept of pacing has been applied to slow-start, after a
packet loss and after an idling time in case of web traf-
fic. For details on TCP pacing, we refer the reader to [2]
and the references therein. In [2] it is shown that Paced
TCP removes synchronization with long flows, improves
fairness over TCP Reno and achieves the same through-
put as TCP Reno. However, in presence of short flows the
authors show that Pacing gets synchronized causing larger
latencies. Also, the authors show that when Paced TCP is
beaten by TCP Reno when competing together.

A modified version of pacing is also evaluated in [9]. In
[9] the spacing interval is defined as ���

������
, where V is

the tunable parameter, which controls the aggressiveness
of the pacing. However, the effect of this scheme on the
synchronization of flows, phase-effects, bias against long
RTT flows etc is not investigated. They observe that with
bulk data transfer the modified pacing shows results simi-
lar to TCP Reno. However, for a web-like load model, the
modified paced TCP exhibits lower packet loss than TCP
and also the average transfer latencies are lower. The au-
thors, however do not discuss the parameter setting for V
and it’s effect on the pacing scheme. Also, they do not con-
sider the case where TCP Reno and Paced TCP are multi-
plexed on the same link.

The main purpose of this paper is not to compare the
performance of Randomized TCP with Paced TCP [2], [9]
but to illustrate the benefits of introducing randomization
in the network. However for the purpose of completeness
we have also compared the performance of Randomized
TCP and Paced TCP (Section VII). The main focus of
this paper is to illustrate how by introducing randomiza-

3

tion into the network (by randomizing the sending times)
we can remove almost all the deficiencies of Tail Drop
gateways, specifically bias against bursty and longer RTT
flows, synchronization and phase-effects.

III. RANDOMIZED TCP

Randomized TCP is similar to Paced TCP in that it
“paces” packet transmissions but instead of spacing the
transmissions equally, it adds or subtracts a random inter-
val to the packet sending times at TCP sources. Packet
transmissions are scheduled at intervals of ���

����
�� � ��,

where x follows the Uniform Distribution on [-I, I]. Ev-
idently, I has to be between 0 and 1. A packet is trans-
mitted at the expiry of the timer, if the window allows a
packet to be sent. If not, upon reception of an ACK, we
schedule the packet transmission with a random delay of
���
����
	, where y is U(0,I). Setting I to 0 reduces Random-

ized TCP to Paced TCP. The Randomized TCP’s sending
time algorithm is stated in Section III-C.

In Section V, we investigate the optimal setting of the
randomization interval and find that a Uniform distribu-
tion on [-1,1] is the best. This choice of Uniform distribu-
tion can be intuitively justified as; a) since the distribution
is centered around 0, on an average there is “no random-
ization” and Randomized TCP behaves as Paced TCP, b)
and a minimum value of -1 of randomization implies TCP
Reno implementation. This implies that sometimes we
send back-to-back packets and sometimes we send paced
packets. Thus with a randomization interval value of 1,
randomized TCP keeps moving forth between TCP Reno
and TCP Paced. Intuitively, this entails an early detec-
tion of congestion (when the TCP behaves as Reno) and
an even distribution of losses and throughput (when TCP
behaves as Paced). Thus Randomized TCP takes the best
of both Reno and Paced TCP and ensures lesser drops (be-
cause of early congestion detection) and fairer throughput.

In Paced TCP packets from each source reach the bot-
tleneck at an uniform rate which can lead to near perfect
interleaving. Such situations can cause all sources to lose
packets thereby resulting in all the sources decreasing their
windows together, resulting in synchronization. But with
randomization, the rate is not uniform at the bottleneck and
packets from flows are dropped after differing times due to
the extra delay incurred due to randomization. This means
that sources decrease their windows at different times and
hence the periods of increase and decrease are not as syn-
chronized as in Paced TCP. So the congestion epochs for
different flows get out of sync and the network utilization
is higher. But the nice property that comes because of ran-
domization is that the source which has lost packets once is
less likely to lose again (this may not be the case with de-

terministic TCP for some parameter settings [6]), thereby
ensuring that over a larger time scale the rate distribution
is fair. We also note that the probability of two pack-
ets coming nearly back to back is significant only when
the window size is large. This means that the probability
of multiple packet drops will be very low if the window
size is small, thereby reducing timeouts. Using a simple
M/M/1/K queueing analysis, similar to that in [11], in Sec-
tion III-B we try to get a quantitative feel of the probability
of a packet getting dropped with Randomized TCP.

Randomizing the sending times also results in extra de-
lays causing the RTT to increase artificially. This causes
Randomized TCP to get beaten down when competing
with TCP Reno. It is well known that TCP’s throughput is
directly proportional to the square root of the window in-
crease parameter and inversely proportional to RTT [13].
To allow Randomized TCP to compete fairly with TCP
Reno, we analytically characterize the increased RTT (in
Section III-A) and make the increase factor in TCP pro-
portional to the square of the ratio of the changed RTT to
the real RTT.

A. Analytical Characterization of Increase Parameter for
Randomized TCP

In this section we outline the methodology for setting
the increase parameter,
 for Randomized TCP so as to
make it compete fairly with TCP Reno. This is required
because randomizing the sending times results in extra de-
lay and hence slows down the window growth. As such
it is likely that Randomized TCP will lose to TCP Reno
when competing on a single bottleneck.

Consider a Randomized TCP connection with a constant
window size of w. Let the real RTT for the connection be
a constant denoted by R. Each packet is sent after a time
equal to ��� � ���� where � is a Uniform random vari-
able between ���� �� (The optimal value of this interval is
shown to be 1 in section V, but presently we treat it more
generally). Let the first packet be sent at time � 	. Then
the timer for the � � ��	 packet of the connection will be
scheduled at time, say �, such that

� � ��� �
�

�

��

��

�
� (1)

where �
 is the random value for the ��	 packet in the win-
dow. The �
s are independent and identically distributed.
The effective RTT of the flow is the given by the time when
�� � ���	 packet is sent. In the absence of random varia-
tions in real RTT, the ACK for the first packet comes ex-
actly after time�. If

��

�� �
 � 	 then � � � and we will

send the �� � ���	 packet at time �. Else, the �� � ���	

4

packet will be sent after a random time ���
�
	 after the

ACK arrival, where 	 is drawn from an uniform distribu-
tion on [0,I].

