
GSC: A Generic Source-based Congestion

Control Algorithm for Reliable Multicast ?

Neelkanth Natu and Priya Rajagopal and Shivkumar Kalyanaraman 1;2

Department of ECSE, Rensselaer Polytechnic Institute (RPI), Troy, NY 12180 3

Abstract

This paper presents a simple, generic source-based end-to-end multicast congestion
control (GSC) algorithm for reliable multicast transport (RMT) protocols. The al-
gorithm is completely implemented at the source and leverages the reverse control
information ow in RMT protocols like PGM or RMTP [13,44]. Speci�cally, it does
not introduce any new control tra�c or new �elds in RMT protocol headers. It
addresses the drop-to-zero problem [43] by introducing a robust, adaptive time-
�lter based upon RTT estimates collected by observing NAK tra�c. This solution
allows it to scale for large multicast groups while being very adaptive to conges-
tion situation changes in any part of the tree. The algorithm is friendly to TCP in
terms of competition for bandwidth shares. The scheme has minimal control tra�c
requirements and weak RTT estimation requirements which allows a large deploy-
ment space including multi-sender multicast and combination with receiver-based
schemes.

Key words: reliable multicast, congestion control, transport protocol

1 Introduction

Multicast is slowly moving from experimental deployment on the MBONE to a service on
the Internet [12,2]. Several standards activities are underway in the IETF to support this

? This work was supported in part by Reuters and by a Rensselaer Outstanding Young Faculty
Award
1 Neelkanth Natu is now with Entera Corp, CA
2 Priya Rajagopal is now with Intel Corp, Portland, OR
3 E-mail: fnatun, rajagp, shivkuma g@networks.ecse.rpi.edu

Preprint submitted to Elsevier Preprint 1 July 2000

trend. Activity in ow and congestion control [7] is happening in the IRTF reliable multi-
cast research group (RMRG) [24] and within a subgroup of the Reliable Multicast Transport
(RMT) working group [23]. Several congestion control schemes have been proposed in the the
literature [5,18,35,10,26] which contribute substantially to the understanding of the problem
and provide sample solutions. Since congestion control is an important standardization issue
[7], an open question is whether generic schemes exist which cover the gamut of implemen-
tation requirements of RMT protocols.

In this paper, we argue the need for two generic congestion algorithms in the standards
process: a generic source-based and a generic receiver-based algorithm (section 1.2). We
propose a generic, source-based end-to-end algorithm (GSC) which leverages the underly-
ing RMT control tra�c to provide stable, scalable and TCP-friendly control. The scheme
includes novel algorithms to address key issues such as RTT estimation, the drop-to-zero
problem [43] and TCP-friendliness. The distinguishing feature of our scheme is its high-level
of deployability which arises out of very low (near-zero) control tra�c demands from RMT
protocols, high level of adaptivity to dynamic congestion situation changes in the tree, weak
requirements on the process of RTT estimation, and the need for only source-based support.
It therefore has the potential to be mapped onto a large set of underlying RMT protocols
including multi-sender RMT protocols.

1.1 Reliable Multicast Transport Protocols

The general model of reliable multicast transport (RMT) protocols is to provide a combina-
tion of \temporal redundancy" and \spatial redundancy". Temporal redundancy (a.k.a. \soft
state") refers to providing redundancy over time by sending retransmission or repair tra�c
based upon status reports about the original tra�c from receivers. Spatial redundancy refers
to providing redundancy within the original transmission, typically in the form of forward
error correction (FEC). Excellent surveys of RMT protocols may be found in [20,27,33]. In
general, the two key problems which arise in RMT (and proposed solution approaches) are:

(1) The implosion of control tra�c on the reverse direction from multiple receivers to the
sender (M-to-1). The proposed approaches to this problem include:
� Scoped multicasting of reverse control tra�c combined with probabilistic suppression
techniques at the receivers [16]

� Use of negative acknowledgements (NAKs) or bitmaps instead of simple acknowledge-
ments (ACKs) [13,39,16,44].

� Explicit aggregation using aggregators or generic router-assist, and reliable reverse
NAK channels [31,44,13,9].

� Statistical or round-robin (scheduled) selection of receivers which would send control
tra�c [19,21].

� Scaling the feedback frequency based upon group size [40].
(2) Optimization of the repair tra�c and the bandwidth resources consumed by such tra�c

in various parts of the tree. The proposed approaches to this problem include:

2

� Use of local retransmittors (e.g., Designated Local Repairers (DLRs) in PGM and
Designated Receivers (DRs) in RMTP [13,31,44]), or allowing receivers themselves to
transmit repairs [16]. Such retransmission must necessarily be scoped to the subtree
(with a combination of TTL and administrative scoping)

� Subcasting : Router-assist to form a separate subtree per-packet to be retransmitted,
and constraining retransmission to ow on this subtree [13,9].

� Reactive FEC: Sending FEC information instead of the packet itself during retrans-
mission/repair . Rizzo [36] has shown that general erasure codes exist that allow the
generation of n packets from k original data packets. Thus the sender can construct
FEC knowing what fraction of the n packets reached the destination.

� Proactive FEC: The use of carefully designed FEC is attractive for large, heteroge-
neous trees [32,37] to reduce the cost of reverse and repair control tra�c.

The mechanisms above deal only with the issue of reliability and not congestion control.
Our purpose of presenting RMT mechanisms here is because congestion control schemes will
have to build upon this infrastructure of available mechanisms. Reliable multicast congestion
control (RMCC) in its own right has issues which di�er signi�cantly from unicast congestion
control issues. These issues are the topic of the following section.

1.2 Reliable Multicast Congestion Control Issues

Reliable multicast congestion control (RMCC) issues can be understood by studying TCP
congestion control and examining the e�ects of moving from a point-to-point model (\path")
to a point-to-multipoint model (\tree") [17]. In comparison, TCP uses an adaptive window
and sizes its window according to the bandwidth-delay product of the path [25,1].

We assume a model where the sends data at a single rate which is adjusted based upon
congestion information. Alternative models include layering (and grouping) application data,
and giving the responsibility for receivers to join or leave groups based upon congestion
estimation [42,41,29,6]. We note, that our scheme could also be applied within each of the
groups (layers) mentioned above or in conjunction with other group management strategies
[17,4]. The key RMCC problems in our model are discussed in the following subsections.

1.2.1 Window-based vs Rate-based Schemes

The �rst key problem in RMCC, noted by Golestani [17] is that source window-based TCP-
like multicast congestion control schemes can run into the danger of allocating rates even
below the fair share on the worst bottleneck. This is because the window is regenerated and
paced based upon acknowledgements, which can be robustly collected only by waiting for
RTTmax (the maximum round trip time on the tree), and the window must be set to the
minimum bandwidth delay product (Wmin). The resultant rate Wmin=RTTmax is less than
the fair share on the worst bottleneck. Rate-based schemes could avoid this pitfall. Hence

3

most multicast congestion control work has focused on rate-based schemes, though some
proposals combine rate-based and window-based control [10,13].

Golestani proposes a receiver-driven window-based scheme which is equivalent to maintaining
per-receiver state (multiple windows) at the sender. The scheme requires aggregation support
for conveying the explicit congestion feedback to deal with the feedback implosion issue.
Other rate-based schemes which require aggregation support for congestion control include
MTCP [35], TFMCC (the RMRG baseline) [18], the representative-based scheme [11] and
nominee-based scheme [26] (which use representatives or nominees as aggregators). PGMCC
[38] is a new scheme that requires the support of sources, receivers and special packet header
modi�cations. In our scheme, we use rate-based control which is completely implemented at
the source. We leverage underlying RMT NAK tra�c and aggregation capabilities and do
not insert new control tra�c or require any support in terms of aggregation.

