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ABSTRACT
Virtual Private Networks provide secure and reliable com-
munication between customer sites. With increase in num-
ber and size of VPNs, providers need efficient provisioning
techniques that adapt to customer demand by leveraging a
good understanding of VPN properties.

In this paper we analyze two important properties of VPNs
that impact provisioning - (a) structure of customer end-
point (CE) interactions and (b) temporal characteristics of
CE-CE traffic. We deduce these properties by computing
traffic matrices from SNMP measurements. We find that
existing traffic matrix estimation techniques are not read-
ily applicable to the VPN scenario due to the scale of the
problem and limited measurement information. We begin
by formulating a scalable technique that makes the most
out of existing measurement information and provides good
estimates for common VPN structures.

We then use this technique to analyze SNMP measure-
ment from a large IP VPN service provider. We find that
even with limited measurement information we can real-
ize adaptive provisioning for a significant fraction of VPNs,
namely, those constituting the “Hub-and-Spoke” category.
In addition, the ability to infer the structure of VPNs holds
special significance for provisioning tasks arising from topol-
ogy changes, link failures and maintenance. We are able to
provide a classification of VPNs by structure and identify
CEs that act as hubs of communication and hence require
prioritized treatment during restoration and provisioning.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and De-
sign; C.4 [Performance of Systems]: Design Studies

General Terms: Performance, Design

Keywords: VPN, Provisioning, Traffic Engineering, Traffic
Matrix Estimation
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1. INTRODUCTION
Virtual Private Networks (VPNs) provide secure and reli-

able connectivity among customer sites. The mission-critical
nature of traffic carried on VPNs makes security and reli-
able delivery (low loss and delays) essential characteristics
of such networks. With increasing popularity of IP VPNs
for enterprize networking solutions, providers are faced with
new challenges in provisioning and operating a complex and
growing VPN infrastructure.

In the presence of accurate information about customer
traffic profile and available network resources, a provider can
make accurate provisioning decisions while ensuring Service
Level Agreements (SLAs) are met. However, in reality it is
hard to specify customer traffic statistics accurately a pri-
ori. Existing architectures (e.g., the Hose Model [1], the
Point-to-Set model [4]) for scalable VPN services rely on
adaptive provisioning strategies that require a good under-
standing of VPN characteristics, to avoid provisioning for
peak demands.

Our goal is to develop techniques that allow a service
provider to learn properties of VPNs that impact provision-
ing tasks. We begin with SNMP measurement information
from a large IP VPN service provider. For bandwidth alloca-
tion and resizing, we need temporal characteristics of traffic
exchanged between pairs of customer endpoints (CEs). Pro-
visioning tasks involving maintenance, recovery from link
failures, topology changes, and re-homing customers are bet-
ter accomplished if we can prioritize these tasks especially
for the hubs of communication in the VPN. Thus, a good
understanding of the structure of VPN endpoint interactions
is required. Traffic engineering tasks involving core network
capacity management also require a good estimate of the
size of customer traffic aggregates, which can also be de-
rived from a knowledge of the CE interactions, such as the
CE-CE traffic matrix.

Recent advances in traffic matrix estimation techniques [5]
provide a starting point. There are important differences in
the VPN case that prevent us from directly employing ex-
isting traffic matrix estimation techniques: (a) the scale of
the network taken as a whole results in a computationally
expensive and infeasible formulation; (b) per-VPN traffic
information is not available for core network links result-
ing in a lack of sufficient measurement information; (c) a
shared core network infrastructure with only aggregate link
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Figure 1: Schematic showing a multi-hub VPN

counts for these links introduces dependencies among the
many VPNs that share those links.

Each of these issues assumes significance when we ob-
serve that with continual growth in the number of VPN
customers, the scale of the problem increases. Obtaining
fine-grain reliable measurement information becomes much
harder. Thus we first evolve a scalable technique to compute
VPN traffic matrices and then examine how to deal with the
lack of sufficient measurement information. Specifically, we
examine what characteristics of VPNs can be reliably esti-
mated with existing information. In doing so, we are able
to provide deployable techniques for improving the existing
provisioning infrastructure. Additionally, our observations
can serve as a guide to enhancement of existing measure-
ment infrastructure for maximal gains.

We thus begin with an estimation technique that employs
approximations to break the network-wide traffic matrix
problem into several smaller independent per-VPN traffic
matrix problems. These approximations are driven by dis-
tinct properties of VPNs. We examine the reliability of the
approach and demonstrate that despite insufficient informa-
tion, we can learn VPN characteristics discussed above for
a large fraction of customers.

First, we find that VPNs that exhibit a Hub/Spoke struc-
ture can be efficiently handled. Such VPNs feature many
“spoke” nodes that communicate with just the “hub” nodes
(typically one or two, (Fig. 1)). We then employ traffic
matrix estimates to obtain a classification of VPNs by their
structure and show that Multi-hub/Spoke VPNs indeed con-
stitute a significant fraction. We present analysis of Multi-
hub/Spoke VPNs to show that many of these VPNs in fact
feature two hubs and are dual-homed hubs. For the SNMP
data analysed in this paper, we show that traffic matri-
ces can be accurately computed for a significant percentage
(about 57%) of the VPNs. We show that even approxi-
mate CE-CE traffic matrices can be used in thresholding
techniques to identify hub nodes, which is very helpful in
provisioning tasks.

Exploiting the higher accuracy in estimates of traffic ma-
trices for Hub/Spoke VPNs, we then study temporal charac-
teristics that affect bandwidth allocation tasks. We observe
stable CE-CE traffic trends across weeks, and slowly varying
trends across months. This lends support to bandwidth allo-
cation strategies that might attempt to learn characteristics
over time.

The combination of algorithms and measurement obser-
vations we present demonstrates the feasibility of adaptive
provisioning. Despite the limited nature of available mea-
surement information, we demonstrate that our techniques

SNMP Information CE-PE and PE-PE traffic
SNMP Aggregation Interval CE-PE-15m; PE-PE-1hr

VPN Size Range 10s to 100s CEs
Number of PE-PE Links ≈ 6000

Duration of data examined 5 months

Table 1: Details of SNMP Information

can be applied to a significant fraction of VPN customers
implying an overall enhanced operational efficiency.

The rest of the paper is structured as follows. We discuss
related work in §2. The measurement information is briefly
described in §3. A traffic matrix estimation technique is
then presented in §4. We employ the technique to under-
stand VPN structure and temporal characteristics in §6. We
conclude in §8.