Thus the effective RTT can be expressed as

������ �

�
��� � �

�

��

�� �
� w.p. ��

��

�� �
 � 	�

��� �
�
� w.p. ��

��

�� �
 � 	�

(2)
where w. p. is short for “with probability”. Then, the mean
effective RTT, ��� ��� , can be expressed as

��� ��� � ���� �
�

�
��

��

��

�
 � �
��

��

�
 � 	����

��
��

��

�
 � 	�� ���� �

	

�
�� ��

��

��

�
 � 	�(3)

where
	 is the mean of 	 equal to ���. Since �
 follows
an Uniform distribution around zero, its easy to see that
��
��

�� �
 � 	 � � ��
��

�� �
 � 	 � � 	��.
Assuming that the window size is sufficiently large to

invoke the the Central Limit Theorem we get

��

��

�
 � ��	� ���� �� � � �
��

(4)

The pdf of
��

�� �
 conditioned on
��

�� �
 � 	 can be
found out to be twice that of the Gaussian pdf multiplied
by the Unit step function. From this we can derive the
conditional mean as

��
��

��

�
 � �
��

��

�
 � 	�� �

�
����

�
(5)

Plugging these back into the equation for ������ , we get

��� ��� � ��
�

��
�

�
����

�
�
�

�
� (6)

For Randomized TCP with increase parameter
 and ef-
fective mean RTT,��� ��� , the throughput is proportional

to
�
�

��� ���
. To make the throughput same as that of TCP

Reno (with
 � � and��� � �), we set
 �
���

�

���

�� for
randomized TCP. In the real implementation, since win-
dow value changes with time, ������ changes with time
and so we change the value of
 also with time.

B. Queueing Analysis to show reduction in Burst losses
with Randomized TCP

Consider a M/M/1/K queueing system where the packets
arrive according to a batch Poisson process; specifically,

bursts (or batches) of B packets arrive according to a Pois-
son process of rate �. Further, let us denote by ���� as
the stationary distribution of k number of packets in the
queue. Then using the PASTA (Poisson Arrival See Time
Averages) property the probability of a packet drop in a
Tail Drop router with TCP as input can be calculated as:

��� � ���� ���� � ��
� � �

�
� ������� �����

�

�

Using the same model we will now calculate the proba-
bility of a packet being dropped for Randomized TCP. We
first note that the size of burst, B, will now be changed
because Randomized TCP paces the packets. Hence we
first try to find the new burst size (given that the original
burst size was B) and then calculate the packet drop prob-
ability. Figure 1 shows the epochs at which the packets
are sent. Let us call the time instants at which the pack-
ets from a Paced TCP would have been sent as centered
epoch. These centered epochs now represent the time in-
stants around which we randomize the sending times of
packets in Randomized TCP. Suppose a packet is sent at
some time, x after the centered epoch (as shown in fig-
ure 1). Let us also define the length of the packet as L
bits and the bottleneck link capacity as C bits/sec. Further,
let the window size at steady state be W (B � W) and let
RTT denote the round-trip time. Then the probability, p,
of packets from a burst of B, arriving back-to-back at the
bottleneck router can be calculated as

� �

� ���
�

�

�
�

�

�
���
�

� �
�

�

�
�

���
�

�
�� �

�

�

�

�
(7)

Note that the now, �
�

� ����� � �
��
� ��, represents the

Centered Epochs
x

RTT / W

Time at which our reference packet is sent

for the packets to arrive back−to−back at the bottleneck queue
Time at which next packet must be sent

which is less than or equal to L/C .

Fig. 1. Packet Sent Times with Randomized TCP

upper bound on the number of back-to-back packets which
can be received at a bottleneck with Randomized TCP and
a burst of size B. Also note that the above analysis holds
true iff �

��
� ���

�
which holds true for WANs and MANs.

Using the above equation, the probability that a packet
gets dropped with Randomized TCP and drop tail router
can be calculated as

���� � �����������
�

�

� �

��
����������

�

���
�

��
�

5

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

.
.
.

.
.
.Router Router

S1

S2

Sn

D2

D1

Dn

30ms

x Mbps

10ms

4x Mbps

10ms

4x Mbps

Fig. 2. Topology used in the simulation.

Thus from the above observation we can conclude that
the probability that a packet gets dropped with Random-
ized TCP and drop tail queue decreases. However, it
should be noted that Poisson arrivals do not capture the
exact packet arrivals in the Internet. Nevertheless, this ex-
ercise is just intended to show that the probability of burst
losses are reduced with Randomized TCP and have been
validated by our simulation results in Section VI-D.

C. Randomized TCP Pseudo-code

Define by
 the original increase parameter for the TCP
Reno and by R the RTT. Then the Randomized TCP’s al-
gorithm can be stated as
� Send a packet. Schedule the next packet to be sent at
time � ���

����
�� � �� where x is Uniformly distributed on

[-1,1].
� Let

�

be the arrival time of next ack. Then
– If

�

� send the next packet at t.
– Else send the next packet after ���

����
	 where y is uni-

formly distributed on [0,1].
� At each RTT (estimate) update recalculate the new in-

crease parameter as
��� �

�
������

�

	�
IV. IMPLEMENTATION AND SIMULATION SETUP

We have implemented Randomized TCP in the network
simulator ns. For our implementation, we used the conges-
tion control and loss recovery mechanisms of TCP Reno
and thus Randomized TCP has the usual slow-start and fast
recovery and retransmit mechanisms. For the simulations
reported in this paper, we disabled the delayed acknowl-
edgments option. Also, we used the modified window in-
crease parameter for Randomized TCP implementation.

