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Abstract

This paper proposes a new heuristic search algorithm, Recur-
sive Random Search(RRS), for black-box optimization prob-
lems. Specifically, this algorithm is designed for the dynam-
ical parameter optimization of network protocols which em-
phasizes on obtaining good solutions within a limited time
frame rather than full optimization. The RRS algorithm is
based on the initial high-efficiency property of random sam-
pling and attempts to maintain this high-efficiency by con-
stantly “restarting” random sampling with adjusted sample
spaces. Due to its basis on random sampling, the RRS al-
gorithm is robust to the effect of random noises in the ob-
jective function and it performs especially efficiently when
handling the objective functions with negligible parameters.
These properties have been demonstrated with the tests on a
suite of benchmark functions. The RRS algorithm has been
successfully applied to the optimal configuration of several
network protocols. One application to a network routing al-
gorithm is presented.

1 Introduction

Optimization problems arising in many engineering areas can
be formulated as (assume minimization): given a real-valued
objective functionf : Rn → R, find a global minimum,

x∗ = arg min
x∈D

f(x) (1)

whereD is the predefined parameter space, usually a com-
pact set inRn. In these problem, the objective functionf(x)
is often analytically unknown and the function evaluation can
only be achieved through computer simulation or other indi-
rect ways. This type of problems are also called “black-box”
optimization problems where the objective function is mod-
eled as a black box. Since littlea priori knowledge about
the “black-box” is assumed, these problems are considered
very hard to solve. In addition, the objective functions are of-
ten non-linear and multi-modal, therefore they are also called
global optimizationas opposed to local optimization where
there is only one single extreme inf(x) and are much easier
to solve.

In the area of network engineering, the configuration of net-
work protocol can also be formulated as a black-box opti-
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mization problem. The configuration of network protocols
is widely considered a black art and is normally performed
based on network administrators’ experience, trial and error,
etc.. These manual methods are often error-prone and not
scalable to large complex networks. The on-line simulation
system has been proposed in[24] to tackle this problem with
a black-box optimization approach. As shown in Figure 1,
the on-line simulation system continuously monitors network
conditions and provides network models for simulation. With
network simulation to evaluate the performance of a certain
configuration, the optimization can be performed to search
for a good configuration under current network conditions.
For such network parameter optimization problems, the fol-
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Figure 1: On-line simulation framework for network protocol op-
timization

lowing features are usually present.

High efficiency is required for the desired search algorithm.
More specifically, the emphasis of the search algorithm
should be on finding a better operating point within the
limited time frame instead of seeking the strictly global
optimum. Network conditions vary with time and the
search algorithm shouldquickly find better network pa-
rametersbefore significant changes in the network oc-
cur. Furthermore, network parameter optimization is
based on network simulation which might be very time-
consuming. This also requires a highly efficient search
algorithm to obtain a desired solution with a minimum
number of network simulations.

High dimension is another feature of these problems. For
example, AT&T’s network has 1000s of routers and
links. If all OSPF link weights of this network are
to be configured, there will be thousands of parame-
ters present in the optimization. High-dimensional op-
timization problems are usually much more difficult to



solve than low-dimensional problems because of “curse
of dimensionality”[21].

Noise is often introduced into the evaluation of objective
function since network simulation may be used for
function evaluations. Due to inaccuracies in network
modeling, simulation, etc., this empirical evaluation of
objective function may be distorted from the original
one, in other words, affected by small random noises.
Figure 2 shows an example of 2-dimensional empirical
objective function obtained with network simulation. It
can be seen that there exist many irregular small ran-
dom fluctuations imposed on the overall structure.
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Figure 2: An empirical objective function obtained with network
simulation (RED queueing management)

Negligible parameters may also be included in the objec-
tive function. These parameters contribute little to the
objective function and should be ruled out from the op-
timization process. However, in practice, they are nor-
mally very difficult to be identified and eliminated ef-
fectively. If the search algorithm is able to automati-
cally excluded these parameters from the optimization
process, the efficiency of the optimization will be sig-
nificantly improved.