2. RELATED WORK
A traffic matrix provides the volume of traffic between

source-destination pairs in a network. Such matrices have
been computed at varying levels of detail for IP networks:
between ISP Points-of-Presence (PoPs) [3], routers [5], IP
prefixes [2] etc. The problem of estimating traffic matrices
is ill-posed: for a network with N source-destination pairs
we need N2 demands to be estimated. However the number
of pieces of information available is typically much smaller
(of the order of number of links in the network). For large N ,
the problem becomes massively under-constrained. Existing
research indicates that some kind of side information must
be brought in while solving such linear systems. Many such
proposals solve the following minimization problem:

min
x

||y −Ax||22 + λ
2
J(x)

where ||.||2 denotes the L2 norm, λ > 0 is a regularization
parameter, and J(x) is a penalization functional. These
approaches are generally called strategies for regularization
of ill-posed problems. The regularization strategy (the choice
of J(x)) guides the optimization problem in its choice of
the traffic matrix that might provide a good solution to the
problem.

Zhang et al [5] develop a regularization method tailored
for traffic matrix estimation. Their method incorporates
the gravity model solution so that the optimization simulta-
neously attempts to minimize the error from observed link
counts and the gravity estimate. They demonstrate that the
gravity model estimate for the traffic matrix provides a good
starting point and hence propose to opt for the Kullback-
Leibler divergence of the gravity estimate from x as the reg-
ularization functional (§4.1).

The problem treated here is closest to [5] in that, we adopt
the same regularization technique. However, compared to
the Border Router (BR) traffic matrix obtained in [5], the
scale of the VPN problem is much larger. The computa-
tional expense prevents us from solving for a single network-
wide problem (which is the case with BR traffic matrices).
Instead we evolve approximation techniques that exploit the
structure of VPNs and break the problem down to many
per-VPN problems. In addition to problems with scale, the
measurement information available with VPNs is aggregated
across all VPNs and per-VPN information is very often un-
available (in contrast, the BR traffic matrices can exploit
fine-grain NetFlow data). Hence it is not straightforward
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Figure 2: Schematic showing available SNMP mea-
surement information
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Figure 3: CDF of number of PEs touched by a VPN

to guage the correctness of the traffic matrix estimates in
the case of VPNs. We evolve a set of guidelines to help un-
derstand the applicability of the estimates and demonstrate
how to obtain the most out of the coarse-grain information
available in the case of VPNs, inspite of the prohibitive scale
of the problem.

3. MEASUREMENT INFORMATION
In this paper, we present results from our study of mea-

surement information from a large VPN service. Here, we
provide a brief description of the data available from the
service. In addition to helping us understand the results in
the next few sections, this is also meant to be representative
of the kind of information that is typically at the disposal
of today’s service providers.

Fig. (2) shows the points in the network where SNMP
measurement information is available. Aggregate byte counts
over one hour intervals for each provider edge (PE) to PE
link are collected by SNMP. This count represents the num-
ber of bytes transmitted on the PE-PE link due to all VPN
customers sharing that link. By PE-PE link, we mean a
logical link like an MPLS tunnel. In the current dataset
there was SNMP information for such logical links for every
pair of PEs. The other set of SNMP data available is for
the traffic for each customer endpoint (CE) to PE link in
the form of aggregate byte counts over 15 minute intervals.
The CE-PE link is the dedicated access link for the VPN
customer and the traffic observed on that link is due only
to that customer endpoint.

As one would expect, the SNMP characteristics demon-
strate weekly cycles. Fig. 5 shows the daily mean of bytes
leaving the CE toward the PE and bytes coming to the CE
from the network, for a representative VPN. For some VPNs,
there is an increase in the magnitude over the months in-
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Figure 4: CDF of number of CEs per VPN

dicating a growth in the VPN. But there is a mean about
which the variations of magnitude are seen indicating that
there is a certain amount of predictability in the traffic. An
additional observation is that we see stable trends in the
sensitivity to time-of-day. When the trends are observed
seperately for mornings, evenings etc, we see the repetition
in patterns more clearly - traffic at noon and evening con-
sistently higher, those at nights always low etc.

An important factor influencing our approach is the size
of the service in terms of the number and size of customers,
the number of PE routers involved and hence the scale of
the problem. Fig. 3 shows the distribution of number of
PEs that receive traffic per VPN. This measure indicates
the number of links that traffic from a given VPN might
influence. If there are N PEs that the CEs of a VPN com-
municate with, there can be O(N2) PE-PE paths that have
to be factored in the estimation formulation. These PE-
PE paths in turn carry traffic from other VPNs. Similarly
the size of the VPN customers is an important measure of
the scale of the problem. Fig. 4 gives the distribution of
number of number of endpoints per VPN. The distribution
shows that while there are a lot of small VPNs, there is a
significant fraction with sizes in tens and hundreds. In the
absence of per-VPN traffic information on a per-link basis
(as is the case here - the traffic counts for PE-PE logical
links are aggregated across VPNs), the estimation has to
account for all pairs of CEs as potentially communicating
peers. The gist of these observations is that the scale of the
problem at hand is considerable.

4. TRAFFIC MATRIX ESTIMATION AND
CLASSIFICATION

There are multiple uncertainties to overcome while pro-
visioning the network for the aggregate capacity needed for
the VPN service. Some of the factors a carrier may not know
precisely, a-priori, are:

• The amount of traffic generated by any given source
of the VPN. We may only have available the peak rate
specification.

• The proportion of the source (hose) traffic that any
given link in the network receives.

Often, a new VPN may be admitted as and when the cus-
tomer request arrives, with very little information being pro-



vided by the customer other than peak access capacity re-
quirements. To guarantee the SLAs requested, there is a
need to ensure that adequate resources are available. Un-
derstanding the “structure” of the VPN helps us in more effi-
ciently provisioning the capacity in the network, and adapt-
ing the capacity to changing VPN requirements. By struc-
ture, we mean the spatial distribution of the traffic flows be-
tween the different sources and destinations of the VPN. For
example, knowing if there is a hub-and-spoke structure helps
in appropriately provisioning capacity in the network since
an end-point that is a spoke in a pure “hub-and-spoke” VPN
would require capacity primarily between the hub and spoke.
However, this information is rarely provided (or known) by
the customer at the time when the VPN is admitted. As a
result, provisioning without knowledge of the VPN structure
could result in a substantial amount of wasted resources.

To infer the structure of a VPN and to achieve efficiencies
through adaptive provisioning, we need to examine the way
customer endpoints communicate with each other. In other
words, we need good estimates of the VPN traffic matrix.
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Figure 5: Aggregate bytes entering a CE over 5
months for a VPN of size 79

4.1 Estimation techniques
Traffic matrix estimation is an ill-posed problem: with N

nodes in a network, the number of traffic demands to be es-
timated is N2 while the number of equations we have is only
proportional to the number of links. As discussed in §2 there
are several approaches to solving such under-constrained
problems. Two popular approaches are the gravity model
approach and the information theoretic approach. We em-
ploy both.