Figure 2 shows the topology used in the simulations.
The access links were configured at a rate 4 times greater
than that of the bottleneck link and all the links use Drop
Tail queues. The maximum advertised window is set suffi-
ciently high so that it does not constrain the actual window.
We use a Maximum Segment Size of 500 bytes.

We evaluate the performance of randomized TCP for the
following set of metrics: average throughput, fairness, loss

rates, timeouts, latency and synchronization. We charac-
terize fairness using the modified Jain’s fairness index, [4],
[2]. Jain’s fairness index is defined as

� �
�
��

�� �
����
�
�

��
��

����
����
�
��

(8)

where �
 is the throughput of the ��	 flow, ���
 is the
round-trip time of flow � and � is the number of flows.

To study the synchronization of flows we use the co-
variance between the congestion window of two compet-
ing flows. Flows would be synchronized if their windows
increase and decrease simultaneously. In this case both
flows’ windows (say �� and ��) would be above or below
their mean values at any time , i.e. ������
���������

��� � 	. So the cross-covariance coefficient of synchro-

nized flows would be positive. In the case where the flows
are totally out of sync, ����� �
�������� �
��� � 	,
since when one flow has a large window, the other would
have a smaller window and vice versa. So the cross-
covariance coefficient of out of sync flows would be neg-
ative. This shows that the cross covariance coefficient of
greater than 0 implies in-phase synchronization while less
than 0 implies out-of phase synchronization. However, too
large a negative value of cross-covariance denotes that syn-
chronization effects still persist albeit in a negative sense.
In [15] the authors also argue that out-of-phase synchro-
nization is not good. Hence a value equal to or close to 0
for cross-covariance coefficient should be the optimal.

In the following sections we present the simulation re-
sults. We first observe the effect of bottleneck bandwidth,
buffer sizes and RTTs on the randomization interval � in
section V. Using these simulations we propose a value of
the interval for optimal performance.

Section VI shows the performance of Randomized TCP
with respect to phase effects, synchronization amongst
flows and burst losses. In Section VII-A, we investigate the
interaction between Randomized TCP and Reno, for fair-
ness, throughput, losses and timeouts. We also present the
result of comparative performance of Randomized, Paced
and Reno TCP in Section VII for the following set of met-
rics: throughput, losses, timeouts, fairness and latency for
both bulk-data transfer and short-web like transfers. Fi-
nally in Section VIII we present the results of extension of
Randomization to Binomial schemes.

V. PARAMETER TUNING

The randomization interval has a significant impact
on the performance of Randomized TCP, and hence its
characterization is of utmost importance. In this sec-
tion we present the effect of change in bottleneck band-
width, buffer size, number of flows and round-trip times

6

on throughput, number of losses, timeouts as a function of
the randomization interval. Through these simulations we
obtain the optimal value of randomization interval. Due to
space constraints we present the summary of the findings
of these simulations here, the detailed results (and simula-
tion settings) can be found in the Technical Report [16].

The results obtained from the simulation indicate that a
higher value of randomization interval results in increased
throughput and lower losses and timeouts. Hence we
choose the randomization interval to be 1. Randomization
interval of 1 implies that inter-packet time intervals can lie
anywhere between 	 and ���������. This means that
packets are randomized over a larger interval and this re-
sults in increased scope for breaking the synchronization,
thereby resulting in better performance.

VI. BIAS AGAINST LONG FLOWS, PHASE EFFECTS,
SYNCHRONIZATION AND BURST LOSSES

A. Bias Against Long Flows

It has been widely reported that Drop Tail gateways
have a bias against long flows [7]. In this section we first
demonstrate this bias and its reduction with the use of Ran-
domized TCP. We present the results with single as well as
multiple bottleneck topologies.

A.1 Single Bottleneck

We performed simulations with two flows, one shorter
RTT source(60 ms) and another longer RTT source (80
ms) and for differing link capacities to demonstrate the
bias against long flows. We varied the bottleneck capacity
but kept the buffer size constant at 25 packets with Drop
Tail queues. The simulation time was 100 seconds.

If we assume that both flows see the same drop rate then
the throughput for the two flows would be distributed as
inversely proportional to the RTT (Throughput 	 1/RTT)
[13]. Thus here the throughput should be distributed as
8/14 (0.57) and 6/14 (0.43) of the bottleneck capacity,
amongst the 60ms and 80ms sources respectively. Now
consider the case when the bottleneck bandwidth is 2
Mbps and both the longer as well as the shorter flow use
TCP Reno. The throughputs for the longer and the shorter
flow in this case are 119.81 Kbps and 298.93 Kbps respec-
tively. The share of the bottleneck for the two flows is 0.29
(long flow) and 0.71 (short flow) as against the theoretical
values of 0.43 and 0.57 respectively. Therefore, we find
that when both the sources use TCP Reno, bias against
longer flow exist as expected. However, with the same
2 Mbps bottleneck, if we randomize one source (in this
case, the shorter source), we find that bias against longer
flow is considerably reduced as seen in Table I. In fact the

throughput for the 80ms and 60ms flows are 166.11 Kbps
and 196.3 Kbps respectively. Also their share of the bottle-
neck are 0.46 (long flow) and 0.54 (short flow) as against
the theoretical values of 0.43 and 0.57 respectively. This
beneficial effect of Randomized TCP is preserved even if
we randomize the longer flow.

