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Abstract mization problem. The configuration of network protocols
is widely considered a black art and is normally performed
This paper proposes a new heuristic search algorithm, Rec@i@sed on network administrators’ experience, trial and error,
sive Random Search(RRS), for black-box optimization protetc.. These manual methods are often error-prone and not
lems. Specifically, this algorithm is designed for the dynamscalable to large complex networks. The on-line simulation
ical parameter optimization of network protocols which emsystem has been proposed in[24] to tackle this problem with
phasizes on obtaining good solutions within a limited timé& black-box optimization approach. As shown in Figure 1,
frame rather than full optimization. The RRS algorithm ighe on-line simulation system continuously monitors network
based on the initial high-efficiency property of random sameonditions and provides network models for simulation. With
pling and attempts to maintain this high-efficiency by connetwork simulation to evaluate the performance of a certain
stantly “restarting” random sampling with adjusted sampléonfiguration, the optimization can be performed to search
spaces. Due to its basis on random sampling, the RRS & a good configuration under current network conditions.
gorithm is robust to the effect of random noises in the obFor such network parameter optimization problems, the fol-
jective function and it performs especially efficiently when
handling the objective functions with negligible parameters.
These properties have been demonstrated with the tests on a
suite of benchmark functions. The RRS algorithm has been

successfully applied to the optimal configuration of several llﬁelwolﬁk Opﬁmifed
. . . nformation Parameters
network protocols. One application to a network routing al-
gorithm is presented. Network e ko
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1 Introduction

oo L ) . Figure 1: On-line simulation framework for network protocol op-
Optimization problems arising in many engineering areas can timization

be formulated as (assume minimization): given a real-valued

objective functionf : R™ — R, find a global minimum,
lowing features are usually present.

x* = arg miB f(x) Q)
xe
where D is the predefined parameter space, usually a corr|1_|-'gh efficiency |_s_reqU|red for the d_eswed search algorlthm.
. S . More specifically, the emphasis of the search algorithm
pact set inR™. In these problem, the objective functigix) 0 . . Lo
; : . : should be on finding a better operating point within the
is often analytically unknown and the function evaluation can - . . . .
. : : - limited time frame instead of seeking the strictly global
only be achieved through computer simulation or other indi- : . L
. u ; optimum. Network conditions vary with time and the
rect ways. This type of problems are also called “black-box : : ,
R L . search algorithm shoulguickly find better network pa-
optimization problems where the objective function is mod- A :
: . o rametersbefore significant changes in the network oc-
eled as a black box. Since littke priori knowledge about T
; - : cur. Furthermore, network parameter optimization is
the “black-box” is assumed, these problems are considered . . ) ; )
e L : based on network simulation which might be very time-
very hard to solve. In addition, the objective functions are of- . . . . e
. : consuming. This also requires a highly efficient search
ten non-linear and multi-modal, therefore they are also called : . : . ) -
T L algorithm to obtain a desired solution with a minimum
global optimizationas opposed to local optimization where : :
. . : : number of network simulations.
there is only one single extreme fi{x) and are much easier

to solve. High dimension is another feature of these problems. For
_ _ _ _ example, AT&T’s network has 1000s of routers and

In the area of network engineering, the configuration of net- links. If all OSPF link weights of this network are
work protocol can also be formulated as a black-box opti- to be configured, there will be thousands of parame-
1Rensselaer Polytechnic Institute, Troy, New York 12180 ters present in the optimization. High-dimensional op-

2Rensselaer Polytechnic Institute, Troy, New York 12180 timization problems are usually much more difficult to



solve than low-dimensional problems because of “cursaent technique. However, as we describe in this paper, ran-
of dimensionality”[21]. dom sampling is actually very efficient in its initial steps. The
RRS algorithm exploits this feature by truncating the current
Noise is often introduced into the evaluation of objectiverzndom sampling and starting another one with the adjusted
function since network simulation may be used folsgmpling space. Since RRS does not employ any local search
function evaluations. Due to inaccuracies in networknethod, it is also more robust to noises. Furthermore since
modeling, simulation, etc., this empirical evaluation ofandom samples will still maintain its uniform distribution in
objective function may be distorted from the originalthe subspace composed of only those important parameters,

one, in other words, affected by small random noiseRRRs is able to effectively removes negligible parameters from
Figure 2 shows an example of 2-dimensional empiricghe optimization process.