These issues are also very common in many other practical
optimization problems[6, 26]. For such class of problems, ge-
netic algorithm[17], simulated annealing[15] and controlled
random search[18] are the most common optimization algo-
rithms since they require littlea priori information and are
generally applicable. However, these algorithms are often
lacking in efficiency. In practice, these stochastic algorithm
are often combined with local search techniques to improve
their efficiency. However, since these local search techniques
exploit local structures to decide the search direction, they are
usually susceptive to the effect of noises[19]. For example, in
pattern search, the wrong pattern may easily be derived if the
samples for pattern exploration are corrupted by noises.

In [25], we proposed a new search algorithm, Recursive Ran-
dom Search(RRS), to tackle network parameter optimization
problems efficiently. This paper is a extended version of [25].
The major feature of RRS is its basis on random sampling.
Random sampling is usually considered a robust but ineffi-

cient technique. However, as we describe in this paper, ran-
dom sampling is actually very efficient in its initial steps. The
RRS algorithm exploits this feature by truncating the current
random sampling and starting another one with the adjusted
sampling space. Since RRS does not employ any local search
method, it is also more robust to noises. Furthermore since
random samples will still maintain its uniform distribution in
the subspace composed of only those important parameters,
RRS is able to effectively removes negligible parameters from
the optimization process.

The above features of the RRS algorithm have been validated
by tests on a suite of benchmark functions. The test results
show that RRS outperforms the other algorithms in compar-
ison. We have successfully applied the RRS algorithm to
the configuration of several network protocols, such as buffer
management algorithm and routing algorithm. One of them
is presented in this paper.

The rest of this paper is organized as follows: in Section 2,
we discuss design concepts of the RRS algorithm. In Section
3, we describe the details of this algorithm. In Section 4, the
algorithm is tested on a suite of benchmark functions, and its
performance compared with other stochastic algorithms. In
Section 5, we apply the algorithm to one real network opti-
mization problem, the configuration of OSPF routing algo-
rithm. Finally, we conclude this paper in Section 6 and dis-
cuss further research directions.

2 Design Ideas of Recursive Random Search

Random sampling is the simplest and most widely used
search technique, which takes random samples from a uni-
form distribution over the parameter space. Although it is
a rather simple technique, random sampling is able to pro-
vides a strong probabilistic convergence guarantee, i.e., the
optimization result converges to the global optimization with
probability 1. Furthermore, random sampling has surpris-
ingly proved to be more efficient than deterministic explo-
ration methods, such as, grid covering, in terms of some prob-
abilistic criteria and it is especially so for high-dimensional
problems[14]. The disadvantage of random sampling is its
apparent lack of efficiency. However, we will show that ran-
dom sampling is in factvery efficient in its initial steps and
its inefficiency is from the latter sampling. In the following,
we first describe the initial high-efficiency property of random
sampling, which is the basis of the Recursive Random Search
algorithm and then present the basic idea of RRS.

2.1 Efficiency of Random Sampling
Given an measurable objective functionf(x) on the parame-
ter spaceD with a range of[ymin, ymax], we can define the
distribution functionof objective function values as:

φD(y) =
m({x ∈ D | f(x) ≤ y })

m(D)
(2)



wherey ∈ [ymin, ymax] and m(·) denotesLebesgue mea-
sure, a measure of the size of a set. For example,Lebesgue
measurein a 2-dimensional space is just area, and volume
in a 3-dimensional space, and so on. Basically, the above
equation represents the portion of the points in the param-
eter space whose function values are smaller than a certain
level y. φD(y) is a monotonously increasing function ofy in
[ymin, ymax], its maximum value is 1 wheny = ymax and
its minimum value ism(x∗)/m(D) wherex∗ is the set of
global optima. Without loss of generality, we assume that
f(x) is a continuous function andm(x ∈ D|f(x) = y) =
0, ∀y ∈ [ymin, ymax], thenφ(y) will be a monotonously in-
creasing continuous function with a range of[0, 1]. Assuming
a yr ∈ [ymin, ymax] such thatφD(yr) = r, r ∈ [0, 1], a r-
percentileset in the parameter spaceD can be defined:

AD(r) = {x ∈ D | f(x) ≤ yr } (3)

Note thatAD(1) is just the whole parameter spaceD and
limε→0 AD(ε) will converge to the global optima. Suppose
the sample sequence generated byn steps of random sam-
pling isxi, i = 1 . . . n andxn

(1) is the one with the minimum
function value, then the probability ofxn

(1) in AD(r) is:

P (xn
(1) ∈ AD(r)) = 1− (1− r)n = p (4)

Alternatively, ther value of ther-percentileset thatxn
(1) will

reach with probabilityp can be represented as:

r = 1− (1− p)1/n (5)

For any probabilityp < 1, r will tend to 0 with increasingn,
that means, random sampling will converge to the global op-
tima with increasing number of samples. Figure 3 shows the
r-percentileset thatn steps of random sampling can reach
with a probability of99%. We can see thatrandom sampling
is highly efficient at initial steps sincer decreases exponen-
tially with increasingn, and its inefficiency is from later sam-
ples. As shown in Figure 3, it takes only 44 samples to reach
a point inAD(0.1) area, whereas all future samples can only
improver value ofxn

(1) at most by 0.1.
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Figure 3: AD(r) of xn
(1) in random sampling with probability 0.99

2.2 Overview of The RRS Algorithm
The basic idea of RRS is to maintain the initial efficiency
of random sampling by “restarting” it before its efficiency

becomes low. However, unlike the other methods, such as
hillclimbing, random sampling cannot be restarted by sim-
ply selecting a new starting point. Instead we accomplish
the “restart” of random sampling bychanging its sample
space. Basically, we perform random sampling for a number
of times, then move and resize the sample space according
to the previous samples and start another random sampling in
the new sample space.

A stochastic search algorithm usually comprises two ele-
ments: explorationand exploitation. Exploration examines
the macroscopic features of the objective function and aims
to identify promising areas in the parameter space, while ex-
ploitation focuses on the microscopic features and attempt to
exploit local information to improve the solution quickly. Var-
ious search techniques can be used for these two purposes.
Since macroscopic features are hard to characterized, unbi-
ased search techniques, such as random search and random
walk, are often used for exploration. Some algorithms also
tries to build a simple model to characterize the macroscopic
features of the objective function and perform exploration
based on this model. However, it is often difficult to choose
an appropriate model for a practical problem and it requires
extensivea priori knowledge from the problem. Local search
methods are the most commonly used techniques for exploita-
tion, and hence exploitation is also calledlocal phasein many
literature and accordingly exploration is also known asglobal
phase. As discussed in [6], although derivative-based local
search methods, such as quasi-Newton method[7] and deep-
est descent[3], are very efficient for differentiable objective
functions, they are not suitable for the problems considered in
this paper because of its sensitivity to noises and requirement
for the differentiability of objective function. Direct search
methods, such as Nelder-Mead simplex method[16] and pat-
tern search[11], do not exploit the derivative of the objective
function and are more suitable for the concerned problems.
But still, they are susceptible to the effect of noise since they
perform the search based on a local structure.

Basically, the RRS algorithm uses random sampling for ex-
ploration and recursive random sampling for exploitation.
Ideally it should only execute the exploitation procedure in
promising areas. However, it is difficult to determine which
areas are more promising and should be exploited. Many al-
gorithms, such as multistart type algorithms, do not differen-
tiate areas and hence may waste much time in trivial areas.
Our approach is to identify a certainr-percentilesetAD(r)
and only start exploitation from this set. In this way, most
of trivial areas will be excluded from exploitation and thus
the overall efficiency of the search process can be improved.
This can be illustrated by the example shown in Figure 4.
The left graph shows a contour plot of a 2-dimensional multi-
modal objective function and the right graph shows the set of
AD(0.05). As shown in the figure, the function has many lo-
cal optima; however, only three regions of attraction remain
in AD(0.05) (shaded areas in the right plot). Each of these re-
gions encloses a local optimum and the one with the biggest
size happens to contain the global optimum. This is often true
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Figure 4: Contour plot of an objective function(left) and its region
of AD(0.05)(right)