A similar statement about the bias against longer flow
can be made for the other case where the bottleneck is of
3 Mbps. There too when both the flows use TCP Reno the
bottleneck is shared as 0.34 for the long flow and 0.64 for
the short flow instead of 0.43 and 0.57 respectively. But
when one of flows uses Randomized TCP while the other
uses TCP Reno, the bottleneck is shared as 0.44 for the
long flow and 0.56 for the shorter flow. These two exam-
ples elicits that the bias against longer flows are present
with TCP Reno and are removed with Randomized TCP.

We investigated another simulation setup with a bot-
tleneck of 1 Mbps, a Drop-Tail queue of 25 packets and
10 flows. In this experiment we had 5 sources each with
RTTs of 60ms and 80ms. We first show the occurrence of
bias against longer flows when all these sources used TCP
Reno, and then we show the removal of this bias when all
these sources used Randomized TCP. But more interest-
ingly, we demonstrate a reduction in bias even when any
one source uses Randomized TCP and the rest use TCP
Reno. This implies that a presence of even a single Ran-
domized TCP at a bottleneck might be helpful in reducing
the bias against flows with larger RTT. Thus even an in-
cremental deployment of Randomized TCPs would benefit
the entire group of users. The results of this simulation are
tabulated in Table II.

A.2 Multiple Bottleneck

In this section we evaluate the performance of TCP
Reno and Randomized TCP with a multiple bottleneck
topology. The topology is shown in Figure 3 consists
of two bottleneck links of capacity 1 Mbps and delay of
20ms. All the other links in the figure have a capacity
of 4 Mbps and delays as shown in Figure 3. The long
flows have end-to-end propagation delay of 120ms while
the short flows have an end-to-end propagation delay of
60ms. Our simulation setup consist of 2 long flows de-
noted by (S1-D1) and (S2-D2) source-destination pairs
and two small flows denoted by (S3-D3) and (S4-D4)
source- destination pairs, as shown in figure 3. We inves-
tigate this topology when (S1,S2) and (S3,S4) use TCP
Reno and Randomized TCP. Table III tabulates the results
for different simulation setups.

We can see from the Table III that there exists bias
against flow(s) with longer RTT when all the flows use

7

RTT 5 Short Reno 5 Short Random 5 Short Reno 5 Long Reno
5 Long Reno 5 Long Random 4 Long Reno + 4 Short Reno +

1 Long Random 1 Short Random
Short 62.6 41.50 45.51 50.02
Long 33.35 33.60 35.80 34.71

TABLE II
COMPARISON OF THROUGHPUT (IN KBPS) FOR DIFFERENT CONFIGURATION OF COMPETING 5 LONG FLOWS (RTT=80MS)

AND 5 SHORT FLOWS (RTT=60MS)

Capacity: 2Mbps

RTT Type Throughput Losses Time-
pkts/sec (%) outs

Long Reno 119.81 5.7 176
Short Reno 298.93 1.1 34

Long Reno 166.11 1.9 52
Short Random 196.3 1.8 43

Capacity: 3Mbps

RTT Type Throughput Losses Time-
pkts/sec (%) outs

Long Reno 208.05 2.7 64
Short Reno 408.42 0.6 28

Long Reno 241.64 1.2 43
Short Random 300.08 1.05 29

TABLE I
BIAS AGAINST LONGER FLOWS: DISTRIBUTION OF

THROUGHPUT IN PROPORTION OF RTTS WITH

RANDOMIZED TCP SHOWS REDUCTION OF BIAS IN

CONTRAST TO TCP RENO.

TCP Reno (displayed by the considerable difference in
their throughputs) and is subsequently removed when all
the flows use Randomized TCP. However, an interesting
observation again is that when the short flows use Ran-
domized TCP while the long flows use TCP Reno, we see
reduction in this bias. This further supports our argument
that a presence of even a single randomized flow at every
bottleneck is sufficient to reduce the bias against longer
flow(s) and thus achieve a better fairness amongst flows.
In another simulation setup where the long flows use Ran-
domized TCP and the short flows use TCP Reno, we see
that the bias persists. This is intuitively true too. The
long flows are the only sources of potential randomness
at the bottleneck, which is visible at the first bottleneck.
However, at the second bottleneck the streams arrive in
phase because the randomness at the first bottleneck is bro-
ken by the “departure process” of the queue. Thus at the
second bottleneck there is no randomization to break the
bias against longer flows. Hence the long flows get beaten
down and the bias persists.

RouterRouter

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
�� �

�
�

�
�
�

20ms
Router

D1

10ms

4x MbpsS1

D2

S3

D3

D4

S2

S4

5ms

10ms

10ms

10ms

5ms 5ms

5ms

1 Mbps

20ms

1 Mbps

Fig. 3. Multi Bottleneck Topology used in the simulation.

800 Kbps
100 ms

8 Mbps

1 2

4

3

Source Source

Sink

Gateway

5 msd ms
8 Mbps

Fig. 4. Single bottleneck Simulation Setup to show phase ef-
fects with Reno and Drop Tail Gateways.

B. Phase Effects

In [6] the authors show that phase effects with drop-tail
queues can cause a source’s loss events to get synchro-
nized with the full queues. Consequently it loses a large
number of packets and gets a very low throughput. The au-
thors also note that an appropriate randomization included
in the delay would reduce the phase effects. In this sec-
tion we show the presence of phase effects in Drop Tail
Gateways with TCP Reno as first shown in [6]. Subse-
quently, using the same simulation setup we show reduc-
tion in phase-effects with the use of Randomized TCP. We
use the same simulation setup as discusses by the authors
in [6]. Since phase-effects can be shown by either dis-
proportionately high number of losses or low throughput
in this paper we chose losses to demonstrate phase-effects.
Each point in these losses-time plot corresponds to the av-
erage losses for the last 50 seconds of the simulation.