objective function obtained with network simulation. It

can be seen that there exist many irregular small raffhe above features of the RRS algorithm have been validated
dom fluctuations imposed on the overall structure. by tests on a suite of benchmark functions. The test results
show that RRS outperforms the other algorithms in compar-

ison. We have successfully applied the RRS algorithm to

the configuration of several network protocols, such as buffer
management algorithm and routing algorithm. One of them

is presented in this paper.
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The rest of this paper is organized as follows: in Section 2,
we discuss design concepts of the RRS algorithm. In Section
3, we describe the details of this algorithm. In Section 4, the
algorithm is tested on a suite of benchmark functions, and its
performance compared with other stochastic algorithms. In
Figure 2: An empirical objective function obtained with network Section 5, we apply the algorithm to one real network opti-

simulation (RED queueing management) mization problem, the configuration of OSPF routing algo-
rithm. Finally, we conclude this paper in Section 6 and dis-
cuss further research directions.
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Negligible parameters may also be included in the objec-
tive function. These parameters contribute little to the
objective function and should be ruled out from the op- 2 Design Ideas of Recursive Random Search
timization process. However, in practice, they are nor-

ma”y very difficult to be identified and eliminated ef- Random Samp“ng is the Simp|est and most W|de|y used
fectively. If the search algorithm is able to automati-search technique, which takes random samples from a uni-
cally excluded these parameters from the optimizatiofyym distribution over the parameter space. Although it is
process, the efficiency of the optimization will be sig-3 rather simple technique, random sampling is able to pro-
nificantly improved. vides a strong probabilistic convergence guarantee, i.e., the
optimization result converges to the global optimization with

These issues are also very common in many other practi@{PPability 1. Furthermore, random sampling has surpris-
optimization problems[6, 26]. For such class of problems, gd?dly proved to be more efficient than deterministic explo-
netic algorithm[17], simulated annealing[15] and controlled@tion methods, such as, grid covering, in terms of some prob-
random search[18] are the most common optimization a|951_bll|st|c criteria and |t_ is especially so for h|gh-d|me_n3|qna_ll
rithms since they require little. priori information and are Problems[14]. The disadvantage of random sampling is its
generally applicable. However, these algorithms are ofté#PParent lack of efficiency. However, we will show that ran-
lacking in efficiency. In practice, these stochastic algorithff®M sa@mpling is in factery efficient in its initial steps and
are often combined with local search techniques to improVt inéfficiency is from the latter samplingn the following,
their efficiency. However, since these local search techniqué§ first describe the initial high-efficiency property of random
exploit local structures to decide the search direction, they af@MPling, which is the basis of the Recursive Random Search
usually susceptive to the effect of noises[19]. For example, f90rithm and then present the basic idea of RRS.
pattern search, the wrong pattern may easily be derived if the
samples for pattern exploration are corrupted by noises. 2.1 Efficiency of Random Sampling

Given an measurable objective functiffx) on the parame-
In [25], we proposed a new search algorithm, Recursive Rager spaceD with a range ofy,.in, Ymaz], We can define the
dom Search(RRS), to tackle network parameter optimizatiafistribution functiorof objective function values as:
problems efficiently. This paper is a extended version of [25].
The major feature of RRS is its basis on random sampling. - m{xeD|f(x)<y})
Random sampling is usually considered a robust but ineffi- ¢p(y) = m(D) @)




wherey € [Ymin, Ymaz] @ndm(-) denotesLebesgue mea- becomes low. However, unlike the other methods, such as
sure a measure of the size of a set. For exampé&hesgue hillclimbing, random sampling cannot be restarted by sim-
measurein a 2-dimensional space is just area, and volumply selecting a new starting point. Instead we accomplish
in a 3-dimensional space, and so on. Basically, the abotee “restart” of random sampling bghanging its sample
equation represents the portion of the points in the pararapace Basically, we perform random sampling for a number
eter space whose function values are smaller than a certaitimes, then move and resize the sample space according
levely. ¢p(y) is a monotonously increasing functiongpfn  to the previous samples and start another random sampling in
[Ymin, Ymaz], 1S Maximum value is 1 whep = y,,., and the new sample space.