for many optimization problems since the region of attraction
containing the global optimum usually has the largest size
[21]. If we perform random sampling on the whole param-
eter space, the samples falling inAD(r) are also uniformly
distributed overAD(r), consequently, they are more likely
to belong to the region containing the global optimum. That
means, if exploitation is started from these points, the search
will arrive at the global optimum with a larger probability than
other non-global optima.

It is desirable that the size ofAD(r) region identified by ex-
ploration is as small as possible such that most of trivial areas
are filtered out. On the other hand, its smallest size is limited
by the efficiency of random sampling, i.e., it should be within
the reach of initial high-efficiency steps of random sampling
so that identifying a point in it will not take too long to lower
the overall efficiency.

3 Algorithm Details

The basic idea of the RRS algorithm is to use random sam-
pling to explore the whole parameter space and only start ex-
ploitation, i.e., recursive random sampling, for those points
which fall in a certainAD(r) region. The pseudo-code of
the algorithm is shown in Algorithm 1 and we will explain
its details in the following with reference to the lines of the
pseudo-code.

3.1 Exploration
In the exploration phase, random sampling is used to iden-
tify a point in AD(r) for exploitation. The value ofr should

Algorithm 1: Recursive Random Search

1 Initialize exploration parametersp, r, n ← ln(1− p)/ ln(1−
r) ;

2 Initialize exploitation parametersq, υ, c, st, l ← ln(1 −
q)/ ln(1− υ);

3 Taken random samplesxi, i = 1 . . . n from parameter space
D;

4 x0 ← arg min1≤i≤n(f(xi)), yr ← f(x0), addf(x0) to the
threshold setF;

5 i ← 0, exploit flag ← 1, xopt ← x0;
6 while stopping criterion is not satisfieddo
7 if exploit flag = 1 then

// Exploit flag is set, start exploitation process
8 j ← 0, fc ← f(x0), xl ← x0, ρ ← r;
9 while ρ > st do

10 Take a random samplex′ from ND,ρ(xl);
11 if f(x′) < fc then

// Find a better point, re-align the center of
sample space to the new point

12 xl ← x′, fc ← f(x′);
13 j ← 0;

else
14 j ← j + 1;

endif
15 if j = l then

// Fail to find a better point, shrink the sample
space

16 ρ ← c · ρ, j ← 0;

endif
endw

17 exploit flag ← 0, updatexopt if f(xl) < f(xopt);

endif
18 Take a random samplex0 from S;
19 if f(x0) < yr then

// Find a promising point, set the flag to exploit
20 exploit flag ← 1;

endif
21 if i = n then

// Update the exploitation threshold everyn samples
in the parameter space

22 Add min1≤i≤n(f(xi)) to the threshold setF;
23 yr ← mean(F), i ← 0;

endif
24 i ← i + 1;

endw



be first chosen. Based on this value and a predefined confi-
dence probabilityp, the number of samples required to make
Pr(xn

(1) ∈ AD(r)) = p can be calculated as(according to

Equation 4):n = ln(1−p)
ln(1−r) (line 1 in pseudo-code). The al-

gorithm uses the value off(xn
(1)) in the firstn samples as

the threshold valueyr(line 4) and any future sample with
a smaller function value thanyr is considered to belong to
AD(r). In later exploration, a newxn

(1) is obtained everyn
samples andyr is updated with the average of thesexn

(1) (lines
[21-23]). Note that this calculation ofyr is not intended to be
an accurate estimation of the threshold forAD(r), instead it
only function as the adjustment for the balance between ex-
ploration and exploitation. In other words, it is to ensure that
on the average the exploration process will not continue forn
samples and hence enter its low-efficiency phase.