Denote the total traffic entering an endpoint si by N in(si)
and the traffic leaving it by Nout(si). Each element of the
traffic matrix indicates the amount of traffic from endpoint
si toward dj , denoted by N(si, dj). Thus some portion of
Nout(si) is contributing to N in(dj). The gravity model at-
tributes a portion of N in(dj) to each source sk that trans-
mits to dj in proportion to the size of Nout(sk). The under-
lying assumption is that the amount of traffic generated by
si is independent of that generated by dj . Thus the following
relationship is used: [5]

N(si, dj) =
Nout(si)N

in(dj)
∑

k 6=j
Nout(sk)

(1)

While the gravity model is simple, it is known to be less

accurate in the presence of additional information. One of
the methods recently proposed [5] exploits what is gener-
ally termed strategies for regularization of ill-posed prob-
lems. Accordingly a penalized least-squares approach is for-
mulated as:

minx







||y −Ax||2 + λ
2

∑

k:gk>0

xk

T
log

(

xk

gk

)







(2)

Here, x is a vector with each xi representing the variable
N(si, dj), with the constraint that xi ≥ 0. Each element yi

in vector y represents the traffic measured for link i, T is the
total traffic in the network, and gk is the gravity estimate
for xk obtained using Equation (1). A is the routing matrix
which relates the appropriate variables xi.

In the present context, si and dj would correspond to
the VPN customer endpoints. The set of variables N(si, dj)
would be defined for each (si, dj) that are part of the same
VPN, since an endpoint communicates with another end-
point only if it is a part of the same VPN. For example,
denote N(s1, d1) and N(s1, d2) by x1 and x2 respectively. If
d1 and d2 are the only nodes with which s1 communicates
we have the equation Nout(s1) = x1 + x2. Enumerating
such equations for all VPNs in the network would give us
the equations denoted by Equation (2). Thus the following
would be set of equations forming the system:

1. For each source si, Nout(si) =
∑

j
xj where xj indi-

cates the variables for traffic from si to dj .

2. For each source si, N in(si) =
∑

j
xj where xj indicates

the variables for traffic from dj to si.

3. For each PE-PE link, N(PEij) =
∑

j
xj where xj indi-

cates the variables for all such (si, dj) pairs that trans-
mit on the link PEij .

In reality, the problem described in Equation (2) is too big
and computationally expensive to solve. For instance, for
the measurement data analyzed here, we have a sparse rout-
ing matrix (A in Equation (2)) of dimensions (18×103, 950×
103) approximately, with about 2.8×106 non-zero elements.
In this paper, we evolve a variant of the above estimation
techniques to reduce the size of the problem so that the
traffic matrices can be quickly computed.

4.2 Estimation of VPN Traffic Matrices
Although many VPNs share a common core network, no

two endpoints belonging to different VPNs communicate
with each other. This lends a kind of separability to our
problem and hints at a possible strategy to reduce its size.
Instead of solving the problem for all VPNs as part of a sin-
gle network, we propose to compute the traffic matrices for
each VPN independently. In order to do this, we need data
on a per-VPN basis to construct the problem as in Equa-
tion (2). The path from a CE to another CE consists of two
segments: a) an access segment (between the PE and the
CE) where there is traffic from this VPN alone, b) a core
network segment (link between two PEs) which carries traf-
fic multiplexed across multiple VPNs. Typically, we have
aggregate SNMP information for each of these segments.
Thus we need to infer what part of the PE-PE aggregate
traffic is attributable to the VPN being solved for, at each
step. But there is not enough information to deduce this



Figure 6: Schematic indicating the structural as-
pects of VPNs that lead to additional equations in
the Traffic Matrix estimation problem

quantity. Instead, we introduce a bound on the contribution
of a particular VPN to the measured PE-PE link traffic.

Figure 6 depicts the constraints we evolve by exploiting
the strucutre of VPNs. We consider the set of all CEs in
the VPN that can possibly transmit along a given PE-PE
link. For example, in Figure 6 for the PE1-to-PE3 link, C21

and C22 are the only endpoints of Customer 2 that offer
traffic. The total output from those CEs provides a loose
upper bound on the contribution of that VPN to the PE-PE
traffic.

Thus, for every PE-PE link which is used by the VPN, we
introduce an additional equation as follows:

Tl =
∑

{(i,j)∈S}

N(si, dj) + vl

where S is a set of CE pairs belonging to this VPN which
could possibly transmit on the PE-PE link l and vl is a
dummy variable indicative of the contribution of all the
other VPNs to the observed PE-PE traffic Tl. We can sub-
stitute Tl by

∑

{(i,j)∈S} Nout(si) as a loose upper bound as

discussed above. For the example in Figure 6, this would
indicate the sum of Nout(C21) and Nout(C22). Now, we
have:

∑

{(i,j)∈S}

N
out(si) =

∑

{(i,j)∈S}

N(si, dj) + vl (3)

This equation focuses on the traffic related to a particular
VPN. The summation in N(si, dj) signifies the traffic ex-
changed between si and dj (on a given PE-PE path to dj),
whereas the left hand side includes all traffic generated by si

(on all PE-PE paths). Hence vl is a dummy variable that in-
dicates the fraction of traffic from sources {i : ∀k (i, k) ∈ S}
that does not go to destinations {j : ∀k (k, j) ∈ S} (i.e., it
is the contribution of si of the VPN on all the other PE-PE
paths.) Here, we have only used the CE-PE traffic informa-
tion and not the PE-PE information. Observe that the LHS
of Equation (3) is the sum of the contributions of all CEs of
the VPN attached to this PE. Thus this traffic is intended
toward CEs attached to many other PEs and it is possible

that this is greater than the PE-PE observed traffic. Thus
we can incorporate an additional piece of information in the
PE-PE traffic to make the LHS tighter (assuming we are
writing the equation for the PE-PE link (k, l)):

min{N(PEkl),
∑

{(i,j)∈S}

N
out(si)} =

∑

{(i,j)∈S}

N(si, dj) + vl

(4)
We now are in a position to solve the traffic matrix prob-

lem for each VPN separately. The introduction of a loose
bound instead of the the actual traffic due to the VPN on
the PE-PE link will introduce inaccuracies in the estimated
matrix. In the succeeding section we show that these in-
accuracies are tolerable for purposes of structural study of
VPNs and provisioning decisions.

5. VALIDATION OF ESTIMATION TECH-
NIQUE

To verify the accuracy of the traffic matrix estimates, we
could measure the actual traffic matrix and examine errors.
However, the scale of the VPN network means that measur-
ing per-VPN traffic matrices is very complex. Due to the
hundreds of customers and each with tens or hundreds of
endpoints, the task of building a reliable measurement archi-
tecture is formidable. The SNMP measurement information
we obtained did not have per-VPN traffic matrix informa-
tion but instead had only aggregate link traffic counts.