its minimum value ism(x*)/m(D) wherex* is the set of

global optima. Without loss of generality, we assume tha stochastic search algorithm usually comprises two ele-
f(x) is a continuous function angh(x € D|f(x) =y) = Mments: explorationand exploitation Exploration examines
0,YY € [Ymin, Ymaz), thene(y) will be a monotonously in- the macroscopic features of the objective function and aims

creasing continuous function with a rangg@f1]. Assuming to identify promising areas in the parameter space, while ex-
Yy € [Ymin, Ymae) SUCh thatpp (y,) =, r € [0,1], ar- ploitation focuses on the microscopic features and attempt to

percentileset in the parameter spafecan be defined: exploit local information to improve the solution quickly. Var-
ious search techniques can be used for these two purposes.
Ap(r)y={xe D] f(x) <y} (3) Since macroscopic features are hard to characterized, unbi-

o ased search techniques, such as random search and random
Note thatAp(1) is just the whole parameter spateand 5k are often used for exploration. Some algorithms also

lim.—o Ap(€) will converge to the global optima. SuppOSeyies to huild a simple model to characterize the macroscopic
the sample sequence generatedrbgteps of random Sam- faayres of the objective function and perform exploration
pling isx;,7 = 1...n andx{, is the one with the minimum g6 on this model. However, it is often difficult to choose
function value, then the probability off;) in Ap(r) is: an appropriate model for a practical problem and it requires
extensivea priori knowledge from the problem. Local search
methods are the most commonly used techniques for exploita-
tion, and hence exploitation is also calledal phasén many
literature and accordingly exploration is also knowmgkbal
phase As discussed in [6], although derivative-based local

r=1-(1- p)l/n (5) search methods, such as quasi-Newton method[7] and deep-

est descent[3], are very efficient for differentiable objective

For any probabilityp < 1,  will tend to 0 with increasing:,  functions, they are not suitable for the problems considered in
that means, random sampling will converge to the global ophis paper because of its sensitivity to noises and requirement
tima with increasing number of samples. Figure 3 shows tier the differentiability of objective function. Direct search
r-percentileset thatn steps of random sampling can reachmethods, such as Nelder-Mead simplex method[16] and pat-
with a probability 0f99%. We can see thaandom sampling tern search[11], do not exploit the derivative of the objective
is highly efficient at initial steps sincedecreases exponen- function and are more suitable for the concerned problems.
tially with increasingn, and its inefficiency is from later sam- But still, they are susceptible to the effect of noise since they
ples As shown in Figure 3, it takes only 44 samples to reacperform the search based on a local structure.
apointinAp(0.1) area, whereas all future samples can only

P(x(y € Ap(r)) =1-(1—-r)"=p (4)

Alternatively, ther value of ther-percentileset thatx?l) will
reach with probability) can be represented as:

improver value ofx?l) at most by 0.1. Basically, the RRS algorithm uses random sampling for ex-
ploration and recursive random sampling for exploitation.
Gonvergence Gurve of Random Sampling with Probability 0,96 Ideally it should only execute the exploitation procedure in
o ] promising areas. However, it is difficult to determine which

08 | ] areas are more promising and should be exploited. Many al-
Tl ] gorithms, such as multistart type algorithms, do not differen-

- os| " ] tiate areas and hence may waste much time in trivial areas.

oa | 1 Our approach is to identify a certairpercentileset Ap (1)

02| . ] and only start exploitation from this set. In this way, most
o B L of trivial areas will be excluded from exploitation and thus

10 20 30 40 50 60 70 80 90 100 the overall efficiency of the search process can be improved.

Number of Function Evaluations

This can be illustrated by the example shown in Figure 4.
The left graph shows a contour plot of a 2-dimensional multi-

modal objective function and the right graph shows the set of
Ap(0.05). As shown in the figure, the function has many lo-

cal optima; however, only three regions of attraction remain
2.2 Overview of The RRS Algorithm in Ap(0.05) (shaded areas in the right plot). Each of these re-
The basic idea of RRS is to maintain the initial efficiencygions encloses a local optimum and the one with the biggest
of random sampling by “restarting” it before its efficiencySize happens to contain the global optimum. This is often true

