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Abstract—The goal of this paper is to examine the gains of par-
tial upgrades to existing FIFO networks, to support delay assur-
ances. Specifically, we try to find the number of hops of FIFO
multiplexing after which a latency target is violated. We first
examine the effect of multiplexing two flows through successive
FIFO schedulers, and for a simple scenario where cross-traffic is
assumed to be absent, we derive a worst-case bound on the bursti-
ness increase across n nodes. We use the result to obtain an ef-
fective service curve and a worst-case latency bound. We then
examine the effect of having a priority scheduler at the entry of
the network with FIFO nodes in the core. We provide a basis for
determining the number of hops up to which a worst-case latency
target is met.

I. INTRODUCTION

Aggregate packet scheduling has attracted a lot of research
attention lately. The purpose is to provide a scalable service
with guaranteed rate and bounded delay. Diffserv [Bl98] has
been proposed as an architecture to achieve service differen-
tiation. Diffserv envisages guarantees to aggregates with cer-
tain pre-defined Per-hop Behaviour (PHB) at the individual
routers. Accordingly, with expedited forwarding PHB (EF-
PHB) [Da02], the EF aggregates must be guaranteed a partic-
ular minimum rate at each node of the network. FIFO packet
scheduling has been proposed to support EF-PHB.

Recent work [ChBo01], [ZhDu01] has shown that delay
bounds with a FIFO network depends on the utilization level
and the number of hops. Consequently, it is seen that for num-
ber of hops being as low as 3, the utilization must be kept be-
low 50% [ZhDu01]. Thus providing delay bounds with a FIFO
network and aggregate scheduling needs more understanding.
Simulation studies conducted in [SaGoVi99] also illustrate sce-
narios where a FIFO network can lead to very high end-to-end
delays. A solution to the problem could be to extend the diff-
serv framework with some deadline information so that aggre-
gates can be treated accordingly. One such solution is suggested
in [ZhDu01]. Alternately, a simpler incremental strategy can be
evolved wherein, the number of hops of FIFO multiplexing is
reduced. A specialized scheduler and shaper can be inserted af-
ter a fixed number of FIFO nodes. We examine this approach
by obtaining, for a simple network scenario, the number of hops
of FIFO multiplexing before which a worst-case latency target
is violated.

If the network edge is a specialized scheduler (say, a non-
preemptive priority scheduler), it would be useful to examine
the effect of a FIFO core network. In view of the discussion in
the previous paragraph, we would be interested in quantifying
the degradation in the worst-case latency with number of hops.

To that end, we derive the worst-case burstiness of a flow pass-
ing through n hops. Here, we utilize the results from network
calculus [Cr91], [Cr98], [BoTh02], while dealing with leaky-
bucket constrained flows. We then utilize this result to obtain a
characterization of the flow after it is multiplexed through n

hops. The worst-case latency, in terms of the flow parame-
ters and number of hops can then be calculated. The work in
[ChBo01] gives a bound independent of the flow characteristics
and in terms of the utilization level of the network. Our work
does not need the utilization information. But [ChBo01] deals
with arbitrary network topologies of FIFO networks, while the
scenario considered here is very simple.

The contributions of this paper are two-fold - a) given the
flow characteristics at the beginning of a simple network (with-
out cross-traffic), we obtain the worst-case burstiness bound for
the flow after it passes through n hops; b) we provide a way to
find the number hops of FIFO multiplexing before which the
worst-case latency is violated.

The rest of the paper is organized as follows. In Section II
we detail some definitions of terms and notations used in the pa-
per. In section III we obtain the burstiness bound and effective
service curve for a simple network. In Section IV we discuss
an incremental upgrade strategy using the results. Section V
provides conclusions and points to future work.

II. NOTATION AND BACKGROUND

We utilize results from deterministic network calcu-
lus [BoTh02]. Following are some basic definitions that will
be useful in the succeeding sections. For a detailed introduc-
tion, the reader is referred to [BoTh02].