Figure 4 shows the setup for a single bottleneck topol-
ogy for a 100 ms simulation, a bottleneck buffer of 15
packets and the packet size of 1000B. In this simulation

8

Source (S1,S2): Reno (S1,S2): Random (S1,S2): Reno (S1:S2) Random
(S3,S4): Reno (S3,S4): Random (S3,S4): Random (S3,S4) Reno

S1 50.28 61.28 56.12 50.04
S2 44.08 55.64 59.24 55.00
S3 106.18 83.84 85.20 94.50
S4 108.16 84.36 86.00 98.92

TABLE III
COMPARISON OF THROUGHPUT (IN KBPS) FOR MULTI-BOTTLENECK TOPOLOGY

0

10

20

30

40

50

60

70

80

90

100

1 1.2 1.4 1.6 1.8 2 2.2

Randomized TCP

TCP Reno

Round Trip Time Ratio

N
od

e
2’

s L
os

se
s (

%
)

0

20

40

60

80

100

1 1.2 1.4 1.6 1.8 2 2.2

Round Trip Time Ratio

N
od

e
3’

s L
os

se
s (

%
)

Randomized TCP

TCP Reno

(a) Single Bottleneck: Node 2 does not see disproportionate (b) Multiple Bottleneck: Node 3 does not see disproportionate
losses with Randomized TCP, Phase effects reduced. losses with Randomized TCP, Phase effects reduced.

Fig. 5. Phase Effects

we vary the RTT of source 1 by varying the delay between
source 1 and bottleneck. In figure 5(a) we plot the losses of
Source 2 against the ratio of RTTs of the two sources. As
can be seen from the figure 5(a) that for most of the data
points, source 2 sees almost no loss (source 1 sees all the
losses) while for some particular values of the RTT ratios
(between 1.85-2.05) it sees most of the losses showing the
presence of phase effects. However, we see that the phase
effects are removed if Randomized TCP is used and the
source 2 never sees disproportionately higher percentage
of network losses.

We also evaluated Randomized TCP’s performance vis-
a-vis phase effects for a multiple bottleneck topology as
shown in figure 6. In this simulation we varied the RTT
of source 1 by varying the delay between Source 1 and
bottleneck 1. The packet size used for the simulation was
1000B, the buffer length at each bottleneck was 15 pack-
ets (slightly more than 1 bandwidth delay product) and the
simulation time was 100 ms. In Figure 5(b) we plot the
percentage losses (of the total losses at the second bottle-
neck) as seen by Source 3 against the RTT ratios of source
1 and 2. Again it can be seen that Source 3 sees almost
80% losses with TCP Reno while the losses are consid-
erably reduced (to about 40%) when Randomized TCP is
used. This further verifies the presence of phase effects in
Reno and Drop Tail gateways and removal of phase effects
with the use of Randomized TCP.

5

2

7

8

5 ms

80 ms

5 ms

800 Kbps

1

4

8 Mbps

6

3

8 Mbpsd ms

800 Kbps
20 ms 5 ms

8 Mbps

12 ms

8 Mbps

8 Mbps

Gateways

Source Source Sources 2, 3
Sink for

Source 1
Sink for

Source

Fig. 6. Multiple bottleneck Simulation Setup to show phase
effects with Reno and Drop Tail Gateways.

C. Synchronization

C.1 Synchronization in Bulk Data Transfer

We ran separate simulations with 2, 3, 10 and 25 flows
of Reno, Paced and Randomized TCP and calculated pair-
wise (between flows) covariance coefficients of conges-
tion windows. We maintained the default simulation setup
as described in Section IV and the simulation time was
1000 seconds. The congestion window for each flow was
sampled using a sample interval of 0.1 seconds, i.e., the
congestion window was sampled approximately once ev-
ery RTT. This sample set was then used to calculate the
pairwise covariance coefficients.

In our first simulation with 2 flows, we varied the bottle-
neck bandwidth from 3 Mbps to 5 Mbps while keeping the
buffer fixed at 25 packets. Table IV shows the covariance
coefficients for each of the flows. It can be inferred that

9

Bandwidth Reno Paced Randomized
3 Mbps 0.4254 -0.4124 0.1721
4 Mbps 0.3152 -0.1839 0.1604
5 Mbps 0.6700 -0.3302 0.0799

TABLE IV
COMPARISON OF COVARIANCE COEFFICIENT OF

CONGESTION WINDOW FOR TWO FLOWS FOR TCP RENO,
PACED AND RANDOMIZED. (VALUE AROUND 0 IS GOOD.)

Flow Pair Reno Paced Randomized
(1,2) 0.5183 -0.1454 0.2525
(1,3) 0.5416 -0.1537 0.1422
(1,4) 0.3492 -0.1833 0.1535

TABLE V
COMPARISON OF COVARIANCE COEFFICIENT OF

CONGESTION WINDOWS FOR 3 FLOWS FOR TCP RENO,
PACED AND RANDOMIZED. (VALUE AROUND 0 IS GOOD.)

the synchronization in Reno increases as the bottleneck
bandwidth increases. However Randomized TCP keeps
the synchronization low while Paced TCP is out of phase
synchronized. Also, it is interesting to note that while the
synchronization increases in Reno with increase in bottle-
neck bandwidth, it decreases in Randomized.

In our second simulation with 3 flows, we kept the bot-
tleneck bandwidth constant. Covariance coefficient values
are tabulated in the table V. Again, it is evident that Reno
is the most synchronized and Paced TCP is out of phase
synchronized. Also, it can be seen that both Paced and
Randomized TCP lead to reduction in the synchronization.

Figures 7(a) and 7(b and c) plot the pairwise covariance
coefficients for 10 and 25 flows. The y axis of the graph
plots the covariance coefficient against the pair of flows
on x axis, i.e., each unit of x axis corresponds to a pair of
flows, starting in the order (1,2), (1,3), . . . , (2,3) Since
the graphs for 25 flows are not visible on one graph we
plot it in two. Fig 7(b) plots the covariance for Reno and
Randomized TCP and 7(c) plots it for Randomized TCP
and Paced TCP. Both Paced TCP and Randomized TCP
break synchronization while Reno is highly synchronized.
Also, as the number of flows start increasing, Randomized
TCP starts to get better than Paced TCP.