In this exploration method, the confidence probabilityp
should choose a value close to 1, for example, 0.99. The
value ofr decides the balance between exploration and ex-
ploitation and should be chosen carefully as discussed before.
According to the current experience, we have usedr = 0.1
andp = 0.99 in the algorithm, and with such values it only
takes44 samples to find a point for the estimation ofyr.

3.2 Exploitation
As soon as exploration finds a promising pointx0 whose
function value is smaller thanyr, we start a recursive ran-
dom sampling procedure in the neighborhoodN(x0) of x0.
The initial size ofN(x0) is taken as the size ofA(r), i.e.,
r · m(D), whereD is the original parameter space sincex0

belongs toA(r) with a high probability. Currently a sim-
ple method is used to constructN(x0): assume the parame-
ter spaceD is defined by the upper and lower limits for its
ith element,[li, ui], the neighborhood ofx0 with a size of
r·m(D) is the original parameter space scaled down byr, i.e.,
NS,r(x0) = {z ∈ S | |zi − x0,i| < r1/n · (ui − li)}(line 10),
wherex0,i is ith element ofx0 andzi ith element ofz. With
this new sample spaceNS,r(x0), random sampling is con-
tinued. And then based on the obtained samples, the sample
space is re-aligned or shrunk as exemplified in Figure 5 until
its size falls below a predefined levelsl, which decides the
resolution of the optimization.
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Figure 5: Shrink and Re-align Process

Re-align sub-phaseAs described above, exploitation first
starts in the neighborhoodN(x0) of x0. If
φN(x0)(f(x0)) (defined in Equation 5) is large, that
means most points inN(x0) are better thanx0. There-
fore, if we do random sampling inN(x0), it will be
highly likely to find a point better thanx0 with a small
number of samples. Let’s define an expected value of
φN(x0)(f(x0)), υ, with a confidence probabilityq, ran-
dom sampling should find a better point inN(x0) with
l = ln(1−q)

ln(1−υ) (line 2) samples. If a better point is found
within l samples, we replacex0 with this point, move
the sample space to the newN(x0) and keep its size
unchanged (lines [11-13]). This is calledre-alignoper-
ation. For example, in Figure 5, the exploration identi-
fies a promising pointC1 and then the exploitation (i.e.,
random sampling) start in the neighborhoodR1 of C1.
After a few samples, a new pointC2 is found to be bet-
ter thanC1, hence the sample space is moved fromR1

to the neighborhoodR2 of C2. In this way, even if the
initial N(x0) (i.e., R1 in the example) might miss the
local optimum, the later re-align moves will still lead
the search to converge to the local optimum.

Shrink sub-phase If random sampling fails to find a bet-
ter point in l samples, that suggestsφN(x0)(f(x0)) is
smaller than the expected levelυ. In this case, we re-
duceN(x0) by a certain ratioc ∈ [0, 1], i.e., generate a
new neighborhoodN ′(x0) whose size isc ·m(N(x0))
(lines [15-16]). This is calledshrink operation, which
is performed only when wefail to find a better point in
l samples. When the size of sample space is reduced to
a value such thatφN(x0)(f(x0)) is larger thanυ, then
“re-align” will take over again to moves to the local op-
timum. With re-align and shrink alternately performed,
the sample space will gradually converge to the local
optimum. For example, in Figure 5, afterl unsuccessful
samples inR2, the sample space is shrunk toR3, then
to R4 if sampling inR3 continue to fail. The whole
exploitation process continues until the size of sample
space falls below a certain threshold, whose value is de-
pendent on the resolution requirement of the optimiza-
tion problem.

3.3 Remarks on the RRS Algorithm
The ideal behavior of a search algorithm is to first inspect the
macroscopic features of the objective function, and then ex-
amine microscopic features with selected areas. The search
process of RRS algorithm is completely consistent with this
idea. In the beginning of the search, the sample space starts
with the whole parameter space and the overall structure is ex-
amined. With the search continuing, the sample space gradu-
ally shrinks and consequently the search obtains increasingly
detailed microscopic information until it finally converges to
a local optimum. The search algorithms deviating the above
ideal behavior usually cannot perform very well. For exam-
ple, multistart type algorithms start a local search from each
of random samples without considering the macroscopic fea-



tures, therefore, their performance often suffers greatly from
the time wasted on trivial areas.