• Wide-sense increasing functions. A function f such that
f(s) ≤ f(t) for all s ≤ t is wide-sense increasing. Define
the set F to be the set of wide-sense increasing functions
f such that f(t) = 0 for t < 0.

• Data Flows. A data flow, represented by a cumulative
function R(t) ∈ F , is defined as the number of bits seen
on the flow in the time interval [0, t], and R(0) = 0.

• Arrival Curve. Given a function α ∈ F , a flow R is
constrained by α if and only if for all s ≤ t, R(t)−R(s) ≤
α(t− s). R is said to have α as an arrival curve and is said
to be α-smooth.

• Min-plus Convolution and De-Convolution. For func-
tions f and g from set F , min-plus convolution is defined
as:

(f ⊗ g)(t) = inf
0≤s≤t

{f(t − s) + g(s)}



[x]+ x if x > 0, zero else
[x(t)] 1{t>y} x(t) if t > y, zero else
βR,T Rate (R) latency (T) curve
γr,b Leaky bucket with rate r, bucket b

βθ
i Service curve family with param θ

βn
i Service curve at node n, flow i

β
m,n
i Combined Service for nodes m to n, flow i
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(n)
i Burstiness of flow i after n nodes
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Fig. 1. Token-bucket constrained flows fed to a cascade of FIFO nodes

and de-convolution is defined as:

(f � g)(t) = sup
u≥0

{f(t + u) − g(u)}

• Service Curve. Consider a flow going through a system
S, with input and output functions R and R∗. S offers
to the flow a service curve β if and only if β ∈ F and
R∗ ≥ R ⊗ β.

• Strict Service Curve. A system S offers a strict service
curve β to a flow if, during any backlogged period of du-
ration u, the output of the flow is at least equal to β(u).

• Rate-latency Service. A service of the form R[t − T ]+,
where R denotes the rate and T the latency, is known as a
rate-latency service, denoted as βR,T .

The notations employed in the following sections has been sum-
marized in Table I.

III. CASCADING FIFO NODES

In this section, we examine the effect of successive FIFO
schedulers on the burstiness of two multiplexed flows. We first
present an existing result regarding burstiness increase for one
node. We extend this result for n nodes. We then obtain the
effective service curve for two multiplexed flows that traverse a
string of n nodes.

A. Burstiness increase due to FIFO nodes

The following theorem appears in [BoTh02].
Theorem III.1: Consider a node serving two flows, 1 and 2,

in FIFO order. Assume that flow 1 is constrained by one leaky
bucket with rate r1 and burstiness b1, and flow 2 is constrained
by a sub-additive arrival curve α2. Assume that the node guar-
antees to the aggregate of the two flows a rate latency service
curve βR,T . Call r2 := inft>0

1
t
α2(t) the maximum sustain-

able rate for flow 2. If r1 + r2 < R, then at the output, flow 1 is
constrained by one leaky bucket with rate r1 and burstiness b∗1
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Fig. 2. A non-preemptive priority scheduler followed by n-1 FIFO nodes

with

b∗1 = b1 + r1

(

T +
B̂

R

)

and
B̂ = sup

t≥0
[α2(t) + r1t − Rt]

Theorem III.1 can be specialized to obtain the burstiness in-
crease when flow 2 is also leaky bucket constrained. We then
have,

b∗1 = b1 + r1

(

T +
b2

R

)

(1)

Armed with this result we consider a scenario depicted in fig-
ure 1. We first note that equation (1) can be used to obtain a
leaky-bucket characterization of flow 1 as it enters node 2. If
we apply theorem III.1 again, we obtain the bound for bursti-
ness after passing through two nodes. Thus we obtain the fol-
lowing result for n FIFO nodes:

Theorem III.2: Burstiness Increase due to n FIFO nodes.
Consider n nodes serving two flows, 1 and 2, in FIFO order.
Assume that flow i is constrained by the leaky bucket (ri, bi)
when it enters node 1. If r1 + r2 < R, then, at the output of the
nth node, flow 1 is constrained by one leaky bucket with rate r1

and burstiness b
(n)
1 with

b
(n)
1 = b1 + (T +

b1

R
)





bn

2 c
∑

i=1

(r1r2)
i

R2i−1

(

n

2i

)



+

+(T +
b2

R
)





bn+1
2 c
∑

i=1

(

n

2i − 1

)

ri
1r

(i−1)
2

R2i−2



 (2)

Proof: Please refer to the Appendix.
It is easy to see that equation (2) reduces to (1) for n = 1.