1.2.2 Parameter Estimation Ambiguity

The second key problem involves parameter estimation ambiguity . A path has a unique RTT
(delay), and a bottleneck bandwidth. But a tree is likely to have many branches, each with
its own RTT, loss rate and bottleneck bandwidth which leads to ambiguity in constructing
a single bandwidth-delay product or de�ning what is the RTT of the tree.

One manifestion of such parameter estimation ambiguity is a problem called the drop-to-zero
problem [43]. The drop-to-zero problem occurs when the sender reduces its rate in response to
congestion indications from di�erent parts of the tree to a level far below what is necessary to
correct the congestion problem (i.e. the load-capacity imbalance). An example of a scheme
with the drop-to-zero problem is the sender-based scheme proposed by Montgomery [30]
which uses a time-based �lter at the source, but does not include a mechanism to estimate
the �lter value correctly.

Bhattacharya et al showed that the drop-to-zero problem was a �ltering problem and pro-
posed source-based �lter designs to counter it [3]. They argue that the window setting should
be based upon the tracking of the worst loss rate on any of the paths [5,26]. This work, how-
ever, does not examine the issue of measurement of RTTs at the source. If RTTs are measured
at the receivers, there is need for new control tra�c and aggregation of such tra�c. Also
since aggregation of regular loss indications loses information about receiver IDs (used in
their �lters), some �delity in the �ltering process may be lost.

Aggregation in general leads to interesting estimation-related issues. If aggregation is not
perfect, multiple congestion indications (NAKs) would be received at the sender. If aggrega-
tion is present, the ID of the receiver is lost in the aggregation process and cannot be used
in any parameter estimation or �ltering algorithm. Moreover, control tra�c which comes
in late at the aggregator from long RTT branches is suppressed as part of the aggregation
process. In such a case, the implicit information carried in control (eg: timing information
useful for RTT estimation) will not reach the source. In other words, the requirements of

4

�nding the longest RTT at the source are at conict with the assumptions of aggregation.
Our solution to this issue is to be less sensitive to RTT estimates, while at the same time
being adaptive to dynamic congestion situation changes in the tree.

1.2.3 TCP-friendly Behavior

The third key problem involves fairness to TCP, or TCP-friendly transmission. Since TCP
tra�c represents over 90% of Internet tra�c today and a possibly dominant portion of future
tra�c, multicast transport protocols must be fair to TCP and not starve it of bandwidth.
Golestani [17] discusses two types of fairness: rate-fairness and window-fairness and suggests
that the goal of TCP-friendliness is to approximate window-fairness.

An alternate, stronger way of formulating the problem is for multicast transports to approx-
imate the steady state TCP throughput as de�ned by the Padhye formula [34]. This formula
depends upon loss probability (p), the RTT and the timeout period. With multiple branches,
the goal is to follow the worst path in terms of the throughput achievable by an equivalent
TCP connection on that path [43,18]. Bhattacharya et al propose a slightly di�erent for-
mulation where the worst path is de�ned in terms of the observed loss rate alone, and not
including the e�ect of RTT [5]. In either case, achieving exact fairness with respect to this
TCP formula is a problem because the TCP timeout factor cannot be precisely estimated.
The timeout length is roughly proportional to RTT rounded up to the nearest clock tick (de-
pends upon timer granularity which ranges from 50ms-500ms). At the same time, ignoring
the timeout factor is a debatable issue because over 50% of all TCP retransmissions today
involve a timeout [34].

Our approach to TCP-friendliness is to construct a source-based scheme with TCP-equivalent
response and �ltering mechanisms (or approximations) which leads to the mimicking of TCP
behavior.

1.2.4 Sender-based vs Receiver-based Schemes

The fourth key issue is that, unlike TCP, a one-size-�ts-all transport solution is not available
or possible for reliable multicast. The IETF RMT working group is looking to standardize a
small number of transport protocols [20]. Though the requirements for best-e�ort congestion
control (CC) is same in general for all these protocols, the mechanisms and underlying
control tra�c available to implement a CC protocol vary widely across the di�erent RMT
alternatives.

The receiver-driven CC approach can be de�ned as one where the essential computation for
congestion control is done at the receiver. The enforcement of congestion control actions may
happen at the receiver in the case of layered schemes [46,29], or at the sender in the case of
TFMCC [18,43] and the nominee-based scheme [26]. This approach is immediately applicable
(and may be the only alternative) in cases where RMT feedback tra�c does not exist (eg:

5

Digital Fountain [8]), where RMT feedback is sparse and not reliable as congestion feedback
[19,21], or where reverse RMT feedback terminates at intermediaries such as designated
retransmittors [44] and may not reach the sender.

For all other protocols which have NAK [13,16], ACK, Hierarchical ACK (HACK or TRACK)
or bitmap [31,44,39] tra�c which can be leveraged, a source-based strategy would lead to
reduced congestion control feedback tra�c. The disadvantages of the source-based approach
is the need for some reverse control tra�c which they can reasonably leverage. If the un-
derlying RMT schemes use FEC-based techniques for reliability, such reverse tra�c may be
sparse or provide unreliable congestion and timing information [19,21].

The disadvantages of the receiver-based approach include the fact that point of rate com-
putation (receivers) may be di�erent from the point of enforcement (sender). This results in
the need for new congestion feedback tra�c and associated aggregation or statistical selec-
tion/suppression mechanisms. The approach also needs a robust method to measure RTT at
the receiver. The use of GPS-based synchronous timers has been proposed for this purpose
in the TFMCC scheme [18]. From an complexity standpoint, support for congestion control
is required in all receivers whereas source-based schemes need support only at the source.

From a state requirements standpoint, since the receivers maintain (S,G) congestion state
they might have scalability issues when extending to the case of many senders (though
admittedly such applications are not in existence today). In the case of layered schemes with
receiver-driven control, the control occurs over larger time-scales (larger than a few RTTs),
and the granularity of control is dependent upon the number of groups available and the
tra�c per group. Group management is also an issue in such protocols. Our perception is
that sender-based schemes and receiver-based schemes are not exclusive of each other, but
complementary. This is because receiver-based schemes and group management schemes are
needed to support large receiver-sets [32,45,47] whereas sender-based schemes can work in
�ner time-scales and e�ect rate-control in more accurately. We do not quantitatively evaluate
these aspects in this paper for reasons of focus and space.

2 The Source-Based Congestion Control Scheme

For our baseline discussion, we assume a source-based congestion control scheme targeted at
a NAK-driven RMT model like PGM [13]. Though the scheme as outlined is NAK-driven
and our results presented here use a PGM model, the scheme has potential to be adapted
to other types of feedback including ACKs and HACKs. The scheme features are covered in
the following sections.

6

2.1 Increase/Decrease Policy

The basic scheme is rate-based and uses the traditional additive increase/multiplicative
decrease (AIMD) policy.

2.1.1 Rate Increase Policy

In order to emulate TCP behavior, the rate increases in increments of MaxPacketSize/RTT.
This increment is inversely proportional to the RTT (round trip time) estimate. In our
case, the RTT estimate comes from the congested sub-tree and not the entire tree. The
congested sub-tree (see Figure 1) includes all paths from source to receivers which have at
least one bottleneck, i.e. points where the demand outstrips capacity. We will see later in
the paper a need to further relax our notion of congested-tree RTT. In other words, what
we are e�ectively measuring is not the true RTT of the entire tree, but a measure that is
operationally useful in setting the congestion epoch and which leads to robust stability.