In contrast to most of the search algorithms, the RRS algo-
rithm is mainly built upon random sampling. RRS performs
the search process based on stochastic information on a cer-
tain sample area, therefore, its performance is less affected
by noises. In addition, RRS is more efficient when dealing
with the objective function with negligible parameters. This
is because that random samples will still maintain its uniform
distribution in the subspace composed of only those important
parameters, and hence effectively removes negligible parame-
ters from the optimization process. In this way, the efficiency
of the search can be improved significantly.

4 Tests on Standard Benchmark Functions

As discussed before, the design objectives of Recursive
Random Search are: high efficiency, scalability to high-
dimensional problems, robustness to function evaluation
noises and capability of handling negligible parameters.
This section will present the performance tests of the RRS
algorithm in these aspects. A suite of classical bench-
mark functions have been used in our performance tests,
such as,Rastrigin’s function[20], Rosenbrock’s Saddle[23],
Griewangk’s function[21] Ackley’s function[1]. Most of
these functions have a large number of local optima and are
considered very difficult to optimize.

Usually, the benchmark tests of a search algorithm are per-
formed by examining the number of function evaluations re-
quired to obtain a point close to the global optimum. Since
the emphasis of our design objective is not on full optimiza-
tion but achieving high efficiency in the limited time frame,
we have adopted another method to compare the efficiency
of algorithms. Basically, we execute the search algorithm
for a certain number of function evaluations, and draw the
convergence curve of the optimization, i.e., the optimization
results as a function of the number of function evaluations.
The performance of the algorithms are compared based on
these convergence curves. To eliminate randomness caused
by stochastic elements in the search algorithms, each test in
the following is repeated for 50 times with random starting
points and the average of the results is used.

4.1 Tests on Efficiency of RRS
First the RRS algorithm is tested on the benchmark func-
tions in different dimensions and its performance is compared
with two other search algorithms: controlled random search
and multistart pattern search. Controlled random search is
recommended for black-box optimization problems in many
literature[2, 6]. Multistart pattern search is chosen because
multistart type algorithms are always one of the most pop-
ular methods in practice[26] and have been demonstrated to
work very well and outperform many more sophisticated al-
gorithms, such as genetic algorithm and simulated annealing,

in many practical problems[4, 12, 13]. Pattern search[11]
is one of direct search techniques which are usually recom-
mended for black-box optimization problems[22].

In the tests, the search algorithms are executed on each func-
tion with the function dimension varying from 20 to 2000. We
have used the following parameters for the RRS algorithm:
p = 0.99, r = 0.1, c = 0.5, υ = 0.8, q = 0.99, st = 0.001.
The test results for each benchmark function are shown in
Fig 6-10. It can be seen that the RRS algorithm converges
very rapidly and its efficiency is much better than the other
two search algorithms. Note that in Figure 9, for 200-
dimensional Ackely function, the performances of RRS and
the multistart algorithm are close. However, RRS tends to
converge to the optimal solution quickly while the conver-
gence curve of multistart algorithm tends to be flatten out.
In fact, in the subsequent search process which is not shown
in the graph, it has been observed that RRS will perform
much better than the other two algorithms. Controlled ran-
dom search performs much like pure random search in the
beginning when it has not yet converged to high-quality solu-
tions. From the results, we can see that it does perform very
efficiently at its initial few steps and is better than multistart
pattern search. However, with the search continuing, its per-
formance quickly degrades and falls far behind the other two
algorithms.

We also test the RRS algorithm on some low-dimensional
classical benchmark functions[21] for which the optimiza-
tion results approach the global optima with only hundreds
of function evaluations. Similar convergence curve results
to above can be obtained. We summarize the test results in
Table 1 which shows the best-so-far function values after 75
function evaluations. It can be observed that RRS always de-
livers better results than the other two algorithms.