B. Effective service curve for n FIFO nodes

Consider now, n FIFO nodes that are each characterized by a
minimum service curve βR,T . In this section we are interested
in the effective service curve a flow gets out of the n nodes when
multiplexed with another flow. For this purpose we employ a
theorem from [BoTh02] and exploit the fact that convolution of
two service curves is equivalent to the service offered by two
nodes with those service curves, in succession.

Theorem III.3 appears in [Cr98], [BoTh02].
Theorem III.3: Consider a lossless node serving two flows,

1 and 2, in FIFO order. Assume that packet arrivals are instan-
taneous. Assume that the node guarantees a minimum service
curve β to the aggregate of the two flows. Assume that flow 2
is α2-smooth. Define the family of functions βθ

1 by

βθ
1 = [β(t) − α2(t − θ)]+1{t>θ} (3)



Call R1(t), R
′
1(t) the input and output for flow 1. Then for any

θ ≥ 0
R′

1(t) ≥ R1 ⊗ βθ
1

If βθ
1 is wide-sense increasing, flow 1 is guaranteed the service

curve βθ
1 .

If flow i is constrained by a leaky bucket γri,bi
, equation 3 can

be further specialized [BoTh02] and stated as

βθ
1 = [R(t − T ) − γr2,b2(t − θ)] with θ = (T +

b2

R
)(4)

= [(R − r2)(t − θ)] with θ = (T +
b2

R
) (5)

Then βθ
1 is a service curve guaranteed to γr1,b1 . Let the service

seen by flow i at node j be denoted by β
j
i . Let the effective

service seen by flow i if it passes through n nodes be denoted
as β

1,n
i . Then we have,

β
1,n
i = β1

1 ⊗ β2
1 ⊗ . . . ⊗ βn

1

The following proposition then gives the effective service curve
offered by n FIFO nodes in succession.

Proposition III.1: An Effective Service Curve for N FIFO
nodes. Consider n lossless nodes serving two flows, 1 and
2, in FIFO order. Assume that packet arrivals are instanta-
neous. Assume that each node guarantees a minimum service
curve βR,T to the aggregate of the two flows. Assume that flow
i is constrained by the leaky-bucket γri,bi

. Then the effective
service curve for the n nodes, for flow 1, is given by:

β
1,n
1 = [(R − r2)(t −

n−1
∑

i=0

θi)]
+1

t>
∑

n−1

i=0
θi

(6)

θi =

{

T + b2
R

i = 0

T +
b
(i)
2

R
else

(7)

and b
(n)
2 is given in equation (2).
Proof: Please refer to the Appendix for an inductive

proof. Intuitively, since each FIFO node offers to flow 1, a ser-
vice equal to rate R − r2 with a latency θi (defined above), the
effective service is again a rate-latency function with the latency
being the sum of the latencies at each node.
We have thus obtained the effective service curve for n FIFO
nodes in equation (6) if the inputs are leaky bucket constrained.

C. Priority scheduling at the edge

We now have the tools to derive the effective service curve
for a scenario that interests us, namely, a non-preemptive prior-
ity scheduler at the edge followed by a cascade of FIFO nodes,
as depicted in figure (2). Let the effective service curve for flow
1 in figure (2) be β

1,n
1 . The properties of the priority node are

characterized by the following theorem from [BoTh02].
Theorem III.4: Non preemptive priority node. Consider a

node serving two flows, H and L, with non-preemptive prior-
ity given to flow H. Assume that the node guarantees a strict
service curve β to the aggregate of the two flows. Then the
high priority node guarantees a strict service curve βH(t) =
[β(t)− lLmax]+ where lLmax is the maximum packet size for the
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Fig. 3. Effect of number of hops on worst-case latency

low priority flow. If in addition the high priority flow is αH -
smooth, then define βL by [β(t)−αH(t)]+. If βL is wide-sense
increasing, then it is a service curve for the low priority flow.