Rate increases are performed in the absence of new NAKs, i.e. when a timer expires and
no \new" NAKs (see section 2.3) are received during that period. An interesting question is
how long to set this \rate-increase trigger" timer. In the congestion avoidance phase (steady
state) TCP increases its window by a constant (one MSS) approximately once per RTT.
In the absence of a TCP-like ack-clock [25], we set this timer to a smoothed mean RTT
estimate plus twice the smoothed mean deviation of samples collected from the congested
sub-tree (see section 2.3.3). We choose the congested sub-tree RTT as the basis because it
is that portion of the tree which needs to respond to the rate-increase i.e. signal if the rate
increase has resulted in congestion.

The rate-increase interval chosen as discussed above entails a risk of increasing the rate
more than necessary when the structure of the congested sub-trees changes between periods
of congestion (eg: when new slow receivers join). But this risk exists only between congestion
epochs and only if the larger RTT subtree is newly congested. We discuss the estimation
procedure in section 2.3.

2.1.2 Rate Decrease Policy

Rate decreases are made based upon an operational concept of a \congestion epoch." A
congestion epoch is a sub-period of congestion (load exceeds capacity) which starts upon
the �rst detection of congestion since the last epoch (or the beginning of transmission),
and ends after allowing time for the following: a) time for the e�ect of any load change
(rate-decrease) to propagate to the receivers (in the congested sub-tree) and, b) time for
acknowledgements (possibly implicit) sent after the receivers experience the e�ect of load-
change to reach the source. Note that the congestion epoch is a sub-period of congestion,
i.e. it does not capture the entire duration of congestion but includes the occurrence of

7

Router

Router

Router

source rate = R

0.3R

0.8R

Congested
Sub-tree

Longest RTT of Congested
Sub-tree = RTT1

Router

Router

Router

source rate =0.5 R

0.3R

0.8R

Congested
Sub-tree

Longest RTT of Congested
Sub-tree = RTT2

 Congestion Epoch 1 Congestion Epoch 2

Timelines:
Total Congestion Period

= RTT1 + RTT2

Congestion Epoch 1 =
RTT1

Congestion Epoch 2 =
RTT2

GSC Concepts: Congestion Epochs, Congested Sub-tree Structures, Longest RTT, Total
Congestion Period

Fig. 1. Illustration of GSC Scheme Concepts

congestion, time for a subsequent response to congestion and time for the response to take
e�ect in the congested sub-tree. The relationship between congestion epochs and the total
period of congestion is illustrated in Figure 1.

The duration of the congestion epoch is ideally the maximum RTT of the congested sub-tree
measured from the time-instant a rate-decrease is enforced. Therefore, we set the length
of a congestion epoch using the TCP timeout estimation algorithm with some additional
modi�cations [25,1]. The similarity between the congestion epoch and the TCP timeout is
that both must ideally be larger than maximum expected RTT. The di�erence is that in the
case of congestion epochs, we could a�ord to have an estimate smaller than the maximum
RTT as long as we do not incur more congestion epochs than necessary (see section 2.1.3).
In other words, the congestion epoch can a�ord to be less sensitive to the RTT estimation
process. A TCP timeout however cannot have a high probability of being smaller than the
RTT because a smaller timeout value would lead to spurious timeouts, retransmissions and
window reductions.

The concept of congestion epoch is important from a rate-decrease perspective because a new
rate decrease is only performed at the beginning of every congestion epoch. In our NAK-based
model, the congestion epoch begins when a new NAK is received. The rate is immediately
reduced by half (like TCP). Further, we enforce a couple of policies:

� First, the source remains silent for half an RTT immediately after rate-reduction, i.e., it
does not send any packets during this phase (even retransmissions). This is done to allow

8

the bottlenecks to clear, and to allow any control tra�c which is not rate-controlled (like
NCFs in PGM [13]) to be sent. The silence period is also part of the �ltering period, i.e.,
NAKs received during this phase are ignored for rate-reduction purposes.

� Second, the rate is not changed for the duration of the congestion epoch. The hold-down
of the rate to half the pre-congestion rate during the congestion epoch yields performance
which is roughly equivalent to the e�ective rate achieved during the fast retransmit and
recovery phase in TCP.

2.1.3 Congestion Epochs and the Drop-to-Zero Problem

The congestion epoch concept is important in addressing the \drop-to-zero" problem because
the number of congestion epochs detected during congestion is equal to total number of rate
reductions. The �rst \new" NAK (see section 2.3) received after the end of a congestion
epoch is an indication that the source rate is still larger than the minimum bottleneck rate
of the tree. It therefore triggers a new congestion epoch and corresponding rate-reduction.

Given this model, the drop-to-zero problem can be addressed if the the number of congestion
epochs detected is exactly equal to dlog

2

�
�min

e. Here � is the source rate at the beginning of
the set of congestion epochs and �min is the minimum bottleneck rate anywhere in the tree.
The logarithm is set to the base 2 because in each epoch, the source rate is halved upon
every rate-decrease. In other words, our goal is to have exactly the number of rate reductions
(or congestion epochs) necessary to correct a load-capacity imbalance in any part of the tree
during congestion. The cause of the load-capacity imbalance is immaterial. For example,
capacities on links anywhere in the tree could suddenly vary, or there could be an increase in
the background tra�c (TCP or non-TCP ows). In Figure 1, the maximum imbalance occurs
at the beginning of congestion epoch 1. The source rate is R, and the minimum bottleneck
rate is 0.3R. According to our formula above, we should have no more than two congestion
epochs (leading to a �nal source rate of 0.25R). Else we would be incurring excess reductions,
i.e., su�ering the drop-to-zero problem. As shown in the �gure, our scheme would have two
congestion epochs leading to a total congestion duration of RTT1 + RTT2.

Also observe that the condition above is only on the number of congestion epochs, and is
not dependent upon the length of the epochs. Hence, we could tolerate some errors in the
estimation of RTTs and the congestion epoch lengths so long as it does not a�ect the number
of epochs required to address a given congestion situation. We will make use of this property
to deal with the issue of timing information lost in certain cases such as NAK aggregation.

2.2 Filtering Issues

One implication of choosing not to reduce the rate multiple times during a congestion epoch
is that NAKs received during the congestion epoch are \�ltered" out for the purposes of rate-
reduction. NAKs may be used for other purposes like retransmission and RTT estimation.

9

The congestion epoch may also be considered as a �ltering period in this context. The �ltering
of NAKs during the congestion epoch is similar to enhancements made in TCP NewReno
and TCP SACK to avoid multiple window reductions for packet losses detected within a
single window [15,28]. The di�erence is that our �ltering interval is a time interval, whereas
the �ltering interval in TCP is based upon a sequence number. In multicast, the �ltering
process addresses two problems: spatial �ltering and temporal �ltering .

Spatial �ltering: This is the problem of choosing parameters only from the congested sub-
tree of the multicast tree. Note that we do not have to pinpoint the structure of the
congested sub-tree. We only need to measure parameters from that part of the tree. By
de�nition, NAKs are generated by receivers which belong to the congested sub-tree. The
identi�cation of the congested sub-tree is di�cult in a pure HACK- or ACK-based sys-
tem (see section 2.3.5). We shall note in sections 2.1.3 and 2.3.5, that since we identify
congestion through a series of congestion epochs and not an absolute measure of loss rate,
the stability of the scheme depends upon detection of enough epochs to e�ect the neces-
sary rate reductions. This observation allows us to tradeo� performance (not stability) to
tolerate some RTT measurement errors. The overall performance tradeo� study is beyond
the scope of this paper.