Figure 3: Ap(r) of zf;, in random sampling with probability 0.99
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Figure 4: Contour plot of an objective function(left) and its regiin

of Ap(0.05)(right)
11

for many optimization problems since the region of attraction
containing the global optimum usually has the largest size
[21]. If we perform random sampling on the whole param-
eter space, the samples falling 4, () are also uniformlyi4

distributed overAp(r), consequently, they are more likely

to belong to the region containing the global optimum. That
means, if exploitation is started from these points, the search
will arrive at the global optimum with a larger probability than

other non-global optima. 16

It is desirable that the size ofp(r) region identified by ex-
ploration is as small as possible such that most of trivial areas
are filtered out. On the other hand, its smallest size is linited
by the efficiency of random sampling, i.e., it should be within
the reach of initial high-efficiency steps of random sampling
so that identifying a point in it will not take too long to lower
the overall efficiency.

20

3 Algorithm Details 2

The basic idea of the RRS algorithm is to use random sgm
pling to explore the whole parameter space and only star, £
ploitation, i.e., recursive random sampling, for those points
which fall in a certainAp(r) region. The pseudo-code of
the algorithm is shown in Algorithm 1 and we will explaif

J 0, fe — f(x0), X1 < X0, p < 1}
while p > s; do
Take a random sampi€ from Np ,(x;);
if f(x') < f.then
/I Find a better point, re-align the center of
sample space to the new point
x; — X/, fo — f(X');
J =0
else
je—J+1
endif
if 7 = [then
/I Fail to find a better point, shrink the sample
space
pc-p,j—0;
endif
endw
exploit_flag < 0, updatex,,; if f(x;) < f(Xopt);
endif
Take a random sampte, from S;
if f(x0) <y, then
/I Find a promising point, set the flag to exploit
exploit_flag «— 1;
ndif
fi=nthen
/I Update the exploitation threshold everysamples
in the parameter space
Add min; <;<,, (f(x;)) to the threshold sdf;
yr < mear(F), i — 0;
endif
L — i+ 1;

= o

its details in the following with reference to the lines of theendw

pseudo-code.

3.1 Exploration
In the exploration phase, random sampling is used to iden-
tify a point in Ap(r) for exploitation. The value of should



be first chosen. Based on this value and a predefined corfie-align sub-phaseAs described above, exploitation first

dence probability, the number of samples required to make
Pr(x;) € Ap(r)) = p can be calculated as(according to

Equation 4):n = ﬁig:’;g (line 1 in pseudo-code). The al-

gorithm uses the value of(x},,) in the firstn samples as
the threshold valuey,.(line 4) and any future sample with
a smaller function value thap,. is considered to belong to
Ap(r). In later exploration, a newy,, is obtained every.
samples ang, is updated with the average of th ) (lines
[21-23]). Note that this calculation gf. is not intended to be
an accurate estimation of the threshold fos (r), instead it
only function as the adjustment for the balance between ex-
ploration and exploitation. In other words, it is to ensure that
on the average the exploration process will not continue:for
samples and hence enter its low-efficiency phase.

In this exploration method, the confidence probability

should choose a value close to 1, for example, 0.99. The
value ofr decides the balance between exploration and ex-
ploitation and should be chosen carefully as discussed before.

starts in the neighborhoodV(x,) of xo. If
®N(xo)(f(x0)) (defined in Equation 5) is large, that
means most points iV (x) are better tham,. There-
fore, if we do random sampling iV (x¢), it will be
highly likely to find a point better thagr, with a small
number of samples. Let’s define an expected value of
PN (x0)(f(X0)), v, with a confidence probability, ran-
dom sampling should find a better pointé(x,) with

| = 11;18:2)) (line 2) samples. If a better point is found
within [ samples, we replace, with this point, move
the sample space to the neW(x,) and keep its size
unchanged (lines [11-13]). This is calleztalign oper-
ation. For example, in Figure 5, the exploration identi-
fies a promising poinf’; and then the exploitation (i.e.,
random sampling) start in the neighborha&d of C'.
After a few samples, a new poifk, is found to be bet-
ter thanC, hence the sample space is moved frBm
to the neighborhood, of C5. In this way, even if the
initial N(xo) (i.e., Ry in the example) might miss the

According to the current experience, we have used 0.1
andp = 0.99 in the algorithm, and with such values it only
takes44 samples to find a point for the estimationef