C.2 Synchronization with Short Web Transfers

In [2] the authors contend that one of the reasons for
higher latency with Paced TCP in short web like trans-
fers is that connections seem to get synchronized. In this
simulation setup we have evaluated and verified their ar-
guments. For the simulation we used a bottleneck link of

4Mbps, a RTT of 100 ms and a buffer of 25 packets. 25
flows were always maintained in the network. As soon as
any flow finishes, a new flow initiates transfers. We varied
the workload from 10 packets to 2500 packets.

Figure 8 plots the covariance coefficients of congestion
windows for Paced and Randomized TCP. A closer look
shows that the covariance for Randomized TCP is consis-
tently lower than that for Paced TCP. In Paced TCP packets
reach the bottleneck at an uniform rate with near perfect in-
terleaving. This causes all sources to lose packets, thereby
resulting in all the sources cutting down their windows to-
gether, and hence higher covariance. But with randomiza-
tion, the rate is not uniform at the bottleneck and packets
from flows are dropped after differing times due to the ex-
tra delay incurred because of randomization. This means
that sources decrease their windows at different times and
hence the periods of increase and decrease are not as syn-
chronized as in paced, resulting in a decreased covariance
coefficient between the flows.

D. Burst Losses

In this section we investigate the proposition that Ran-
domized TCP reduces the burst losses and also that the
drops with Randomized TCP and Drop Tail queues are in-
dependent. For testing the first proposition, we varied the
bottleneck bandwidth from 1-2 Mbps and the number of
sources from 20 to 30. The end-to-end propagation delay
was 200ms, the bottleneck buffer was set as 25 packets.
We assumed that there is no reverse path congestion and
the maximum number of back-to-back packets or burst at
the bottleneck will be just 2. We also verified this argu-
ment by cross checking the burst loss size with the con-
gestion window trace file for each flow at the bottleneck.

Table VI shows the results average number of burst
losses for TCP Reno and Randomized TCP as the bottle-
neck bandwidth and the flow multiplexing is increased. It
can be inferred from the table that as the number of flows
increase, with the bandwidth kept constant, the number of
back-to-back losses increase in TCP Reno and decrease
(or remain constant) in Randomized TCP. This supports
our argument that Randomized TCP reduces burst losses.

It can also be conjectured here that Randomized TCP
distributes the loss over time. This is because, TCP Reno
and Randomized TCP have the same congestion control
policy the total number of drops are likely to be same
for both. Thus, by reducing the burst losses Randomized
TCP makes the losses distributed. This argument is fur-
ther supported by the results in Section VI-A. There it was
shown that Randomized TCP is successful in removing the
TCP bias against longer RTT flows with Drop Tail queues.
In [1] the authors show that TCP bias against long flows

10

0 10 20 30 40 50

Flow Pairs

0

0.2

0.4

0.6

0.8

C
ov

ar
ia

nc
e

C
oe

ff
ic

ie
nt

Reno
Paced
Randomized

0 50 100 150 200 250 300

Flow Pairs

-0.2

0

0.2

0.4

0.6

0.8

C
ov

ar
ia

nc
e

C
oe

ff
ic

ie
nt

s

Reno
Randomized

0 50 100 150 200 250 300

Flow Pairs

-0.1

-0.05

0

0.05

0.1

0.15

0.2

C
ov

ar
ia

nc
e

C
oe

ff
ic

ie
nt

s

Paced
Randomized

(a) 10 flows (b) 25 flows (c) 25 flows

Fig. 7. Covar. coeff. of Congestion Window for (a) Reno, Paced & Randomized (b) Reno & Randomized, (c) Paced & Randomized

No. of 1 Mbps 2 Mbps
Flows Reno RTCP Reno RTCP

20 87 23 1 27
25 119 18 100 31
30 141 15 168 28

TABLE VI
COMPARISON OF AVERAGE NUMBER OF BURST LOSSES IN

RENO AND RANDOMIZED TCP (RTCP).

0 50 100 150 200 250 300

Flow Pairs

-0.2

0

0.2

0.4

0.6

Co
va

ria
nc

e C
oe

ffi
cie

nts

Paced TCP
Randomized TCP

Fig. 8. Covariance coefficients for Paced and Randomized TCP
for a transfer of 2500 packets. (Value around 0 is good.)

can be reduced by Active Queue Management which dis-
tributes losses uniformly over time, specifically RED. The
similarity of our simulation results in VI-A suggest that
Randomized TCP does succeed in making losses indepen-
dent by distributing them over time.

E. Summary

The observations of this section can be summarized as:

� Randomized TCP increases the fairness amongst com-
peting flows of different RTTs by removing the bias
against the longer RTT flows (as found with TCP Reno)
with Drop Tail queues.
� Presence of a “single” Randomized TCP flow at ev-
ery bottleneck (Drop Tail Gateways) can reduce the bias
against longer RTT flow at that bottleneck.
� Phase effects, which persist with TCP Reno with Drop
Tail queues, are reduced if Randomized TCP is used.
� With bulk data transfers randomization reduces the syn-
chronization of windows (thus loss events) as against TCP
Reno. This should reduce the queue oscillations.
� Randomized TCP reduces synchronization with short
web-transfers. This should lower average latency.

� Randomized TCP drastically reduces the number of
burst losses. Specifically its performance increases as the
number of flows increase.
� With Drop Tail queues Randomized TCP tries to dis-
tribute losses over time thus making them appear indepen-
dent.