Temporal �ltering: This is the problem of choosing the right length of the �ltering interval
to meet two constraints: a) not to allow congestion to persist longer than necessary (given
the condition that in each epoch the sender rate reduces by half), and b) to �lter out
multiple congestion indications which can be resolved by a single rate-reduction.
We have discussed the latter constraint earlier in our description of the congestion

epoch and its use in addressing the drop-to-zero problem. The former constraint is again
an optimization constraint, not a robust stability constraint. Speci�cally, if the �ltering
interval is too large, severe congestion may persist for longer periods than necessary (also
see section 2.3.5).
In our solution, if multiple rate-reductions are required to solve the congestion problem

in any part of the tree, they are ultimately made as long as congestion can be identi�ed (a
robust stability issue). But we are constrained to e�ect these rate-reductions over multiple
congestion epochs because we do not have information on the extent of overload during
congestion and hence make only one rate-reduction per congestion epoch (a performance
tradeo�). Obviously, the true applicability and scalability of the scheme will be determined
by a detailed analysis of the performance tradeo� which is beyond the scope of the current
paper.

2.3 RTT Estimation and NAK issues

Our RTT estimation procedure works by collecting RTT samples, pruning the set of RTT
samples, and �nally calculating the smoothed average and mean-deviation of the remaining
samples.

10

2.3.1 RTT sampling

Each RTT sample is collected as follows. When a packet is sent, a timestamp is locally
recorded for that sequence number. When a NAK is received for that sequence number,
the di�erence between the current time and the recorded timestamp gives an RTT sample.
Observe that this RTT estimation technique is di�erent from TCP because the latter times
only selected segments and uses a single variable (in units of ticks) for the RTT measurement.
Our method is geared for \opportunistic" RTT sampling required in the NAK-based model.

Note that the NAK-based RTT samples are a better proxy for the maximum end-to-end
delay than acks because the former samples RTT during congestion. At the same time, NAK-
based samples may be \late" samples especially if the congested sub-tree structure changes to
include a new, very long RTT path. This could lead to transient behavior involving possible
extra rate-reductions because the congestion epoch was sized too small earlier. The transient
behavior is corrected once the RTT estimation process factors in the new RTT samples.

2.3.2 NAK Ambiguity Issues and the Silence Period

Our goal is to use the NAK-based RTT estimation to set the length of the congestion epoch.
An erraneous setting of the epoch length leads to excessive epochs per congestion period
and (as a result) spurious rate-reductions. The NAK-based estimation raises the need for
such compensation. Since multiple NAKs can be received for the same sequence number, it
is important to decide which NAKs can trigger rate-reduction. Speci�cally, when a NAK is
received, a bit is set if this the �rst NAK seen for that sequence number. Such a NAK is also
called a \new" NAK . If the NAK is the �rst \new" NAK after the end of the last congestion
epoch, then it signals the beginning of a new congestion epoch and a rate-reduction is
e�ected. Rate reduction is not e�ected upon the receipt of subsequent new NAKs within a
congestion epoch or old NAKs at any point of time. \Old" NAKs are NAKs for sequence
numbers which have already seen an earlier NAK and the corresponding bit (see above) is
set. Note that though we do not reduce the rate for old NAKs, we do measure RTT samples
using them.

Moreover, just like TCP, we encounter the retransmission ambiguity problem. When a re-
transmission is sent and NAKs are received, it is ambiguous whether the RTT samples
belong to the original transmission or due to retransmission. To counter this problem, we
do not record a timestamp when a retransmitted packet is sent. Note that our RTT sample
measurement procedure still runs a residual risk of including some RTT samples which are
over-estimates of RTT when retransmitted packets are lost and the receivers resend their
NAKs. To reduce this risk, we prescribe as compensation, a silence period of RTT/2 just
after the rate reduction has been e�ected in addition to the regular setting of the congestion
epoch. This is illustrated in Figure 2. Any further support from underlying RMT protocols
to minimize the probability of loss of retransmitted packets would help our RTT estimation
algorithm. For example, if the receivers could optionally mark such NAKs (with a bit) as
\resent" and the bit setting is preserved in any NAK aggregation, the congestion control

11

Timelines:

Congestion Epoch = Silence Period + (RTT1 + 4 * deviation)

 RTT1+ 4* deviationSilence Period = RTT1/2

Congestion Epoch, RTT Estimation and Filtering Policy

Router

Router

Router

source rate = R

Longest RTT of Congested
Sub-tree = RTT1

 RTT1/10

90% of samples from
this branch are filtered
during RTT Estimation

 No Aggregation

Congested subtree

Fig. 2. Illustration of Congestion Epoch, RTT Estimation and Filtering Issues

algorithm could exclude such NAKs in the calculation of RTT samples.

The silence period compensation mentioned above is also considered to be part of the con-
gestion epoch. The inclusion of the silence period as part of the epoch provides partial
compensation for a few other issues:

� In cases where there may be some miscellaneous control tra�c (like NCFs in PGM [13])
which is not be controlled by the source rate, the silence period allows time for any queue
accumulation caused by such tra�c to be drained.

� The silence period partially compensates for the fact that the NAK is a \late" measure of
an RTT. That is, if the congested sub-tree structure changes abruptly, the RTT estimate
will not reect it when the �rst new NAK is received at the source and the congestion
epoch is initialized. The silence period gives su�cient time for more RTT samples to be
seen and a better setting of the congested epoch to be reached.

� The silence period also mimicks the period of silence in TCP Reno's fast recovery procedure
after rate-reduction which gives time before new packets are transmitted.

As noted above, the silence period combined with aggregation delays in NAKs or random
backo� delays may lead to an overestimate of RTT in some cases. This is a performance issue
which we propose to study rigorously in future work just like the issues of timeout avoidance
were studied in TCP. But we note that unlike the TCP timeout when no packets are sent,
our scheme maintains the transmission rate at R/2 after the silence period which ensures
progress. The subsequent linear increases will be a�ected due to such RTT over-estimates.

12

2.3.3 RTT Estimation and Timer Settings

The previous sections described RTT sampling issues and we move to estimation issues in
this section. The next phase in RTT estimation is to prune the set of RTT samples. Since we
are interested in setting the congestion epoch close to the maximum RTT of the congested
sub-tree, we reject 90% of the RTT samples smaller than half the current smoothed average
RTT estimate as illustrated in Figure 2. The smoothed average and smoothed mean deviation
is calculated only for the remaining samples. The objective is to reduce the deviation in the
remaining samples and to bias the average RTT estimate higher. More importantly, if we
get RTT samples spanning a number of orders of magnitude, our goal is to bias the estimate
towards the highest order of magnitude while keeping the option of reducing the average if
the large RTT samples stop coming. The cost of this procedure is slower adaptation to a
change in the composition of the congested sub-tree (especially when the max-RTT of the
sub-tree reduces due to longer RTT area being congested no longer). But this is again only
a transient cost.

The canonical congestion epoch length is set to the smoothed average RTT plus four times
the smoothed mean deviation of estimates (see Figure 2) similar to TCP timeout setting.
According to the Chebyshev's theorem, this procedure would give us at least a 93.75%
probability that the congestion epoch is larger than the maximum RTT of the congested
sub-tree irrespective of the distribution of samples (i.e. even though the RTT samples may
be received from di�erent parts of the congested sub-tree). Note that the actual congestion
epoch also includes the RTT/2 silence period imposed immediately after rate-reduction which
would improve upon the probability calculated above.

The rate-increase timer is set to smoothed average RTT plus twice the smoothed mean devi-
ation based upon simulation scenario tests presented in section 3.3. This estimate attempts
to track average queuing delays and not maximum queuing delays in an e�ort to mimick
TCP's ack-clocking technique using NAKs. This issue also needs further rigorous investiga-
tion. As a miscellaneous issue, we initialize the congestion epoch to the maximum RTT of
the multicast tree.