3.2 Exploitation

As soon as exploration finds a promising poikyg whose
function value is smaller thap,, we start a recursive ran-
dom sampling procedure in the neighborha¥(ix,) of x,.
The initial size of N(xg) is taken as the size ol(r), i.e.,

r - m(D), whereD is the original parameter space sincg
belongs toA(r) with a high probability. Currently a sim-
ple method is used to construdt(x,): assume the parame-
ter spaceD is defined by the upper and lower limits for its
ith element,[l;, «;], the neighborhood ok, with a size of
r-m(D) is the original parameter space scaled down,hye.,
NS,T(XO) = {Z es | |Z7, — $01i| < 7“1/” . (UZ — lZ)}(llne 10),
wherez, ; is ith element ofk, andz; ith element o. With
this new sample spac¥s ,(x0), random sampling is con-

tinued. And then based on the obtained samples, the sample
space is re-aligned or shrunk as exemplified in Figure 5 until

its size falls below a predefined level, which decides the
resolution of the optimization.

Parameter Space

R> \Rg\\
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Figure 5: Shrink and Re-align Process

local optimum, the later re-align moves will still lead
the search to converge to the local optimum.

Shrink sub-phase If random sampling fails to find a bet-
ter point inl samples, that suggestsy x,)(f(xo0)) is
smaller than the expected level In this case, we re-
duceN (xo) by a certain ratia € [0, 1], i.e., generate a
new neighborhood’(xy) whose size ig - m(N(xg))
(lines [15-16]). This is calleghrink operation, which

is performed only when whail to find a better point in

[ samples. When the size of sample space is reduced to
a value such thab ) (f(x0)) is larger tharw, then
“re-align” will take over again to moves to the local op-
timum. With re-align and shrink alternately performed,
the sample space will gradually converge to the local
optimum. For example, in Figure 5, affarnsuccessful
samples inR,, the sample space is shrunk/g, then

to R, if sampling in Rs continue to fail. The whole
exploitation process continues until the size of sample
space falls below a certain threshold, whose value is de-
pendent on the resolution requirement of the optimiza-
tion problem.

3.3 Remarks on the RRS Algorithm

The ideal behavior of a search algorithm is to first inspect the
macroscopic features of the objective function, and then ex-
amine microscopic features with selected areas. The search
process of RRS algorithm is completely consistent with this
idea. In the beginning of the search, the sample space starts
with the whole parameter space and the overall structure is ex-
amined. With the search continuing, the sample space gradu-
ally shrinks and consequently the search obtains increasingly
detailed microscopic information until it finally converges to

a local optimum. The search algorithms deviating the above
ideal behavior usually cannot perform very well. For exam-
ple, multistart type algorithms start a local search from each
of random samples without considering the macroscopic fea-



tures, therefore, their performance often suffers greatly froin many practical problems[4, 12, 13]. Pattern search[11]
the time wasted on trivial areas. is one of direct search techniques which are usually recom-

mended for black-box optimization problems[22].
In contrast to most of the search algorithms, the RRS algo-

rithm is mainly built upon random sampling. RRS performdn the tests, the search algorithms are executed on each func-
the search process based on stochastic information on a déwn with the function dimension varying from 20 to 2000. We
tain sample area, therefore, its performance is less affectedve used the following parameters for the RRS algorithm:
by noises. In addition, RRS is more efficient when dealing = 0.99,» = 0.1,¢ = 0.5,v = 0.8,¢ = 0.99, s, = 0.001.

with the objective function with negligible parameters. ThisThe test results for each benchmark function are shown in
is because that random samples will still maintain its unifornrig 6-10. It can be seen that the RRS algorithm converges
distribution in the subspace composed of only those importawery rapidly and its efficiency is much better than the other
parameters, and hence effectively removes negligible parante:o search algorithms. Note that in Figure 9, for 200-
ters from the optimization process. In this way, the efficiencgimensional Ackely function, the performances of RRS and
of the search can be improved significantly. the multistart algorithm are close. However, RRS tends to
converge to the optimal solution quickly while the conver-
gence curve of multistart algorithm tends to be flatten out.
In fact, in the subsequent search process which is not shown
in the graph, it has been observed that RRS will perform
much better than the other two algorithms. Controlled ran-
As discussed before, the design objectives of Recursiddm search performs much like pure random search in the
Random Search are: high efficiency, scalability to highbeginning when it has not yet converged to high-quality solu-
dimensional problems, robustness to function evaluatiafons. From the results, we can see that it does perform very
noises and capability of handling negligible parameterssfficiently at its initial few steps and is better than multistart
This section will present the performance tests of the RRattern search. However, with the search continuing, its per-

algorithm in these aspects. A suite of classical benchormance quickly degrades and falls far behind the other two
mark functions have been used in our performance testdgorithms.