VII. THROUGHPUT, LOSS, TIMEOUTS, FAIRNESS AND

LATENCY

In this section we report the performance of Random-
ized TCP as compared to TCP Reno and Paced TCP. We
evaluate all these three schemes for both Bulk data trans-
fers (with all the flows having same RTT and in the other
case where every flow has a different RTT) and small Web
like transfers. Specifically, we compared the following
metrics: average throughput, loss rate, timeouts for bulk
data transfers and latency for small web like transfers. We
varied the workload of the small web-like transfers be-
tween 10 to 2500 packets. Due to reasons of space con-
straints we only summarize our results here. Randomized
TCP performed as well as or better than Paced and Reno
TCP for most of these scenarios. The performance was no-
tably better in the case where all flows had different RTTs.
Randomized TCP also reduces the latencies of short-web
like transfers as compared to those with Paced TCP. How-
ever for very small transfers Reno still does the best. De-
tailed results for these sections can be accessed from the
Technical Report [16].

A. Interaction of Randomized TCP with TCP Reno

This section presents the result of multiplexing TCP
Reno and Randomized TCP on the same link. In [2], the
authors show that Paced TCP gets beaten down by TCP
Reno, when multiplexed on the same link. This is because
a single paced connection is more likely to have at least
one of its packets encounter severe congestion when mul-
tiplexed with a bursty connection [2]. This problem is the
same as a source’s packets getting synchronized with the
buffer overflow event. Hence that flow faces a dispropor-
tionate number of losses and a lower throughput [6]. This
effect is reproduced in our simulations as shown in Table
VII where the throughput is considerably lesser for Paced

11

TCP Type Throughput Losses (%) Timeouts (%)
Reno 480.21 2.45 0.1
Paced 351.86 5.74 0.8

Reno 389.31 4.2 0.5
Random 408.92 5.1 0.8

TABLE VII
COMPARISON OF THROUGHPUT (IN PKTS/SEC), LOSSES

AND TIMEOUTS FOR TCP RENO VS (PACED, RANDOM).

TCP (351.86 Kbps) as against TCP Reno (480.21 Kbps).
The RTT for this experiment was 100ms, the bottleneck
link’s capacity was 1 Mbps and it was configured with
Drop Tail with 25 packets of buffer.

However, when Randomized TCP is multiplexed with
TCP Reno, the fairness improves considerably. This is
seen in Table VII where the throughput for the Ran-
domized TCP is 408.92 Kbps when compared to 389.31
Kbps for TCP Reno. This is primarily due to two reasons.
Firstly, by modifying the increase parameter
 of Random-
ized TCP we account for the extra delay being introduced
by randomization. Secondly, by reduction of synchroniza-
tion of the source to buffer overflow events, we ensure eq-
uitable distribution of drops.

B. Summary

To summarize the observations of this section:
� For bulk data transfer Randomized TCP performs as
well as or better than TCP Reno and Paced TCP in almost
all scenarios.
� Specifically, for bulk data transfer with same RTT
amongst different flows, with higher multiplexing (of
flows) Randomized TCP performs the best by increasing
the throughput and fairness, reducing losses and timeouts.
� For bulk data transfers where every flow has different
RTT, Randomized TCP clearly out-performs TCP Reno
and Paced TCP. This is important because this is more rep-
resentative of the Internet.
� In the scenario where all flows have different RTT and a
Drop Tail queue at the bottleneck, randomization reduces
the TCP bias against longer RTT flows and achieves a per-
formance similar to RED gateways as mentioned in [1].
� With short web like transfers, Reno performs better
than Randomized TCP. However as the workloads start
to increase Randomized TCP catches up with TCP Reno.
Small workload flows complete their transaction in slow-
start (or with very small windows). As such, if we random-
ize the windows when they are small, randomization gen-
erally delays the sending times which results in increased
latency. Moreover, our re-characterization of increase pa-
rameter (Section III-A) does not come into play because it

works for congestion avoidance phase. As such, we con-
jecture that one should not randomize the sending times
when the windows are small (less than 4) and during the
slow-start. However, these inferences are at best intuitive
and need to be evaluated in detail. One could also calcu-
late the adjustment factor for slow start (just like we did
for steady state). We leave this as future work.
� Randomized TCP and TCP Reno can compete fairly at
a bottleneck. This is primarily because of the modification
of the increase parameter,
, of the congestion window
growth in Randomized TCP. However, Paced TCP loses
out to TCP Reno as already shown in [2].

VIII. BINOMIAL CONGESTION CONTROL

ALGORITHMS

In [3] the authors propose a class of non-linear TCP
compatible congestion control schemes called Binomial
Congestion Control Schemes (BCCS) for audio and video
applications. Formally, the Binomial Congestion Control
scheme can be defined as:

 ���
 � �
�
�
� �� �! "!## (9)

 ��Æ�
 � � $
�
� �� "!## (10)

where k and l are window scaling factors for increase and
decrease respectively and
 and $ are increase the de-
crease proportionality constants. For any given values of

 and $ TCP Compatible BCCS can be defined by k+l = 1
: k� 0, l� 0. Inverse Increase Additive Decrease or IIAD
is one such BCCS with k=1, l=0. Similarly Square Root
Increase and Square Root Decrease or SQRT is defined as
k=0.5, l=0.5. We refer the reader to [3] for a more detailed
description of Binomial congestion control schemes.

In [3], the authors show that these algorithms, specif-
ically IIAD and SQRT, beat down TCP when sharing a
drop-tail gateway and hence suggest the use of RED gate-
ways to maintain fairness. This unfairness is due to un-
equal distribution of drops amongst these flows. This be-
havior, for IIAD, is seen in Figure 9 a). When we in-
corporate randomization into binomial schemes as well
and make it compete against randomized TCP, we see a
marked improvement in fairness as in Figure 9 b) due to
a more uniform distribution of losses. The RTT for this
experiment was 100ms, the bottleneck link’s capacity was
1 Mbps and it was configured with Drop Tail queue with
25 packets of buffer. Due to space constraints we do not
present the results for SQRT, which are however available
in the Technical Report [16].