2.3.4 E�ect of NAK Aggregation

One important issue with NAK aggregation is that NAKs which come later at the aggre-
gator are suppressed, and the source never gets the timing information implicit in them.
In other words, the RTT estimated is in fact closer to the smallest RTT of the congested
sub-tree and not anywhere close to the largest RTT of the sub-tree. However, as we noted
earlier in section 2.1.3, this issue is moot if does not a�ect the number of congestion epochs
required to correct a load-capacity imbalance. Assume that the load-capacity imbalance is
on a common branch leading to multiple receivers and it can theoretically be corrected by
one rate-reduction. Any NAKs which are still in the system after the end of the congestion
epoch at the source will be absorbed by the aggregators. This argument can be extended for
the case when multiple rate-reductions are necessary on the common link.

13

If the losses in the tree are randomized (because of congestion situations in di�erent parts
of the network), the aggregators will pass the NAKs through from di�erent parts of the
tree. Our sample rejection technique will reject samples that are very small, and average out
the samples within the highest order of magnitude. The use of the mean deviation and the
silence period then ensures a low probability of spurious congestion epochs (and associated
rate-reductions). The same argument holds in the case of absence of aggregators and in the
case of imperfect or inconsistent aggregation. In other words, we can reasonably rely on the
combination of underlying RMT aggregation mechanisms, our RTT estimators and silence
periods in congestion epochs to avoid unnecessary rate-reductions in spite of erraneous RTT
estimates and thus avoid the drop-to-zero problem. We propose to verify the limits of these
arguments as part of future work to clearly articulate the applicability and scalability of this
scheme.

2.3.5 Extending NAK-based Semantics to Diverse RMT Protocols

Our �rst note on the generic nature of this scheme is that the NAK-based semantics are read-
ily applicable to NAK-based protocols including PGM [13], RMTP-II (with NAK-enabled)
[44], and SRM [16]. The semantics can be easily extended to bitmap-based RMTs (where
the negative feedback is captured in a bitmap) like MFTP [39] or RMTP-II (some versions)
[44].

These operational semantics are hard to preserve in a pure ACK or HACK/TRACK based
system (like the original RMTP-I). This is because a HACK is delivered to the source
only when all receivers have implicitly or explicitly acknowledged this packet. Unlike TCP,
these systems do not allow \duplicate acks" which enables the early detection of congestion.
However, out-of-order HACKs [44] can be used to detect packet losses and these can be
viewed as proxies for NAKs in our scheme. The RTT estimates should therefore be taken
only upon receipt of out-of-order HACKs. But the RTT sample measured by these HACKs
reect the maximum RTT of the entire tree and not a RTT sample from the congested
sub-tree. The use of these estimates would mean a compromise { rate increase intervals and
congestion epochs would have to be based upon maximum RTT of the entire tree and not
just the sub-tree.

This compromise implies that all congestion epochs (and consequently periods of severe
overload) would last longer, delaying rate-decreases. The longer periods of overload would
in general lead to more packet losses and larger queue lengths, though it can be ameliorated
by using large bu�ers and random early drop (RED-like) policies [14]. The impact on rate-
increase and drop-to-zero with HACK-based systems is an issue for future study.

For schemes with designated retransmissors (DRs), even if congestion feedback can be for-
warded to the source from DRs periodically (not for every NAK) during periods of consistent
congestion, these indications allow rough estimation of congested sub-tree RTTs useful for
setting up congestion epochs. Observe that the emphasis is on the source having reliable
access to the information that congestion in fact occured in di�erent parts of the tree. The

14

1.5Mbps

 1.5Mbps
 0.01 s

Router

0.2 s

0.01s

 0.5Mps

1.5 Mbps

0.5Mbps

(a)2 level topology with
longer branch congested

Router

0.2 s

0.01s

 1.5Mps

 0.01 s

(b)2 level topology with
shorter branch

congested

Router

0.2 s

0.01s

 0.2Mps

 0.01 s

(d) 2 level unbalanced
topology

1.5Mbps

 0.5 Mbps

Router

0.2 s

0.01s

 1.5Mps

 0.01 s

(c)2 level topology with
common branch

congested

1.5Mbps

0.5Mbps

Fig. 3. Con�gurations Used to Illustrate RTT Estimation Performance Issues

scheme is not sensitive otherwise to the frequency of feedback during congestion unlike Bhat-
tacharya et al's �lters [3,5].

The GSC scheme has the potential hooks to be fairly generic. The two clear requirements from
underlying transports is a minimal reverse control ow which allows the reliable estimation
of the right number of congestion epochs, and associated timing information which allows the
estimation of congestion epoch lengths. The demands on new control tra�c is indeed very low
in general (and zero in several cases) which allows a large deployment space. The scheme can
also be easily extended to multi-sender multicast without increasing the state requirements
in receivers over-and-above their base RMT requirements. This is because the scheme is
source-based. Code modi�cations and the (*,G) state requirement is only at the source.
Each source's tra�c will compete with the other sources' tra�c as they were independent
ows. The study of these extensions will be the subject of our future work.

Router

Router Router

Router Router Router Router

Router Router Router Router Router Router Router Router

(a) A 5 level balanced tree topology.All links have a propagation delay of 0.01 sec and a bandwidth of 0.5 Mbps

Fig. 4. Con�guration Used to Illustrate Performance with Multiple Tree Levels

15

3 Performance Analysis

Common Bottleneck of 5 Mbps

1..N TCP src

1..N RM src

 1..N RM rcvrs

 1..N TCPrcvrs

(a) N TCP flows and N Multicast flows competing over a single bottleneck link of 5 Mbps.N ranges
from 1 to 80

Fig. 5. Con�guration Used to Illustrate TCP-friendliness of the GSC Scheme

In this section, we illustrate the performance of the GSC scheme using simple simulation
experiments. Figures 3, 4, and 5 show the con�gurations we use in our various experiments.
The bu�er sizes in all experiments are 125 pkts each, and the packet sizes are 560 bytes. The
initial RTT estimate is set conservatively in each of these simulations to be larger than the
maximum congested-subtree RTTs (including maximum queueing delays). We assume for
simplicity that the receiver does not have any random timer backo� before sending NAKs.

We use the simple two-level tree con�gurations shown in Figure 3 to illustrate issues with
RTT estimation. The position of the bottleneck is varied in the �rst three con�gurations, and
the last con�guration has two bottlenecked links (at di�erent rates). In all cases the RTTs
of the paths to the destinations are di�erent. One of our simulations also uses the RED
drop policy [14] instead of the default drop-tail policy at the bottlenecks. Figure 4 shows
a multi-level balanced tree con�guration which illustrates that our source-based approach
scales with the number of receivers without su�ering from the drop-to-zero problem. Figure 5
shows a con�guration used to test TCP-friendliness, where N TCP ows and N RMT ows
compete for bandwidth on a single bottleneck.