One option for validating the traffic matrix estimates is to
generate synthetic data and feed it as input. The program
generating the aggregate link traffic counts starts with a
synthetic traffic matrix for the VPN. Thus we have the real
traffic matrix for purposes of evaluating the performance of
the estimation technique.

A disadvantage of this approach is that real measurement
data can be very different from generated data. Due to the
variety of possible errors in the process of collecting informa-
tion, it is very hard to capture the nature of measurement
noise. We supplement the synthetic validation with indi-
rect checks on results with SNMP data to affirm that the
estimation technique does yield reliable estimates.

5.1 Synthetic Validation
We examine the performance of the estimation technique

by feeding input data derived from synthetic traffic matri-
ces. The input data involves aggregate byte counts of the
links traversed by the VPN. Thus the test involves feeding
the synthetic aggregate data to the estimation technique
and obtaining an estimated traffic matrx. To validate the
estimation technique, we examine the error in the estimated
traffic matrix compared to the actual.

The objective of this exercise is to understand the set
of VPN properties that can be reliably estimated give the
nature of information at our disposal. We are interested
in examining whether we can reliably deduce certain VPN
structural and temporal characteristics despite the lack of
per-VPN information for all links involved. Our strategy is
as follows. Recognizing that the traffic matrix is induced by
the underlying structure in the VPN, we begin by assuming
a structure of the VPN and generate synthetic input data.
We then measure the error in estimating the actual traffic
matrix and identifying VPN structures. E.g., in the follow-
ing paragraphs we begin with the Hub/Spoke structure to
generate synthetic inputs. If the estimated traffic between
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Figure 7: CDF of the spread of spoke sizes from
SNMP data for Hub/Spoke VPNs

the hub and spokes agree with the actual and if the hubs
are correctly identified, we conclude that the technique can
be relied upon for inferences regarding Hub/Spoke VPNs.

In the following paragraphs, we deal with Hub/Spoke
VPNs with one or more hubs. As it will be clear in the
later section, this structure is the most commonly occur-
ing among VPNs. In a Hub/Spoke VPN, we have all spoke
nodes communicating with the just the hub nodes. Further
the spoke nodes do not communicate among themselves. We
characterize such VPNs with the following parameters:

1. Size of the VPN

2. Number of Hubs

3. Variation in the size of Spokes - the amount of traffic
exchanged between a spoke and a hub determines the
size of that spoke.

4. Maximum number of CEs of a VPN homed on the
same PE (“cluster size”).

We briefly discuss the significance of these parameters.
We vary these parameters over a range of values that are
found to be relevant to the typical VPN as indicated in the
measurement data. Thus we examine VPNs of sizes 10 and
15 which cover about 80% (see Fig. 4) of the sizes found in
the data. We examine results for one and two hub VPNs ex-
ploiting an observation presented in a later section on clas-
sification of VPNs that 95% of the multi-hub VPNs fea-
ture 2 hubs (Fig. 12). With reference to Hub/Spoke VPNs,
increased variation in the traffic volumes observed from a
spoke can make it harder for the estimation technique to
identify the hub. Fig. 7 shows the CDF obtained from the
SNMP data by computing the deviation in the traffic vol-
ume across spokes for all Hub/Spoke VPNs (the methodol-
ogy for classification of VPNs is discussed in the succeeding
section). The deviation has been normalized by the mean.
We use mean to standard deviation ratios of 1, 1.5 and 2 to
examine the effect of spread of spoke sizes on accuracy. A
ratio of 2 covers about 85% of the observed deviations.

The other parameter which we incorporate is the num-
ber of CEs of a VPN per PE. For a given VPN, higher the
clustering of CEs on a PE, lower the number of equations
at our disposal for the same number of variables. Thus it
is important to see how accuracy is impacted with typical
cluster sizes. Thus the number of CEs of the same VPN

that are clustered on a given PE are varied from 1 to 4 to
cover about 80% of the cases seen in the measurement data
(Fig. 13). Since we are interested in examining the reliabil-
ity of traffic matrix estimates, the simulation experiments
involve individual VPNs that are synthetically generated.
We do not attempt to simulate the interaction of multiple
VPNs on PE-PE links and instead examine that case with
observed SNMP data in later sections.

5.1.1 Methodology
The generation of a synthetic sample involves generating

numbers that represent aggregate bytes transmitted and re-
ceived at each CE and how they are split among various
other CEs of the VPN. For a Hub/Spoke VPN we first gen-
erate the data observed for the spoke nodes and then sum
them up to obtain the data for the hub node. In order
to generate data for spoke nodes, we start with a mean
and standard deviation. We then generate random num-
bers conforming to a Gaussian distribution of that mean
and standard deviation. As discussed earlier (§5.1) we set
the standard deviation using the CDF obtained from the
SNMP data.

In the results presented here, we use a mean of 1 MB
for the aggregate bytes transmitted and received at each
CE that is a spoke. The specific value of the mean has no
impact on the results. To summarize the procedure:

1. Set mean µ and standard deviation σ for spoke traffic

2. Generate a Gaussian random number ri ∼ (µ, σ) for
each spoke i

3. R←
∑

i
ri

4. R gives the traffic attributed to the hub

In order to implement the maximum cluster size, we use a
uniform random variable as follows. Given a maximum num-
ber of CEs m that can be assigned to the PE, we generate
an integer random number in (1, m) for each PE. The CEs
are assigned to the PEs sequentially till all CEs have been
assigned. Thus the number of PEs in a synthetic dataset de-
pends on the maximum cluster size setting and the sequence
of uniform random numbers. We summarize the procedure
below:

1. Set max number of CEs of a VPN per PE as m, size
of VPN as sz

2. Set i← 1, j ← 1

3. Generate an integer random number r ∼ Uniform(1, m)

4. Set r ← min(i + r − 1, sz)

5. Assign CEi, CEi+1 . . . CEr to PEj , set i← r + 1

6. If i < sz, set j ← j + 1 and go to 3

5.1.2 Evaluation
We begin our evaluation by examining the effect of the

number of CEs of a given VPN incident on the same PE
(clustering). Recall that each link traversed by the VPN
induces one equation relating the traffic matrix variables.
Higher clustering thus gives us fewer equations for the same
number of variables causing higher errors in estimation. Fur-
ther, a given cluster size has greater impact on estimates if
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with increased clustering of a customer’s endpoints
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Figure 9: Effect of cluster size with varying spread
in spoke sizes for VPN of size 10. Smaller VPNs are
affected more by increase in spread in spoke size

the size of the VPN is smaller. We employ the ratio of the
estimated traffic matrix to the actual as a measure of the
error - closer the value to one, better the estimate. Fixing
the spread of spoke sizes at 1, Fig. 8 indicates that while
the standard deviation of the error increases for higher clus-
tering, it is around 10% even at higher cluster sizes for the
larger VPN. From the perspective of PE-PE bandwdith pro-
visioning, even the errors at higher cluster sizes are tolerable.