IX. CONCLUSIONS

In this paper we presented a methodology to introduce
randomness in networks through end-to-end congestion

12

0 20 40 60 80 100

Simulation Time (seconds)

0

20

40

60

80

Co
ng

es
tio

n
W

in
do

w

IIAD
Reno

0 20 40 60 80 100

Simulation Time (in seconds)

0

20

40

60

80

100

Co
ng

es
tio

n W
in

do
w

IIAD
Randomized

(a) IIAD with Reno (b) IIAD with Random

Fig. 9. Performance of Binomial Congestion Control Algorithms with Randomization

control schemes. For the TCP case, we call it Randomized
TCP. In this scheme, we space successive packet trans-
missions with a time interval � � ��� �� � �������,
where � is a zero mean random number drawn from an
Uniform distribution. We showed that Randomized TCP,
by introducing randomization in the network, reduces syn-
chronization, phase effects and bias against bursty traffic,
prevalent with current implementations of TCP and Drop
Tail Gateways. We have also analytically characterized the
new increase parameter for Randomized TCP to make it
compete fairly with TCP. This was necessary because ran-
domizing the sending times increases the RTT and as such
the Randomized TCP losses to TCP Reno.

Randomized TCP reduces the bias against connections
with larger RTTs with Drop Tail queues. The presence
of a single Randomized flow at a bottleneck is sufficient
to reduce the bias against longer RTT flows thereby mo-
tivating incremental deployment. Randomized TCP also
reduces the burst losses and can also distribute losses over
time thus emulating RED like properties. Multiplexing of
Randomized TCP with TCP Reno helps in reducing syn-
chronization and phase effects while increasing fairness.
Additionally, when Randomized TCP is extended to Bino-
mial congestion control schemes, there is a remarkable im-
provement in fairness, when competing with Reno. Con-
sequently, it has high incentives for deployment.

Finally our results indicate that, Randomized TCP can
emulate the beneficial effects of RED in a distributed man-
ner without the complexities and unfavorable aspects of
parameter tuning of RED. In addition, the benefits of ran-
domization can be reaped even when it is partially de-
ployed. However, we wish to emphasize that unlike RED
which is a congestion avoidance scheme, Randomized
TCP is just a congestion control scheme. Thus Random-
ized TCP does not emulate the congestion avoidance fea-
tures of RED, at best it provides the other beneficial fea-
tures of RED which were achieved by introducing random-
ization in the network. We are currently working on imple-
mentation of Randomized TCP in the Linux Kernel.

REFERENCES

[1] A. A. Abouzeid and S. Roy , “Analytic Understanding of RED
Gateways with Multiple Competing TCP Flows”, Proceedings of
IEEE GLOBECOM, November 2000.

[2] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the per-
formance of TCP pacing,” Proceedings of IEEE INFOCOM, pp.
1157-1165, Tel-Aviv, Israel, March 2000.

[3] D. Bansal and H. Balakrishnan, “Binomial Congestion Control Al-
gorithms”, Proc. IEEE INFOCOM, Anchorage, AK, April 2001.

[4] D-M. Chiu and R. Jain, “Analysis of increase and decrease algo-
rithms for congestion avoidance in computer networks,” Computer
Networks and ISDN Systems, vol. 17, no. 1, pp. 1-14, June 1989.

[5] S. Floyd, “Connections with multiple congested gateways in
packet-switched networks Part 1: One-way traffic,” Computer
Communication Review, vol.21, no.5, pp. 30-47, Oct 1991.

[6] S. Floyd and V. Jacobson, “On traffic phase effects in packet-
switched gateways,” Internetworking: Research and Experience,
vol. 3, no. 3, pp. 115-156, September 1992.

[7] S. Floyd and V. Jacobson, “Random early detection gateways for
TCP congestion avoidance,” IEEE/ACM Transactions on Network-
ing vol. 1, no. 4, pp. 397-413, August 1993.

[8] E. Hashem, “Analysis of random drop for gateway congestion con-
trol,” Report LCS TR-465, MIT, Cambridge, MA, 1989.

[9] J. Ke and C. Williamson, “Towards a Rate Based TCP Protocol for
the Web”, Proc. of MASCOTS, San Francisco, CA, August 2000.

[10] M. May, J. Bolot, C. Diot and B. Lyles, “Reasons not to deploy
RED,” Proc. of IWQoS, pp. 260-262, London, UK, June 1999.

[11] M. May, T. Bonald and J.-C. Bolot, “Analytic evaluation of RED
performance,” Proc. of INFOCOM, Tel-Aviv, Israel, March 2000.

[12] J. Mogul, “Observing TCP dynamics in real networks,” Proc. of
ACM SIGCOMM, pp. 305-317, Baltimore, MD, August 1992.

[13] J. Padhye et. al, “Modeling TCP Reno performance: A simple
model and its empirical validation,” IEEE/ACM Trans. on Net-
working, vol. 8, no. 2, pp. 133-145, April 2000.

[14] S. Shenker, L. Zhang and D. Clark, “Some observations on the dy-
namics of a congestion control algorithm,” ACM Computer Com-
munications Review, vol 20, no. 4, pp. 30-39, October 1990.

[15] L. Zhang, S. Shenker, and D. Clark, “Observations on the dynam-
ics of a congestion control algorithm: The effects of two-way traf-
fic,” Proc. of ACM SIGCOMM, , Zurich, Switzerland, Sept. 1991.

[16] K. Chandrayana et. al., “On Randomizing the Sending Times
in TCP and other Window Based algorithm”, ECSE-NET-2001-1,
http://networks.ecse.rpi.edu/tech rep.html.

[17] N. Plotkin and P. Varaiya, “The entropy of traffic streams in ATM
virtual circuits,” Proc. of IEEE INFOCOM, June 1994.