3.1 RTT Estimation

Figure 6(a) and (b) show the results of a simulation using a two-level tree with an initial
topology as indicated in Figure 3(a). the topology changes after 500 sec of the beginning
of the simulation to that of Figure 3(b), i.e., the bottleneck shifts. Figure 6(b) shows that
the RTT estimate during the �rst 500 sec of the simulation is biased towards the RTT of
the congested sub-tree (which is the longer branch). Figure 6(a) (the corresponding source
rate graph) indicates that the rate is reduced to half the original rate and no more, thus

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000 1200 1400

R
at

e
(M

bp
s)

Time(sec)

Shift in Congestion from a longer to shorter branch 500 sec after start of simulation

Rate

(a) Source Rate

0

0.5

1

1.5

2

0 200 400 600 800 1000 1200 1400

R
T

T
 E

st
im

at
e

Time(sec)

Shift in Congestion from a longer to shorter branch 500 sec after start of simulation

RTT Estimate

(b) RTT Estimate

Fig. 6. Simulation results with a Two-level Tree with NAK Aggregation. The bottleneck shifts from
the larger to the smaller RTT at 500s.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000 1200 1400

R
at

e
(M

bp
s)

Time(sec)

Rate Vs. Time for a two level unbalanced tree topology.Aggregation on

Rate

(a) Source Rate

1

1.5

2

2.5

3

3.5

4

4.5

5

0 200 400 600 800 1000 1200 1400

R
T

T
 E

st
im

at
e(

se
c)

Time(sec)

RTT Estimate Vs. Time for a two level unbalanced tree topology.Aggregation exists at the network elements

RTT Estimate

(b) RTT Estimate

Fig. 7. Simulation results with a Two-level Unbalanced Tree with NAK Aggregation

avoiding the drop-to-zero problem. Note that after the �rst 500 sec, the slope of the linear
rate increase phases are steeper. This is because the corresponding RTT estimates based
upon the new congested sub-tree are smaller.

A notable feature is that even though the period of oscillation is reduced, the average rate
during each cycle is the same before and after the topology change. This is because the
source cannot send at an average rate faster than the bottleneck rate. In other words, the
long term average rate is same irrespective of the RTTs measured and the corresponding
rate-oscillation periods. The e�ect of measuring smaller RTTs is seen as smaller queue lengths
at the bottleneck (and lower packet drop rates on the long term).

Figure 7(a) and (b) show the results based upon the con�guration shown in Figure 3(d)
(called the \unbalanced con�guration") where the di�erent branches have di�erent bottle-
neck rates (0.5 Mbps and 0.2 Mbps) and the initial source rate is 0.6 Mbps. This situation
requires two rate-reductions to solve the congestion problem. Since there is aggregation at
the router, several NAKs from the longer RTT branch (for packets lost on both links) are

17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 200 400 600 800 1000 1200 1400

R
at

e
(M

bp
s)

Time(sec)

Effect of aggregation in a two level tree topology

Aggregation on
No Aggregation

(a) Source Rate

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200 1400

R
T

T
 E

st
im

at
e(

se
c)

Time(sec)

Effect of aggregation on RTT Estimation in a two level tree topology

RTT Estimate with aggregation
RTT Estimate without aggregation

(b) RTT Estimate

Fig. 8. Aggregation vs Absence of Aggregation

suppressed. As a result, there is a transient period which includes the �rst linear increase
phase where the RTT computed is erraneous i.e. smaller than the max RTT of the congested
sub-tree (see Figure 7(b)). The price of this error is an extra rate reduction initially, and a
steeper rate-increase slope for the �rst rate increase phase (see Figure 7(a)). Though this
\transient" seems to exist for 200s, it is important to note that it is corrected at the begin-
ning of the next congestion period (not epoch). It is also important to observe that there is
no drop-to-zero problem in steady state after the �rst cycle of decrease/increase because the
congestion on one of the branches is solved and the RTT estimation process converges.

Figure 8 shows the e�ect of NAK aggregation on the RTT estimator. The con�guration used
for this simulation is the one shown in Figure 3(c) where the �rst link which is common to
both the receivers is congested at 0.5 Mbps. We plot two curves, one which corresponds to
the use of aggregation at the router, and one which corresponds to no aggregation at the
router. Since the same packet losses are detected at both the receivers, both send NAKs
towards the source. If aggregation is used, the NAKs from the longer RTT receiver are
always absorbed at the router and not sent to the source. Therefore, as seen in Figure 8(b),
the source will measure the congested sub-tree RTT as the smallest RTT of the sub-tree.
However, as seen in the corresponding source rate graph Figure 8(a), there is no drop-to-zero
e�ects because of this erraneous RTT estimation. The reason of this behavior is two-fold.
First, there are no packets dropped after the e�ect of the rate decrease and silence period
reaches the bottleneck. Second, the NAKs of earlier packets lost which come from the long
RTT branch are absorbed at the aggregator (also see section 2.3.4).

Figure 8 also plots graphs when aggregation is not used at the router. Without aggregation,
the NAKs from both branches reach the source. As a result the RTT estimate seen in
Figure 8(b) is higher in this case and assumes a value to intermediate to the small and large
RTT values. However, the addition of the mean deviation and the use of the silence period
(RTT/2) in the congestion epoch ensures that there is no drop-to-zero problem i.e, no excess
rate decreases (Figure 8(a)). Since RTT estimates are larger, the linear increase phases in
the graph have a smaller slope. As mentioned earlier, the smaller rate increase slope does
not a�ect the average rate over long-terms, but only the queue lengths. As minor note, in

18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 200 400 600 800 1000 1200 1400

R
at

e(
M

bp
s)

Time(sec)

Effect of queue policy on Rate

Droptail policy
RED policy

(a) Source Rate

0

0.5

1

1.5

2

0 200 400 600 800 1000 1200 1400

R
T

T
 E

st
im

at
e(

se
c)

Time(sec)

Effect of queue policy on RTT Estimation

Droptail policy
RED policy

(b) RTT Estimate

Fig. 9. E�ect of RED Drop Policy on RTT Estimation

PGM we have assumed that NCFs are not rate-controlled which leads to NCF-oods near
the source if we do not aggregate NAKs. This assumption is not necessary in general. But
an important lesson we learnt is that as long as there exists control tra�c which is not
source rate-controlled, there is a risk of the drop-to-zero problem if there is no aggregation
especially for large trees. But aggregation is necessary in PGM to deal with the implosion
problem in any case.

Finally, we examine the case of a bottleneck with the RED packet drop policy instead of the
regular drop-tail policy. The con�guration used is Figure 3(a) i.e. the longer RTT branch
is congested, and the comparative simulation results (with and without RED) are shown
in Figure 9. RED drops packets early when the average queue crosses a small threshold
whereas drop-tail drops packets only when the queue is full. As a result, the RTTs measured
when NAKs are seen reect a much smaller queueing delay. The graph Figure 9(b) shows that
with RED, the RTT measured drops dramatically and comes close to the sum of propagation
and transmission delays (plus a queueing delay one order of magnitude smaller than that
seen with the drop-tail policy). As a result, the period of additive increase/multiplicative
decrease (AIMD) oscillations is dramatically reduced (Figure 9(a)). There is no drop-to-zero
problem inspite of the randomized nature of packet drops because of the addition of the
mean deviation factor and the silence period. As mentioned earlier, rapid oscillations seen in
Figure 9(a) does not increase the average rate of transmission of the source; it only a�ects
the average queue length.

3.2 Performance Scaling with Multiple Receivers

We tested the performance of the scheme with upto 32 receivers connected in a multi-level
balanced tree as shown in Figure 4. In this balanced tree con�guration, all links are of 0.5
Mbps and the link propagation delays are 0.01 s each. In other words, the RTT is not a�ected
by long links (like the 0.2 s link used in the earlier con�gurations. The performance graphs
are shown in Figure 10. Observe that the RTT computation stabilizes quickly from a higher

19

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000 1200 1400

R
at

e
(M

bp
s)

Time(sec)

Rate Vs Time for a four level balanced tree topology.Aggregation occurs at the network elements

Rate

(a) Source Rate

0

0.5

1

1.5

2

0 200 400 600 800 1000 1200 1400

R
T

T
 E

st
im

at
e(

se
c)

Time(sec)

RTT Estimation in a balanced four level tree topology

RTT Estimate

(b) RTT Estimate

Fig. 10. Simulation results with a Five-level Tree

initialization value to the max RTT of the tree, and there is no drop-to-zero e�ects - only
regular AIMD oscillations with single rate-decrease in each oscillation. This shows that the
scheme has a reasonable potential to scale. We are currently making simulator changes in ns
to allow large scale simulations and will verify this claim for larger trees.