such as,Rastrigin’s function[20], Rosenbrock’s Saddle[23],
Griewangk’s function[21] Ackley’s function[1]. Most of We also test the RRS algorithm on some low-dimensional
these functions have a large number of local optima and ag&assical benchmark functions[21] for which the optimiza-
considered very difficult to optimize. tion results approach the global optima with only hundreds
of function evaluations. Similar convergence curve results
Usually, the benchmark tests of a search algorithm are pae above can be obtained. We summarize the test results in
formed by examining the number of function evaluations refable 1 which shows the best-so-far function values after 75
quired to obtain a point close to the global optimum. Sincgunction evaluations. It can be observed that RRS always de-

the emphasis of our design objective is not on full optimizativers better results than the other two algorithms.
tion but achieving high efficiency in the limited time frame,

we have adopted another method to compare the efficie

4 Tests on Standard Benchmark Functions

X . 1eNC¥ inction Best-so-far Function Values

of algorithms. Basically, we execute the search algorithm CSR Multistart PatternSearch ~ RRS
for a certain number of function evaluations, and draw the

convergence curve of the optimization, i.e., the optimizationShekeI5 -0.68 -0.34 -1.97
results as a function of the number of function evaluation 5lShekeI7 -0.77 -0.39 -L.77
The performance of the algorithms are compared based o§h6kello -1.03 -0.45 -1.92
these convergence curves. To eliminate randomness caus&l,‘_ffirtman3 -3.57 -3.17 -3.75
by stochastic elements in the search algorithms, each test iHartmgn6 -2.02 -1.77 -2.60
the following is repeated for 50 times with random starting GoldPprice | 25.75 o87.87 12.39
points and the average of the results is used. CamelBack|| -0.774 -0.114 -0.994

o Table 1: Benchmark test results showing better optimization results
4.1 Tests on Efficiency of RRS found by RRS

First the RRS algorithm is tested on the benchmark func-

tions in different dimensions and its performance is compared

with two other search algorithms: controlled random search?2 Tests on Noise-Resistance of RRS

and multistart pattern search. Controlled random search This section will compare the performance of RRS and mul-
recommended for black-box optimization problems in mantistart pattern search algorithm for noise-affected objective
literature[2, 6]. Multistart pattern search is chosen becaus$enctions. Directly imposing random noises on the objec-
multistart type algorithms are always one of the most pogive function may introduce randomness into the test results.
ular methods in practice[26] and have been demonstrated Therefore, to obtain consistent results, Rastrigin function
work very well and outperform many more sophisticated alhave been used to emulate the situations where the evaluation
gorithms, such as genetic algorithm and simulated annealingf,the objective function is affected by small noises. Rastrigin



Optimization result

Optimization result

20-dimensional Squaresum function

Optimization result

1.8e+07
1.6e+07
1.4e+07
1.2e+07
1le+07
8e+06

6e+06

200-dimensional Squaresum function

Recursive Random Search ——

Controlled Random.Sear,

0 200 400 600 800 100012001400160018002000
Number of function evaluations

Optimization result

1.7e

1.6e+08

1.5e+08

1.4e+08

1.3e+08

1.2e+08

1.1e+08

2000-dimensional Squaresum function
+08

Recursive Random.Search ———___
Multistart Pattern Search -

0 200 400 600 800 100012001400160018002000
Number of function evaluations

Figure 6: Performance tests on SquareSum function

Optimization result

60000

55000 [

50000
45000
40000
35000
30000
25000
20000
15000

200-dimensional Rosenbrock function

Recursive Random Search ——
_ Multistart Pattern Search -
Controfled Random Search -

0 200 400 600 800 100012001400160018002000
Number of function evaluations

Optimization result

580000
560000 —Multistart Pattern-Search-
540000
520000 e . 7]
500000 7]
480000 7]
460000 ]
440000 1
420000 1
400000 7]
380000