On the other hand, varying the spread of spoke sizes for
the smaller VPN, shows that accuracy suffers with increased
spread (Fig. 9). This is due to the fact that in a smaller
VPN, increased variation in spoke sizes can translate to some
of the spokes being comparable to the hub. Larger VPNs
are less susceptible to such variations in spoke sizes. Fig. 11
confirms this observation by depicting the effect of variation
in spoke sizes with increase in VPN size. The estimates with
the larger VPN are much better.

Thus the synthetic validation points to the following ob-
servations: (a) the estimates are reliable for Hub/Spoke
VPNs over a significant range of parameter values cover-
ing a majority of such VPNs; (b) with smaller VPN size,
the spread of spoke sizes and cluster size can impact the ac-
curacy of the estimates; (c) estimates for larger Hub/Spoke
VPNs are resilient to variations in cluster size and spread in
spoke sizes and hence are better.
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Figure 10: CDF of fraction of CEs featuring non-
zero output bytes confirms larger hub/spoke VPNs
have more CEs with zero output bytes. This means
that accuracy of estimates for larger Hub/Spoke
VPNs is better.

% VPNs with multiple hubs ≈ 18%
% Multi-hub VPNs with 2 hubs ≈ 95%
% of 2 hub VPNs dual homed ≈ 40%
% of all VPNs analyzable ≈ 57%

Table 2: Multi-hub VPNs and dual homed hubs

In all the test runs for Hub/Spoke VPN inputs, the hub
node was accurately identified by using a criterion that such
a node features more than 50% of the CEs as its peers. We
elaborate more on such a thresholding scheme while classi-
fying VPNs using SNMP data (§6).

5.1.3 Two-hub VPNs with dual-homed hubs
In general the evaluation with synthetic data indicates

that, with consistent input, the accuracy of the techniques
is very good in the case of Hub/Spoke VPNs. These conclu-
sions also apply in a limited sense to multi-hub VPNs where
the multiple hubs act as one unit with a load-balancing en-
tity presenting a single interface to the spoke nodes. In such
cases, if the hubs are considered as one unit and traffic ma-
trix variables defined accordingly, these conclusions apply
fully.

An analysis of the SNMP data shows that a majority of
the Multi-hub/Spoke VPNs feature only two hubs (Fig. 12).
Further, among these two hub VPNs, 40% have both the
hubs homed on the same PE indicating that they are in the
same facility. Such dual homed hubs act as one unit with
spoke traffic being load balanced among them. In essence,
the analysis in the previous section indicates that traffic ma-
trix estimates will be accurate for these VPNs. Utilizing the
results of classification of VPNs (to be discussed in §6) we
see that about 57% of all VPNs can be accurately handled
with the proposed estimation techniques (Table 2).

5.1.4 Multi-hub VPNs without dual-homed hubs
Thus far we have looked at VPNs with a single hub and

two hubs to gauge the accuracy of the estimation technique.
The remaining type of Multi-hub VPNs are those that have
two or more hubs where the hubs communicate with differ-
ent subsets of CEs in the VPN. Unlike two-hub VPNs with



dual-homed hubs, the hubs in these VPNs do not appear
as a single entity to the spokes. These hubs are possibly
geographically spread out and feature distinct sets of spokes
communicating with them.

We found that the estimation technique cannot provide
reliable results in such VPNs. A typical example would be
where a subset of CEs transmits zero bytes to one hub and
all bytes to a second hub. Due to the absence of per-VPN
information on the PE-PE links, the estimation technique
has no way of discovering whether a given CE has indeed
transmitted to another. The traffic matrix estimate for a
given CE pair is driven in part by their traffic volume and the
equations for aggregate link counts. Hence, the estimation
procedure gives a non-zero estimate so long as the traffic
volumes from the CEs are non-zero. In the Hub/Spoke case,
this does not drastically affect the errors since the size of the
hub is very large relative to spokes.

5.1.5 Validation for Large VPNs
We have examined results for hub/spoke VPNs, which

are the typical cases reflected in the measurement data. We
have not performed the validation for larger VPN sizes here
(which are the top 20% in the measurement data) although
we have employed the technique for all VPNs in the suc-
ceeding sections dealing with SNMP data. There are some
aspects of the traffic that aid in solving for large VPNs. We
find that not all CEs communicate in a given measurement
interval. The result is that the number of variables to be
solved for reduces to a large extent (since they are known
to be zero).

Fig. 10 shows the CDF of fraction of CEs that featured
non-zero output bytes in the SNMP data for small, medium
and large VPNs (lower, middle and higher 33%-ile). The
figure shows that in small and medium sized VPNs, 90%
or more of the CEs feature non-zero traffic with probability
0.75. For larger VPNs, we see approximately 80% of the CEs
transmitting some data with probability 0.75. This means
that with larger VPNs, there are more CEs that transmit no
data in a given interval, leading to simplification in system
to be solved.

Coupling this with observations in §5.1.2 which showed
that estimates for larger Hub/Spoke VPNs are resilient to
spread in spokes and a range of cluster sizes, we see that
traffic matrices can be expected to be more accurate in larger
Hub/Spoke VPNs.

5.1.6 Significance of observations

1. Clustering: While provisioning a VPN, the provider
usually attempts to reduce clustering of CEs onto a
PE so as to reduce the risk of outage for the customer.
This bodes well for measurement techniques that have
to work with limited information as indicated by the
results in the previous sections.

2. Identifying a hub: Since the size of the hub is very
large compared to the spokes in a Hub/Spoke VPN, a
thresholding criterion can be reliably used to identify
the hub. Given the traffic matrix estimates for a CE
toward all other CEs, we can form a set of its peers by
pruning all CEs toward which estimates are compara-
ble to errors in the technique. The node with almost
all CEs as peers would be the hub.
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Figure 11: Size of the VPNs and clustering of CEs
are more influential w.r.t the accuracy of the TM
estimates.
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3. Multi-hub and other VPNs: Clearly more data is needed
to reliably analyze multi-hub VPNs and other complex
structures. With the current data, we could obtain
the traffic matrix and use it only to obtain an approxi-
mate set of hubs. One could then examine whether the
VPN features several localized Hub/Spoke structures
or some kind of a hierarchy among hubs. We have not
examined this direction with the synthetic validation
in this paper.

5.2 Cleaning the dataset
Given the large-scale nature of the data that is being han-

dled, it is natural to expect errors and inconsistencies in the
collection process. It is very important to remove samples
that are a manifestation of such errors so that we can under-
stand the performance of our algorithms clearly. In order to
clean the dataset, we take recourse to certain properties a
valid dataset must satisfy:

1. Noting that CEs in a VPN receive traffic only from
other CEs in the same VPN, we observe that whatever
data any CE receives must come from a member of the
VPN. Thus, the total bytes received by the CEs should
be less than or equal to the total bytes transmitted by
the CEs, in the same VPN.