3.3 TCP-friendliness

We have designed the scheme carefully to be friendly to TCP. Speci�cally, several of the
scheme features mimick TCP behavior:

� The scheme uses a loss-driven additive increase/multiplicative decrease (AIMD) policy
with similar parameters like TCP. Speci�cally, the additive rate increase used is MSS/RTTEstimate
which is equivalent to the TCP window increase during congestion avoidance. We do not
attempt to emulate slow start.

� Upon detection of congestion, we e�ect a multiplicative decrease of half the current source
rate, similar to TCP. Further, this decrease is performed on the �rst new NAK seen which
is similar to TCP's window reduction upon seeing three duplicate acks.

� The additive increase is done once per RTT + 2 � D (see section 2.3.3) which is a
reasonable estimate of the RTTs including average queueing delays and not the maximum
queueing delays.

� The silence period of RTT/2 is similar to the silence period in TCP fast recovery.
� The average rate after the silence period during the remaining part of the congestion epoch
is R/2 (R is the rate before congestion was detected) which is similar to the average rate
maintained during fast recovery in TCP.

� The congestion epoch is set based upon the smoothed average and mean deviation of RTT
samples similar to the algorithm used to set TCP timeout.

20

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70 80

N
or

m
al

iz
ed

 G
oo

dp
ut

Number of TCP/RM flows

To demonstrate TCP Friendliness

Normalized TCP Goodput
Normalized Multicast Goodput

(a) Increase Interval = MeanRTT

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70 80

N
or

m
al

iz
ed

 G
oo

dp
ut

Number of TCP/RM flows

To demonstrate TCP friendliness with increase interval set to RTT + 1* deviation

Normalized TCP Goodput
Normalized Multicast Goodput

(b) Increase Interval = MeanRTT
+ 1*Deviation

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70 80

N
or

m
al

iz
ed

 G
oo

dp
ut

Number of TCP/RM flows

To demonstrate TCP friendliness with increase interval set to RTT + 2* deviation

Normalized TCP Goodput
Normalized Multicast Goodput

(c) Increase Interval = MeanRTT +
2*Deviation

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70 80

N
or

m
al

iz
ed

 G
oo

dp
ut

Number of TCP/RM flows

To demonstrate TCP friendliness with increase interval set to RTT + 3* deviation

Normalized TCP Goodput
Normalized Multicast Goodput

(d) Increase Interval = MeanRTT
+ 3*Deviation

Fig. 11. TCP Friendliness with Di�erent Values of Increase Interval

21

� The �ltering of NAKs during the congestion epoch is similar to the �ltering of loss in-
dications in NewReno and SACK (no new window reductions for losses within the same
window).

� Our concept of \New" NAKs (see section 2.3), and the policy of not recording local times-
tamps for retransmitted packets addresses an ambiguity problem similar to the retrans-
mission ambiguity problem. The TCP problem is addressed by Karn's algorithm which is
di�erent in nature from our mechanisms used in this context.

We also used the con�guration shown in Figure 5 to evaluate the TCP friendliness of the
algorithm. In this con�guration we have N TCP connections competing with N RMT ows
on a single bottleneck. We varied N from 1 to 80, and plotted the normalized average goodput
of a TCP ow vs an RMT ow (Figure 11). At any value of N, the average of the number
assigned to RMT and the number assigned to TCP is equal to the total goodput divided by
the bottleneck bandwidth. In other words, if TCP shows a normalized value Vtcp larger than

the value for RMT Vrmt, it is grabbing (
Vtcp�Vrmt

Vrmt
)� 100 % more bandwidth than an average

RMT ow for that value of N. The goal of TCP friendliness is to have these curves be close to
each other, not diverge, and be close to unity. We found that the performance of the scheme
in this regard was sensitive to the value of the rate increase interval. We experimented with
four di�erent values of the rate increase interval (SRTT + i �D, where i = 0::3). We �nd
that the best performance is in Figure 11(c) where i = 2, i.e., we add two mean deviations
to the average to determine the rate increase interval. In the other graphs, for i < 2, the
average RMT ow gets a larger share compared to TCP, and for i > 2, the RMT ow is
rapidly beaten down by TCP which grabs a dominant share of the bandwidth. These results
show that a reasonable selection of parameters exists such that the scheme is TCP friendly.
A more rigorous analysis of fairness and comparison with receiver-based approaches [46,47]
will be part of future work.

4 Summary

In summary, the GSC scheme has simpli�ed the requirements for source-based multicast
congestion control by the use of the concepts of congestion epoch and weak RTT estimation
of the congested sub-tree. This has allowed us to develop a simple generic core algorithm (the
pseudo code presented in appendix A is less than a page) which has very low control tra�c
requirements in general and zero tra�c requirements from NAK-based protocols like PGM
and RMTP. The scheme's weak requirements on RTT estimation allows it to potentially
leverage any available congestion and related timing information from underlying RMT re-
verse control tra�c. This feature and a pure source-based implementation model lends to
high degree of deployability which is emerging as a central concern in modern protocol design
for the Internet. Our key contributions are hence conceptual and not performance-analytic.
Speci�cally, this paper does not present an rigorous applicability and scalability analysis of
the scheme (eg: high degrees of multiplexing, large/dynamic receiver-sets, HACK/sparse-
feedback RMTs), comparative analysis with other source-based schemes [17,4,18] and its

22

complementary aspects w.r.t. receiver-based schemes [46,47,36]. We believe this is a signi�-
cant enough undertaking for a future paper.

5 Acknowledgements

We would like to acknowledge all members of the RMRG group who gave us detailed feed-
back, in particular, Supratik Bhattacharya, Dah-Ming Chiu, Jon Crowcroft, Sally Floyd,
Mark Handley, Roger Kermode, Ken Miller, Luigi Rizzo, Tony Speakman, Lorenzo Vicisano
and Brian Whetten. Thanks are due to Paul Stirpe (Reuters) and Gursel Taskale for spon-
soring this work, detailed discussions and teaching us the user perspective of RMT. We
would like to thank Hari Balakrishnan (MIT) and Sonia Fahmy (Purdue) for their unique
perspectives and our colleagues: Markus Kuhn for developing a PGM implementation on
Linux, Jiang Li and Hitesh Raigandhi for engaging group discussions. Thanks are due to
the anonymous reviewers for detailed, constructive comments which set the right tone and
improved the quality of the paper.

References

[1] M. Allman, V. Paxson and W. Stevens, \TCP Congestion Control," IETF Internet RFC 2581,
Proposed Standard, April 1999.

[2] K. Almeroth, \The Evolution of Multicast: From the MBone to Inter-Domain Multicast to
Internet2 Deployment," IEEE Network Special Issue on Multicasting, January/February 2000
(to appear)

[3] S. Bhattacharya et al, \Design and Analysis of Loss Indication Filters for Multicast Congestion
Control," submitted to INFOCOM 2000, 1999.

[4] S. Bhattacharya, J. Kurose, D. Towsley, \E�cient Multicast Flow Control using Multiple
Multicast Groups," University of Massachusetts, Amherst, CMPSCI Technical Report TR 97-
15, 1997.

[5] S. Bhattacharyya, D. Towsley, J. Kurose, \The Loss Path Multiplicity Problem in Multicast
Congestion Control," University of Massachusetts, Amherst, CMPSCI Technical Report TR
98-76, 1997.

[6] J.-C. Bolot, T. Turletti, and I. Wakeman, \Scalable feedback control for multicast video
distribution in the internet," ACM SIGCOMM, (London, England), pp. 58{67, ACM, Aug.
1994.