2000-dimensional Rosenbrock function

Recursive Random Search ——

Controlled Random Search -

0 200 400 600 800 100012001400160018002000
Number of function evaluations

Figure 7: Performance tests on Rosenbrock function

1.8e+06 "
Recursive Random Search ——
1.6e+06 Multistart Pattern Search - -
~ 14e+06 Controlled Random Search -
5
¢ 1.2e+06
§  le+0s
S 800000
£
g 600000
O 400000
200000
0 . . .
0 200 400 600 800 100012001400160018002000
Number of function evaluations
20-dimensional Rosenbrock function
6000 "
Recursive Random Search ——
- Multistart Pattern Search - -
5000 Controlled Random Search -
>
g 4000
s
= 3000
N
£
g 2000
o
1000
0 )
0 200 400 600 800 100012001400160018002000
Number of function evaluations
20-dimensional Griewangk function
700 T T

"Recursive Random Search — —
Multistart Pattern Search - -
Controlled Random Search -

0
0

200 400 600 800 100012001400 160018002000
Number of function evaluations

Optimization result

Figure 8:

20-dimensional Ackley function
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function is defined as: 4.3 Tests on Objective Functions with Negligible Parame-
ters
To simulate the occasion with trivial parameters, anh

dimensional test function in Equation (7) is used:

5 n
Fx) =) af+1072-) af
1=1 =5

f(x) :n-A—i—i(x? — A cos(2mz;)) (6)
i=1

()

It can be also considered as a simple sphere fundifn, =7
superimposed with the noise tefm;._, A - cos(2rz;). The where—500 < x; < 500,% = 1...n. In this function, the
magnitude of noises is determined by the valuedof To first five parameters are the major ones that determine the
test the noise-resistance of the search algorithms, we vdtnction value while the others are trivial parameters. The
the noise level in Rastrigin function, i.e., the value 4f tests are performed for the cases where there are 0, 5 and 10
and see how the search algorithms perform under differenegligible parameters in the function, and the performances
magnitudes of noises. Note that the noise magnitude shodiRRS and multistart pattern search are compared. Figure 12
not be too large to distort the overall structure of the originaghows the test results. It can be seen that the introduction
function. Figure 11 shows the test results on Rastrigin funeof trivial parameters can hardly affect the performance of the
tions with different noise level and different dimensions. Th&®RS algorithm while the performance of multistart pattern
results demonstrate that increasing magnitude of noises search degrades considerably with increasing number of triv-
riously degrade the performance of multistart pattern seari#l parameters. Therefore, the tests demonstrate that the RRS
while the effect on RRS is slight. algorithm is able to automatically exclude negligible param-
eters from the optimization process and thus greatly improve
the efficiency.

Optimization on a noisy S—dimensional Rastrigin function
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Number of Function Evaluation

Protocols

The RRS algorithm has been successfully applied to the adap-
tive configuration of several network protocols to improve
network performance. This section will present one exam-



ple application, i.e., traffic engineering by tuning a routinga parameter space fev, optimization can be performed to
algorithm configuration. obtain a good configuration of. Figure 13 shows the con-
vergence curve of RRS on a large-scale network, EXODUS,
Traffic engineering is a very important aspect in networkingyhich has 1040 links (parameters). For comparison, we also
research. Its objective is to distribute the offered traffic loaghow the convergence curve of a tabu-enhanced multistart
evenly across the network such that network resources aiiclimbing search algorithm used in [9]. The straight line
optimally utilized. In current Internet, IP traffic is mappedin the figure indicates the performance metric when one of
onto the network by standard routing protocols. When roukeuristic configuration methods, the unit link weight, is used.
ing the traffic, the routing algorithms used in these routing\s shown in the graph, the RRS algorithm performs very ef-
protocols do not take into account current network condficiently. If we use the performance of the heuristic setting as
tions and Quality of Service(QoS) constraints. As a resulthe benchmark level, we can see that RRS finds a better solu-
the routing generated by these algorithms tend to generatgi@h than the heuristic setting with around 50% fewer function

highly uneven mapping of traffic. Some links may get vervaluations than the compared algorithm.
congested since most of traffic go through it and the other

may be underutilized. This has been observed in many traffic o .
Convergence Curves of Optimization Algorithms on 1040-parameter EXODUS Network
measurements[5, 8].