2. For any given PE, the total bytes transmitted into the



0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of CEs of same VPN per PE (x)

F(
x)

CDF of number of CEs of the same VPN per PE

Figure 13: CDF of number of CEs of the same VPN
on a given PE

network should be less than or equal to the total bytes
offered by all the CEs (of various VPNs) attached to
the PE. This is considering the fact that a PE does
not generate data.

3. For any given PE, the total bytes transmitted toward
CEs attached to it should be less than or equal to the
bytes it received from the network. That is, whatever
number of bytes the CEs attached to a PE receive that
should match the bytes sent to this PE from other PEs.

In reality a large fraction of the dataset does not strictly
conform to all these rules. We had to relax the rules so
that we have a good number of samples to work with, while
still being confident that the samples are meaningful. The
strategy we use is to allow a range of error - 10% error is
considered tolerable here. For example, we specify that the
number of bytes received by CEs in a VPN should be within
10% of the bytes transmitted by all CEs in the same VPN.
This means, sometimes, the total output is allowed to be
greater than total input. The causes for such cases include
data sources not covered by the measurement infrastructure.

Additionally, each VPN is a geographically spread out en-
tity. This means that measurements are usually not time
synchronized and are sometimes absent due to problems
with polling and dropped packets. Some error cases are han-
dled by the measurement modules and are indicated in the
data. Such samples are discarded and the rest of the sam-
ples are subject to these tests. Depending on the objectives
of the analytical exercise, the threshold for error tolerance
can be set to a different value.

5.3 Validation with SNMP data
In §5.1 we could test the accuracy of traffic matrix esti-

mates by comparing them with the actual synthetic traffic
matrix that was used to generate the test input. The SNMP
measurement data on the other hand does not provide per-
VPN information, i.e., we do not know the actual traffic
matrix for the VPNs being analyzed. From the results of
§5.1 we know that estimates are reliable for a large frac-
tion of Hub/Spoke VPNs. We first examine indirect means
of confirming this conclusion. This involves looking at the
SNMP measurement of CE-PE link counts and comparing it
with the estimates. We then compare the observed PE-PE
link counts with traffic matrix estimates, with bandwidth
provisioning in mind.
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Figure 15: Estimated traffic vs Observed traffic for
a PE-PE link with lower traffic volume

5.3.1 CE-PE link data
Fig. 14 examines the CE-PE aggregate traffic. The traf-

fic matrix estimate provides us with values to all variables
N(si, dj). Thus for a given si if we sum the variables N(si, dj)
for all dj , it should give the CE-PE link count for si. We
compute traffic matrices for each hour of the day across 105
days and plot the sum of the 95th percentile values of the
relevant N(si, dj) values for a small and large VPN. The
plots show that the mean plus four times the standard de-
viation of the observed SNMP measurements agrees closely
with the 95th percentile values obtained from the estimates.
This means that the results of estimation are accurate in the
aggregate, as we would expect given the way the optimiza-
tion formulation was built.

5.3.2 PE-PE link traffic
We now compare the traffic on PE-PE links based on the

estimated matrices to measured SNMP data for the traffic
on these links. As noted previously, the CE to CE path
consists of a core network segment where it is shared among
multiple VPNs. By summing all N(si, dj) variables of a
VPN that traverse a given PE-PE link, we obtain the esti-
mated contribution of a VPN to a given PE-PE link. We
then consider all VPNs that share this link and repeat the
same procedure. Summing across all such results across
VPNs, we obtain the estimated PE-PE traffic and exam-
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ine it with reference to SNMP data. Fig. 15 depicts a PE-
PE link with lower traffic volumes. The accuracy of PE-PE
traffic estimates reduces for links with lesser traffic. The
errors are markedly lesser for links with higher traffic as de-
picted in Fig. 16. This is due to the fact that, the errors in
SNMP measurement become comparable to traffic volume
of smaller links. However, both the graphs show that the
estimated numbers follow the same pattern of variation as
the measured numbers in time over a complete day.

Reasonable accuracy in estimating the aggregate PE-PE
links has implications for bandwidth provisioning tasks. Typ-
ically, core capacity provisioning involves a factor of safety
and estimates to drive such a task need not be exact. A
factor of 2 error in the estimate is usually considered tolera-
ble. With this goal in mind, we repeat the PE-PE validation
procedure with around 700 links and obtain Fig. 17. This
figure indicates the ratio of the TM estimate to the observed
PE-PE SNMP traffic for various link volumes. We note the
following from this graph:

• For a large number of links, the estimated PE-PE traf-
fic is within 50% of the SNMP observed traffic and
most of the cases it is either close to the SNMP quan-
tity or greater.

• Significant under-estimation happens in around 25% of

links considered and these cases were traced to three
problems in the data for VPNs traversing those links:
(a) the PE-CE and CE-PE SNMP data was zero even
when the PE-PE data seemed to be significant; (b)
there were more bytes transmitted from the PEs to the
CEs than what was received by the PE (measurement
inconsistency); (c) the total bytes received by CEs was
greater than the total bytes transmitted, i.e., there
were external sources not accounted for in the SNMP
data.

• Significant over-estimation occurs when the traffic vol-
ume on the link being considered is “small”. By “small”
we mean it is comparable to errors in SNMP data.
E.g., in cases where the difference in the number of
bytes input to a PE and the number of bytes leav-
ing it is 10MB and the PE-PE traffic volume was also
about 10MB.

The validation considered here is not complete since we
do not have actual per-VPN traffic data. Due to the scale
of the exercise it is unlikely that such data will be available
in the near future. In addition, owing to the mission critical
and private nature of VPN traffic, there are a lot of admin-
istrative hurdles to obtaining access to such traffic. Thus,
we need to examine traffic matrix estimates in the current
framework and evolve guidelines to guage the reliability of
the estimates.

5.4 Reliability of Traffic Matrix Estimates
Estimation techniques such as those described here deal

with aggregate byte counts and some additional side infor-
mation to arrive at the components that led to that ag-
gregate byte count. Even if the SNMP counts match the
estimates, it is not necessary that the individual VPN ma-
trices are correct. But we employed multiple strategies to
gain confidence in our technique, viz., validation with syn-
thetically generated data and indirect measures involving
CE-PE and PE-PE SNMP data.

Observe that so long as most of the VPNs being analyzed
exchange the bulk of their traffic on PE-PE links, the esti-
mates are reliable if per-customer clustering of CEs is low.
This is because, the traffic passes three segments: (a) the
CE-PE link, (b) the PE-PE link and (c) the PE-CE link
on the destination side. Now (a) and (c) are part of the
constraints in the optimization formulation. So any solution
that has the property that the variables sum to the observed
access link aggregate may be acceptable. Now, consider the
case when the PE-PE link counts match reasonably. If there
are a number of CEs of a given VPN attached to a PE, we
might still have errors in estimation - we could assign more
bytes to a particular CE and still satisfy all constraints of
the optimization. But if the number of CEs on a PE is
small, then since all the segments of the transit route match
with measurement, we must have a good estimate. Thus we
evolve a set of guidelines to gauge the reliability of the esti-
mates exploiting the observations of the previous sections.