Function Best-so-far Function Values
CSR Multistart PatternSearch RRS

Shekel5 -0.68 -0.34 -1.97
Shekel7 -0.77 -0.39 -1.77
Shekel10 -1.03 -0.45 -1.92
Hartman3 -3.57 -3.17 -3.75
Hartman6 -2.02 -1.77 -2.60
GoldPrice 25.75 587.87 12.39
CamelBack -0.774 -0.114 -0.994

Table 1: Benchmark test results showing better optimization results
found by RRS

4.2 Tests on Noise-Resistance of RRS
This section will compare the performance of RRS and mul-
tistart pattern search algorithm for noise-affected objective
functions. Directly imposing random noises on the objec-
tive function may introduce randomness into the test results.
Therefore, to obtain consistent results, Rastrigin function
have been used to emulate the situations where the evaluation
of the objective function is affected by small noises. Rastrigin
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Figure 6: Performance tests on SquareSum function
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Figure 7: Performance tests on Rosenbrock function
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Figure 8: Performance tests on Griewangk function
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Figure 9: Performance tests on Ackley function
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Figure 10: Performance tests on Rastrigin function

function is defined as:

f(x) = n ·A +
n∑

i=1

(x2
i −A · cos(2πxi)) (6)

It can be also considered as a simple sphere function
∑n

i=1 x2
i

superimposed with the noise term
∑n

i=1 A · cos(2πxi). The
magnitude of noises is determined by the value ofA. To
test the noise-resistance of the search algorithms, we vary
the noise level in Rastrigin function, i.e., the value ofA,
and see how the search algorithms perform under different
magnitudes of noises. Note that the noise magnitude should
not be too large to distort the overall structure of the original
function. Figure 11 shows the test results on Rastrigin func-
tions with different noise level and different dimensions. The
results demonstrate that increasing magnitude of noises se-
riously degrade the performance of multistart pattern search
while the effect on RRS is slight.
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Figure 11: Noise-resistance tests of search algorithms

4.3 Tests on Objective Functions with Negligible Parame-
ters
To simulate the occasion with trivial parameters, ann-
dimensional test function in Equation (7) is used:

f(x) =
5∑

i=1

x2
i + 10−12 ·

n∑

i=5

x2
i (7)

where−500 < xi < 500, i = 1 . . . n. In this function, the
first five parameters are the major ones that determine the
function value while the others are trivial parameters. The
tests are performed for the cases where there are 0, 5 and 10
negligible parameters in the function, and the performances
of RRS and multistart pattern search are compared. Figure 12
shows the test results. It can be seen that the introduction
of trivial parameters can hardly affect the performance of the
RRS algorithm while the performance of multistart pattern
search degrades considerably with increasing number of triv-
ial parameters. Therefore, the tests demonstrate that the RRS
algorithm is able to automatically exclude negligible param-
eters from the optimization process and thus greatly improve
the efficiency.
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Figure 12: Performance tests on objective functions with negligible
parameters

5 Application to Parameter Optimization of Network
Protocols

The RRS algorithm has been successfully applied to the adap-
tive configuration of several network protocols to improve
network performance. This section will present one exam-



ple application, i.e., traffic engineering by tuning a routing
algorithm configuration.

Traffic engineering is a very important aspect in networking
research. Its objective is to distribute the offered traffic load
evenly across the network such that network resources are
optimally utilized. In current Internet, IP traffic is mapped
onto the network by standard routing protocols. When rout-
ing the traffic, the routing algorithms used in these routing
protocols do not take into account current network condi-
tions and Quality of Service(QoS) constraints. As a result,
the routing generated by these algorithms tend to generate a
highly uneven mapping of traffic. Some links may get very
congested since most of traffic go through it and the other
may be underutilized. This has been observed in many traffic
measurements[5, 8].