50000

S . oo | R ]
Suppose the offered traffic load in a network is defined by 40000 unit weights OSPF routmg o
a demand matrix, where the row index represents the source, 35000 R
the column index the destination and the element of the matrix 30000 F
the offered load from the source to the destination. Such de- 25000 r
mand matrix can be obtained through network measurement. 20000
A routing algorithm will decides the network path taken by igggg I
the traffic from a source to a destination. In this way, the traf- 5000 |
fic load represented by the demand matrix is mapped to the 0 ‘ ‘ ‘ ‘
network. Open Shortest Path First(OSPF) isthdactostan- 0 2000 4000 6000 8000 10000
dard routing protocol for intra-domain traffic, i.e., the traf- Number of Experiments
fic transfered within the same network domain. OSPF is 'e_x i o )

. . . igure 13: Convergence curves of optimization algorithms for EX-
topology-driverrouting protocol and does not consider Qual- ODUS network OSPF link weight setting
ity of Service constraints in routing decision. In OSPF, each

network link is assigned with a link weight and the traffic is

routed from source to destination along the path with the mi'Besides the OSPF link weight setting, the RRS algorithm has

imum total link weight. also been used for other network protocols, such as, Ran-
dom Early Detection(RED) buffer management, Border Gate-

Traditionally, the link weights in OSPF are set heuristicall : s
without considering QoS requirements. With the knowledg;(évay Protocol(BGP). The details of these applications are pre-

of the demand matrix, the OSPF link weights can be tunesaented in [10].

to achieve traffic engineering objectives. This problem has

been demonstrated to be NP-hard [9] and can be tackled with

a black-box optimization approach. To formulate the black- 6 Conclusion

box optimization for OSPF link weight setting, an optimiza-

tion objective, i.e., the performance metric of the network, hagnis paper has presented a new heuristic search algorithm,
be defined f.II’St.. Since packet drop rate is a gooq'lndlc.atlon ecursive Random Search, which is designed to perform ef-
the congestion in the network and also has significant impag{giently for simulation-based black-box optimization prob-
on the performance of some major internet protocols, suGfms, Especially, the new algorithm is targeted for network
as TCP, we have used the minimization of the total packgbnfiguration optimization problems where the efficiency is
rate for a network as the optimization objective. Considegreatly emphasized. In other words, these problems would
a network composed of links, for link /;,i = 1...n, We ke a good result within a limited time. In addition, the eval-
calculate its packet drop rage based on the traffic load dis- ation of the objective functions of these problems is often
tributed to this link with the concerned OSPF link weight setfracted by inaccuracies in simulation. The RRS algorithm

ting. Then the objective of this optimization problem is 105 gesigned with consideration of these situations. In contrast

Objective Function

minimize the total packet drop rate: to most other search algorithms, the new algorithm is mainly
n based on random sampling and does not includes any tradi-
O(w) = ¢i(w) (8) tional local search methods which are usually not scalable
=1

to high-dimensional problems and sensitive to the effect of
wherew denote the link weight vector, whos#h element is noises. The algorithm is tested on a suite of benchmark func-
the link weight for linkl;. For each specifiev, network sim- tions and compared with multistart pattern search algorithm
ulation is run to evaluate its performance mefriov). Given and controlled random search algorithm. The results have



shown that the RRS algorithm performs very efficiently, andil3] A. Juels and M. Wattenberg. Stochastic hillclimbing as
is more robust to the effect of noises. It is also demonstratedbaseline method for evaluating generic algorithms. InD. S.
that RRS is able to exclude negligible parameters from thBouretzky, M. C. Mozer, and M. E. Hasselmo, editofsl-
optimization process and hence significantly improve the effirances in Neural Information Processing Systevofume 8,
ciency. The RRS algorithm has been successfully used in sgpages 430-436. 1996.

eral network protocol configuration problems, such as qUeY14] A. H. Kan and G. T. Timmer. Stochastic global opti-

ing management algorithm RED, routing algorithms BGP anghi; ation methods part I: Clustering methoddathematical
OSPF. One of the applications, OSPF tuning, is presented Ib?ogramming 39:27-56. 1987.

this paper as an example. ] ) ) o
[15] S. Kirkpatrick, D. Gelatt, and M. Vechhi. Optimization

by simulated annealingscience220:671-680, 1983.

[16] R. MEAD and J. A. NELDER. A simplex method

for function minimization.Computer Journal7(4):308—-313,
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