If flow 1 is the high priority flow, β
1,n
1 can be easily obtained

as being a rate-latency curve with latency being the sum of lL
max

R

and
∑n−1

i=1 θi. Using the fact that, for an input with arrival curve
α, the arrival curve at the output of a node with service β is
obtained as α � β, we find that the flow 1 is bounded at the

output of node 1 by r1t + b1 + r1
l1
max

R
. Similarly flow 2 is

bounded by the curve r2t + b2 + r2
b1

R−r1
. We can once again

employ equation (2) to obtain the characterization of the flows
after n hops.

IV. INCREMENTAL DEPLOYMENT OF SPECIALIZED

SCHEDULERS

The motivation for the analysis of the previous section lies in
finding a firm basis for incremental deployment of specialized
schedulers. Given that a network-wide upgrade for a priority
queue is prohibitive, the question we would like to answer is
as follows. What is the degradation in service offered to a high
priority flow if it has to be multiplexed across a fixed number of
FIFO nodes? The result in equation (6) is a step towards find-
ing a useful answer to this question. In this section we conduct
some simple numerical studies using the results of the previous
sections. We first examine the effect of number of hops on the
burstiness of the flow, given the initial leaky-bucket constraints
of the flow. We then consider the reverse case, we fix a target
worst-case latency and the number of hops, and present direc-
tions for choosing bucket depths for the flows at the entry of the
network.

A. Effect of number of hops

Consider a network with priority queues throughout. The
high priority flow obviously faces a latency of only τ = N(T +
lLmax) if there are N nodes to be traversed. The worst-case la-
tency faced in a network as pictured in figure (2) on the other
hand is obtained by τ̂ =

∑n−1
i=0 θi. Comparing τ̂ and τ directly

provides us with a measure of the degradation in worst-case la-
tency suffered due to the series of FIFO nodes.

We numerically evaluate the value of τ̂ for 1 to 10 hops and
present it in figure (3). While viewing this plot, it is important
to note that these values are for the worst-case scenario, that is
it only means that the latency will never exceed those values.
To obtain figure (3) we use values of (r1 = 1000000, b1 =
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Fig. 4. Effect of number of hops on worst-case latency (plotted till 32 hops)
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10000, r2 = 1000000, b2 = 10000, R = 3000000, T = 0.1).
Thus given the leaky-bucket constraints for the flows, we could
decide on the number of hops after which we place a specialized
scheduler if we know the tolerable degradation in delay. From
the plot, we see that for a worst-case target latency of 3, every
6th hop must involve a shaping component.

The worst-case bound rapidly increases with the number of
hops and is not really useful for larger n. This is illustrated in
figure (4) where the number of hops is varied up to 32.

B. Choosing bucket depths

Using equations (6,7), we can find an expression for τ̂ in
terms of b1, b2. It will be of the form

τ̂ = c0 + c1b1 + c2b2 ci > 0

For each fixed τ̂ we then obtain a worst-case “operating line”
along (or below) which b1 and b2 can be chosen. We can set
the target τ̂ to a value greater than c0 to obtain a line which can
help us choose b1 and b2. We use the values of r1, r2, R, and
T as (r1 = 1000000, r2 = 1000000, R = 3000000, T = 0.1)
and obtain the relation between the latency τ̂ , b1 and b2, for 5
hops, as:

τ̂ = 1.29 + 2.43 × 10−6b1 + 1.85 × 10−6b2

Setting the target latency as τ̂ = 2, we obtain,

b1 = 2.94 × 105 − 0.76b2

This is plotted in figure (5). Thus given a target latency, we can
find the worst-case operating line on or below which the bucket
depths may be chosen.