1. If the number of CEs of a VPN homed on the same PE
is low and the VPN is of Hub/Spoke type, the traffic
matrix estimates are reliable.

2. Given consistent measurement data, PE-PE aggregate
traffic can estimated with reasonable accuracy for pro-
visioning purposes.



Figure 18: Structural classification of all VPNs

In the current dataset, we have found the number of CEs
of a given VPN per PE to be low and that a lot of VPNs are
of a hub/spoke nature. Hence we are in a position to study
the structural characteristics and temporal characteristics of
these VPNs.

6. SPATIAL STRUCTURE FOR CLASSIFI-
CATION

Based on the way VPN endpoints communicate with each
other (using the derived traffic matrices), three broad cat-
egories for the VPN structure can be deduced: (a) Pure
Hub/Spoke, (b) Multi-Hub/Spoke, and (c) Hybrid VPNs.
As the name suggests, a pure Hub/Spoke VPN features
“spoke” nodes that communicate with just one node called
the “hub”. With Multi-hub/Spoke VPNs, there are two or
more hubs with which all the CEs communicate. VPNs that
cannot be grouped into either of these categories are termed
Hybrid VPNs.

To identify the structure of a VPN, we obtain the set of
peers for each CE by examining the estimated traffic toward
all other CEs in the VPN. Note that the estimation proce-
dure provides non-zero estimates so long as the input and
output bytes of a given CE pair are non-zero. Hence even
though a pair of CEs do not communicate with each other
in reality, the estimate might attribute a non-zero value to
the pair. Fortunately, the fact that hub traffic is far greater
than that of spokes causes these spurious estimates to be
small in the case of Hub/Spoke VPNs. Hence we build an
approximate set of peers for a CE after pruning lower values
which are more likely to be estimation errors. In the current
dataset, some of the spoke traffic matrix variables are zero
due to the observed input and ouptut bytes being zero. We
then prune the bottom 25% percent of possible peer CEs to
mitigate estimation errors. Once the peer set is obtained,
the criterion used to judge whether a node is a hub is to
check if the set spans more than 50% of endpoints in the
VPN.

Thus, given traffic matrix estimates for a VPN, we employ
the following procedure to identify its structure:

1. Obtain the set of peer CEs for every CE after eliminat-
ing zero values and pruning the bottom 25% in terms
of estimated traffic volume.

2. If a CE communicates with more than 50% of the end-
points in the VPN it is judged to be a hub node.

3. If a CE has 1 or 2 peers, it is classified as a spoke.

Figure 19: Structural classification of big VPNs

Figure 20: Structural classification of small VPNs

4. If a CE is in neither of the above categories the VPN
is classified as hybrid.

5. After classifying all CEs, we examine the VPN. If the
VPN has exactly one hub and all other endpoints are
spokes, we classify it as a pure hub/spoke VPN.

6. If it has more than one hub but the number of hubs
is less than 50% of the size of the VPN, we judge the
VPN to be of the Multi Hub/Spoke nature.

7. If more than 50% of the nodes in the VPN are hubs,
we say the VPN is of the meshed kind.

Fig. 18 depicts the analysis of around 600 VPNs in the
dataset. The classification indicates that a significant num-
ber of the VPNs are of the Hub/Spoke nature. Frequently,
the VPNs have 2 or 3 hubs for redundancy and load balanc-
ing.

The classification indicates that with larger VPNs ( upper
33%-ile - Fig. 19), the structure becomes very complex and
there are more of these classified as hybrid. Across various
sizes of VPNs, there is a significant fraction that is of the
hub/spoke nature (either Pure or Multi Hub/Spoke). This
has implications for provisioning and traffic engineering as
we shall note in §7.1. Small VPNs (lower 33%-ile - Fig. 20)
tend to exhibit simple structures like pure hub/spoke. As an
example, we look at the communication structure of a small
meshed VPN. Fig. 21 shows the traffic from three endpoints
in a VPN of size 4 illustrating a mesh type of communi-
cation among the endpoints. Each plot depicts the traffic
from a given endpoint to other members of the VPN. The
plots have been generated using traffic matrix estimates over
many days. Hence there are notched boxes that denote the
range of values for traffic observed toward a given endpoint.
The notched box usually features three horizontal lines in-
dicating the 25, 50 and 75 percentile values. VPN C shown
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Figure 21: Small VPNs have simple structure. The
one depicted above has 3 of the 4 nodes in the VPN
forming a mesh

in Fig. 22(a) exhibits a hub/spoke structure. Fig. 22(a) fea-
tures traffic flowing from a “spoke” to endpoint 4, which we
characterize as a hub. The hub node on the other hand com-
municates with most other endpoints as shown by Fig. 22(b).
Often VPNs cannot be categorized in either of these cate-
gories. VPN B featured in Fig. 23 shows a given endpoint
communicating with many other endpoints with orders of
magnitude difference in the traffic volumes.

Such structural characteristics are very important to effi-
ciently provision network resources. Provisioning decisions
can be fine-tuned over the lifetime of a VPN exploiting its
structural characteristics. Instead of a mesh of N 2 reser-
vations for a N node VPN, we could tailor allocations de-
pending on the structure of the VPN. There is a resultant
simplification in provisioning especially in the case of pure
hub/spoke and two hub VPNs.

7. TEMPORAL STRUCTURE AND PROVI-
SIONING

Once a VPN is admitted, the provider would want to en-
sure that irrespective of future admissions, the SLAs are
met. Further, for a new VPN there is not much informa-
tion regarding traffic characteristics and hence provisioning
has to be approximate and conservative. In order to ensure
SLAs, the provider needs to learn customer demands and
how they change over time. In the case of new VPN cus-
tomers, the initial conservative resource allocation can be
fine-tuned over time by learning customer characteristics so
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Figure 22: Hub/Spoke-like behavior can be seen
with some endpoints in VPNs such as above

that the provisioning better reflects actual demands.
Faster changes in traffic characteristics imply that provi-

sioning needs to be more responsive. Links may need to be
resized to accommodate existing customers. On the other
hand, slower changes in traffic would allow the provider
to exploit multiplexing gains and increase the number of
customers served. Thus we are interested in studying the
changes in traffic matrices over time to judge whether com-
plex dynamic provisioning strategies can yield appreciable
gains.