Suppose the offered traffic load in a network is defined by
a demand matrix, where the row index represents the source,
the column index the destination and the element of the matrix
the offered load from the source to the destination. Such de-
mand matrix can be obtained through network measurement.
A routing algorithm will decides the network path taken by
the traffic from a source to a destination. In this way, the traf-
fic load represented by the demand matrix is mapped to the
network. Open Shortest Path First(OSPF) is thede factostan-
dard routing protocol for intra-domain traffic, i.e., the traf-
fic transfered within the same network domain. OSPF is a
topology-drivenrouting protocol and does not consider Qual-
ity of Service constraints in routing decision. In OSPF, each
network link is assigned with a link weight and the traffic is
routed from source to destination along the path with the min-
imum total link weight.

Traditionally, the link weights in OSPF are set heuristically
without considering QoS requirements. With the knowledge
of the demand matrix, the OSPF link weights can be tuned
to achieve traffic engineering objectives. This problem has
been demonstrated to be NP-hard [9] and can be tackled with
a black-box optimization approach. To formulate the black-
box optimization for OSPF link weight setting, an optimiza-
tion objective, i.e., the performance metric of the network, has
be defined first. Since packet drop rate is a good indication to
the congestion in the network and also has significant impacts
on the performance of some major internet protocols, such
as TCP, we have used the minimization of the total packet
rate for a network as the optimization objective. Consider
a network composed ofn links, for link li, i = 1 . . . n, we
calculate its packet drop rateφi based on the traffic load dis-
tributed to this link with the concerned OSPF link weight set-
ting. Then the objective of this optimization problem is to
minimize the total packet drop rate:

Φ(w) =
n∑

i=1

φi(w) (8)

wherew denote the link weight vector, whoseith element is
the link weight for linkli. For each specificw, network sim-
ulation is run to evaluate its performance metricΦ(w). Given

a parameter space forw, optimization can be performed to
obtain a good configuration ofw. Figure 13 shows the con-
vergence curve of RRS on a large-scale network, EXODUS,
which has 1040 links (parameters). For comparison, we also
show the convergence curve of a tabu-enhanced multistart
hillclimbing search algorithm used in [9]. The straight line
in the figure indicates the performance metric when one of
heuristic configuration methods, the unit link weight, is used.
As shown in the graph, the RRS algorithm performs very ef-
ficiently. If we use the performance of the heuristic setting as
the benchmark level, we can see that RRS finds a better solu-
tion than the heuristic setting with around 50% fewer function
evaluations than the compared algorithm.
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Besides the OSPF link weight setting, the RRS algorithm has
also been used for other network protocols, such as, Ran-
dom Early Detection(RED) buffer management, Border Gate-
way Protocol(BGP). The details of these applications are pre-
sented in [10].

6 Conclusion

This paper has presented a new heuristic search algorithm,
Recursive Random Search, which is designed to perform ef-
ficiently for simulation-based black-box optimization prob-
lems. Especially, the new algorithm is targeted for network
configuration optimization problems where the efficiency is
greatly emphasized. In other words, these problems would
like a good result within a limited time. In addition, the eval-
uation of the objective functions of these problems is often
affected by inaccuracies in simulation. The RRS algorithm
is designed with consideration of these situations. In contrast
to most other search algorithms, the new algorithm is mainly
based on random sampling and does not includes any tradi-
tional local search methods which are usually not scalable
to high-dimensional problems and sensitive to the effect of
noises. The algorithm is tested on a suite of benchmark func-
tions and compared with multistart pattern search algorithm
and controlled random search algorithm. The results have



shown that the RRS algorithm performs very efficiently, and
is more robust to the effect of noises. It is also demonstrated
that RRS is able to exclude negligible parameters from the
optimization process and hence significantly improve the effi-
ciency. The RRS algorithm has been successfully used in sev-
eral network protocol configuration problems, such as queu-
ing management algorithm RED, routing algorithms BGP and
OSPF. One of the applications, OSPF tuning, is presented in
this paper as an example.
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