V. CONCLUSIONS AND FUTURE WORK

Incremental deployment of specialized schedulers in the net-
work can achieve worst-case latency bounds. In order to find
the number of hops after which the burstiness increase due to
FIFO multiplexing violates the target latency, an effective ser-
vice curve can be employed. For a simple network of FIFO
nodes, we obtained a worst-case bound on the burstiness in-
crease assuming leaky-bucket inputs. Utilizing this result, an
effective service curve was obtained. An example was used to
illustrate the use of the results to choose the number of hops
between upgraded nodes.

The current deductions do not account for multiple classes of
traffic, arbitrary topologies and cross-traffic. The arrival curves
are simple leaky-bucket constraints. Further investigations will
involve relaxing these constraints to gain insight into a more
complex network scenario.
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APPENDIX

PROOF OF THEOREM III.2

Proof: For n=1, the result clearly holds.
For n=2, consider a FIFO node whose inputs are γ

r1,b
(1)
1

and

γ
r2,b

(1)
2

. Using theorem III.1 we have,

b
(2)
1 = b

(1)
1 + r1

(

T +
b
(1)
2

R

)

(8)

= b1 +

(

T +
b2

R

)

2r1T +

(

T +
b1

R

)

r1r2

R
(9)

which coincides with the expression obtained by substituting
n = 2 in theorem III.2. Assume the result holds for an arbitrary
natural number m. The following steps prove that the result
must also hold for m + 1.

b
(m+1)
1 = b

(m)
1 + r1

(

T +
b
(m)
2

R

)

(10)

= b1 +

(

T +
b2

R

)





bm+1
2 c
∑

i=1

(

m

2i − 1

)

ri
1r

(i−1)
2

R2i−2




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(
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R

)



r1 +
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2 c
∑

i=1

r
(i+1)
1 ri

2

R2i

(
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2i

)




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R

)
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(r1r2)
i

R2i−1

(
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2i

)



+

(
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R

)




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2i − 1

)

(r1r2)
i

R2i−1



 (11)

Noting that,
(

n

r

)

+

(

n

r − 1

)

=

(

n + 1
r

)

the appropriate terms can be combined in the above equation to
yield,

b
(m+1)
1 = b1 + (T +

b1

R
)





bm+1
2 c
∑

i=1

(r1r2)
i

R2i−1

(

m + 1
2i

)
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+(T +
b2

R
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
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∑

i=1

(

m + 1
2i − 1

)

ri
1r

(i−1)
2

R2i−2



 (12)

which is the desired form for m + 1.

PROOF OF PROPOSITION III.1

Proof: For n = 1, we have equation (4).
In the following equations, θi is defined by equation (7). For

n = 2, consider,

β
1,2
1 = β1

1 ⊗ β2
1

= inf
0≤s≤t

{β1
1(s) + β2

1(t − s)}

= inf
0≤s≤θ0

{β2
1(t − s)} ∧ inf

s>θ0

{β1
1(s) + β2

1(t − s)}

Evaluating the above equation for different values of t we find
the following. For t ≤ (θ0 + θ1), β

1,2
1 = 0. For t > (θ0 + θ1),

β
1,2
1 = β2

1(t − θ0)

∧ inf
θ0<s<t−θ1

{β1
1(s) + β2

1(t − s)}

∧ inf
s≥t−θ1

{β1
1(s)} (13)

= (R − r2)(t − θ0 − θ1) ∧ (R − r2)(t − θ0 − θ1)

∧(R − r2)(t − θ0 − θ1) (14)

= (R − r2)(t − θ0 − θ1) (15)

which is the required form for n=2.
Now assume that the result holds for m. Consider, n = m +

1. Tracing the steps in equations (13,14,15) with
∑m−1

i=0 θi and
θm, we easily see the result for n = m + 1.