Fig. 24 demonstrates the traffic matrix for an endpoint
in a Hub/Spoke VPN for various times of the day. In this
figure, SNMP data collected between 6am and 10am are
counted for morning traffic, the data from 11am and 2pm is
considered as noon and the duration between 8pm-12 mid-
night is considered as night. Each point in these graphs
is the median of the number of bytes seen in those hours,
computed using a set of weekdays. The error bars (the ver-
tical lines) indicate the 25th and the 75th percentile values.
When the 25th percentile value is too low compared to the
median, the error bar is truncated and this is indicated by
a downward arrow.

The trend (the proportion of traffic to a given endpoint
relative to the others) show a similar shape although there is
difference in magnitude indicating that time of day is a dis-
tinguishing factor. With this observation, we now consider
traffic matrix changes over longer timescales. In Fig. 25 we
examine traffic trends across multiple weeks for a given end-
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Figure 23: A larger VPN exhibiting complex inter-
actions between various endpoints. There are orders
of magnitude difference in the amount of traffic to-
ward different CEs

point. Each curve shows the median traffic toward an end-
point with the error bars indicating the percentiles as above.
Barring one point, the trend for morning traffic across weeks
is strikingly similar. This means that the trends do not vary
slowly, so that intelligent provisioning schemes have enough
time to learn the traffic characteristics and act accordingly.

Extending the analysis over serveral months gives us some
more insight. Fig. 26(a) and Fig. 26(b) depict trends for
traffic from a given endpoint in two VPNs of different sizes
toward the rest of the endpoints. While trends in one of
the VPNs are stable over time in both shape and magni-
tude, the second plot shows magnitude variations over weeks
with the later weeks featuring higher traffic. In such cases
where either VPN traffic grows over time or VPNs add new
endpoints over time, learning traffic matrices is very useful.
Additionally this also means that even if initial provision-
ing is conservative, growth in VPN traffic might render it
insufficient if adaptive mechanisms are not in place.

7.1 Impact on Provisioning
The discussion in the previous paragraphs lead us to the

following important observations:

• Traffic Engineering: The traffic matrices provide us
an estimate of the size of the customer aggregate in
the core network. This allows us to conduct traffic en-
gineering on a per-customer aggregate basis: we can
re-map traffic for a given customer on to a new logi-
cal path and have an estimate of the added load and
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Figure 24: An Endpoint communicating with multi-
ple peers; traffic proportions to other endpoints are
very similar for different times of day, although the
magnitude varies.

available capacity. Without this information, traffic
engineering would have to handle PE-PE aggregates
as a whole.

• Bandwidth Allocation: Exploiting spatial charac-
teristics can lead to simplified provisioning and effi-
cient resource allocation, especially in the case of end-
points which communicate with just one or two other
peers. Addition of new endpoints in the VPN and
growth in customer demand over time are better han-
dled by learning traffic characteristics.

• Customer Differentiation: Since the traffic matri-
ces provide an estimate of the size of the customer
aggregate in the core network, the provider can choose
to provide preferential treatment to a selected set of
customers more efficiently. For the chosen set of cus-
tomers, the provider keeps track of the aggregate de-
mands using traffic matrices and makes allocations ap-
propriately. The temporal characteristics of the traffic
matrix indicate that the aggregate characteristics vary
slowly and can be learnt.

• Managing network failures: The additional knowl-
edge of customer traffic can lead to elegant manage-
ment of network failure and maintainance events. E.g.,
the aggregates leading to a hub node can be mapped
on to a new path which has more available capacity.

8. SUMMARY AND CONCLUSIONS
This paper analyzed two important properties of VPNs:

(a) the structure of customer endpoint (CE) interactions
and (b) the temporal characteristics of CE-CE traffic. Un-
derstanding actual customer behavior for large scale VPNs
can help in many ways including dealing with traffic engi-
neering, bandwidth allocation, moving a service to a differ-
ent infrastructure, and other provisioning and maintenance
operations.

We began with SNMP measurement information for 5
months from a large IP VPN service provider featuring about
6000 logical links. The VPNs had customer end points rang-
ing from a few tens to several hundreds. With such a re-
alistic, large scale service, there are significant barriers to
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Figure 25: Traffic trend from an endpoint to others
in a VPN remains similar across multiple days.

obtaining detailed, per-customer measurement information.
Consequently, there is only coarse grained aggregate SNMP
data of traffic on the internal PE-PE links of the service. To
get structural and temporal information about individual
VPNs, we needed to evolve previous traffic matrix estima-
tion approaches to overcome the problems posed by the scale
of our problem (the matrix for the entire problem is in the
range of nearly 3 Million elements.) Based on the charac-
teristics of VPN traffic, we developed bounds on the traffic
generated by a VPN on an individual PE-PE link, and used
these in our technique to estimate the traffic matrices.

Without actual per-VPN measurements, it was difficult to
directly validate our traffic matrix estimation approach. We
adopted a two-pronged approach. First, we used a synthetic
data set to compare the traffic matrices obtained with our
technique to the actual, a-priori known traffic matrix. The
synthetic data set we used was based on the broad charac-
terization obtained from the SNMP measurement data, to
allow us to have greater confidence in our approach. We
showed that our approach works very well for Hub/Spoke
VPNs. Second, we examined indirect measures by deriv-
ing aggregate CE-PE and PE-PE traffic volumes from the
estimated traffic matrices, and then compared it with the
measured aggregate SNMP count. Our estimates for the
mean and the 95th percentile of the CE-PE traffic agreed
closely with the actual values. We also showed that esti-
mates for the aggregate PE-PE traffic were reasonably ac-
curate. They were more accurate for links of higher capacity,
and are able to reflect the temporal characteristics that are
actually present in the traffic.

We then analyzed spatial and temporal characteristics of
customer VPNs. We identified three broad categories of
VPNs: pure hub/spoke, multi-hub/spoke and hybrid VPNs.
Overall, approximately 48% of the VPNs are of the hub/spoke
category. But for small VPNs (the bottom 33% of the
VPNs), hub/spoke VPNs dominate (70%). Of the multi-
hub VPNs (18% of all VPNs), interestingly 95% are 2-hub
VPNs. A significant portion of the big VPNs (top 33% of
VPNs) are Hybrid VPNs (that are neither hub/spoke nor
meshed VPNs). The percentage of pure “meshed” commu-
nication where any node talks to any other node is relatively
small (at 3%).

An examination of the temporal properties of traffic ma-
trices showed that they are quite stable over the period of a
day, and even across days over a period of weeks. Thus, we
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Figure 26: Long term trends for traffic from a CE
to all other CEs in VPNs of higher size

can use this measurement data to get an idea of the ”sta-
ble” VPN structure for each customer VPN, and thus, have
a reasonable estimate of the demand of each VPN customer
endpoint on access and core links. We believe that this paper
is unique in providing an understanding of VPN character-
istics from an operational, large scale VPN service.
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