[7] S. Bradner, A. Mankin, V. Paxson, and A. Romanow, \IETF criteria for evaluating reliable
multicast transport and application protocols," IETF Internet RFC 2357, June 1998.

[8] J. Byers, M. Luby, M. Mitzenmacher, A. Rege, \A Digital Fountain Approach to Reliable
Distribution of Bulk Data," Proceedings of ACM SIGCOMM'98, Vancouver, August 1998.

23

[9] B. Cain, T. Speakman, D. Towsley, \Generic Router Assist (GRA) Building Block Motivation
and Architecture," IETF Internet Draft, draft-ietf-rmt-gra-arch-00.txt, October 1999.

[10] D. Chiu, \Using Dynamic window and rate control for RM," Proceedings of the 5th RMRG
meeting, London, England. Available from: http://www.east.isi.edu/RMRG/

[11] D. DeLucia, Hughes, and K. Obraczka, \Multicast Feedback Suppression Using
Representatives," IEEE INFOCOM'97, April 1997.

[12] C. Diot et al, \Deployment issues for the IP Multicast Service and Architecture,"

[13] D. Farinacci, A. Lin, T. Speakman, and A. Tweedly, \PGM reliable transport protocol
speci�cation," Internet Draft, Internet Engineering Task Force, Aug. 1998. Work in progress.

[14] S. Floyd and V. Jacobson, \Random Early Detection Gateways for Congestion Avoidance,"
IEEE/ACM Transactions on Networking, Vol. 1, No. 4, August 1993, pp. 397{413.

[15] S. Floyd, and T. Henderson, \The NewReno Modi�cation to TCP's Fast Recovery Algorithm,"
IETF Experimental RFC 2582, April 1999.

[16] S. Floyd, V. Jacobson, S. McCanne, \A Reliable Multicast Framework for Light-weight Sessions
and Application Level Framing", Proc. of ACM SIGCOMM 95, Aug 1995 pp. 342-356.

[17] J. Golestani, \Fundamental observations on Multicast Congestion Control in the Internet",
IEEE INFOCOM'99, April 1999. Available from:
http://research.ivv.nasa.gov/RMP/links.html

[18] M. Handley, S. Floyd, B. Whetten, \TCP Friendly Multicast Congestion Control," Proceedings
of the 7th RMRG meeting, Pisa, Italy, June 1999.

[19] M. Handley, \Multicast address allocation protocol (AAP)," Internet Draft, Internet
Engineering Task Force, Jun 1999. Work in progress.

[20] M. Handley et al, \The Reliable Multicast Design Space for Bulk Data Transfer," IETF Internet
Draft, draft-ietf-rmt-design-space-00.txt, October 1999.

[21] M. Handley and J. Crowcroft, \Network text editor (NTE) a scalable shared text editor for
MBone," ACM Computer Communication Review, vol. 27, pp. 197-208, Oct. 1997.

[22] M. Hofmann, J. Nonnenmacher, J. Rosenberg and H. Schulzrinne, \A Taxonomy of Feedback
for Multicast," Internet Engineering Task Force, draft-hnrs-rmt-avt-feedback-00.txt, Jun. 1999.

[23] IETF, \Reliable Multicast Transport (rmt)," IETF Working Group, 1999.
http://www.ietf.org/html.charters/rmt-charter.html

[24] IRTF, \The Reliable Multicast Research Group (rmrg)," IRTF research group, 1999.
http://www.east.isi.edu/RMRG/

[25] V. Jacobson, \Congestion Avoidance and Control," Proceedings of the SIGCOMM'88
Symposium, pp. 314-32, August 1988.

[26] S. Kasera, S. Bhattacharya et al, \Scalabe Fair Reliable Multicast Using Active Services,"
IEEE Network Magazine, January/February 2000.

24

[27] B.N. Levine and J.J. Garcia-Luna-Aceves, \A Comparison of Reliable Multicast Protocols,"
ACM Multimedia Systems Journal, August 1998.

[28] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, \TCP Selective Acknowledgement
Options," IETF RFC 2018, April 1996.

[29] S. McCanne, V. Jacobson, and M. Vetterli, "Receiver-driven Layered Multicast," Proceedings
of ACM SIGCOMM, August 1996, pp. 117-130.

[30] T. Montgomery, \A Loss Tolerant Rate Controller," NASA IV&V Technical Report, NASA-
IVV-97-011, August 1997.

[31] T. Montgomery, B. Whetten, M. Basavaiah, S. Paul, N. Rastogi, J. Conlan, and T. Yeh, \THE
RMTP-II PROTOCOL," Internet Draft, Internet Engineering Task Force, April 1998. Work
in progress

[32] J. Nonnenmacher and E. W. Biersack, "Optimal multicast feedback," in IEEE Infocom , (San
Francisco, California), p. 964, March/April 1998.

[33] K. Obraczka, \Multicast Transport Protocols: A Survey and Taxonomy," IEEE
Communications Magazine, 1997.

[34] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, \Modeling TCP Throughput: A Simple Model
and its Empirical Validation," Proceedings of SIGCOMM'98, Vancouver, August 1998.

[35] I. Rhee, N. Ballaguru, G. N. Rouskas, \MTCP: Scalable TCP-like Congestion Control for
Reliable Multicast," TR-98-01, Department of Computer Science, NCSU, January 1998,

[36] L. Rizzo, \E�ective erasure codes for reliable computer commu- nication protocols," ACM
Computer Communication Review, vol. 27, pp. 24-36, Apr. 1997.

[37] L. Rizzo, L. Vicisano, \A Reliable Multicast data Distribution Protocol based on software FEC
techniques", Proc. of The Fourth IEEE Workshop on the Architecture and Implementation of
High Performance Communication Systems (HPCS'97), Sani Beach, Chalkidiki, Greece June
23-25, 1997.

[38] L. Rizzo, \pgmcc: A TCP-friendly Single-Rate Multicast Congestion Control Scheme,"
Proceedings of SIGCOMM'2000, Stockholm, August 2000.

[39] K. Robertson, K. Miller, M. White, and A. Tweedly, \StarBurst multicast �le transfer protocol
(MFTP) speci�cation," Internet Draft, Internet Engineering Task Force, April 1998. Work in
progress.

[40] H. Schulzrinne, et al, \RTP: A Transport Protocol for Real-Time Applications," Internet RFC
1889, 1997.

[41] D. Sisalem, H. Schulzrinne, \End-to-end quality of service control using adaptive applications,"
Proceedings 5th International Workshop on QoS (IWQPS'97), May 1997.

[42] L. Vicisano, L. Rizzo, J. Crowcroft, \TCP-like congestion control for layered multicast data
transfer," UCL Research Note RN/97/75, 1997.

25

[43] B. Whetten, J. Conlan, \A Rate Based Congestion Control scheme for Reliable
Multicast," Proceedings of the 5th RMRG meeting, , London, England. Available from:
http://www.east.isi.edu/RMRG/

[44] B. Whetten, G. Taskale, \An Overview of Reliable Multicast Transport Protocol II," IEEE
Network Magazine, January/February 2000.

[45] Arnaud Legout, Ernst W. Biersack, "Fast Convergence for Cumulative Layered Multicast
Transmission Schemes," Proceedings of SIGMETRICS'2000, Santa Clara, CA, July 2000.

[46] Dan Rubenstein, Jim Kurose, and Don Towsley, "The Impact of Multicast Layering on Network
Fairness", Proceedings of ACM SIGCOMM'99, Cambridge MA, August 1999.

[47] J. Nonnenmacher, E.W. Beirsack and D. Towsley, "Parity-Based Loss Recovery for Reliable
Multicast Transmission," IEEE/ACM Transactions of Networking, Vol. 6, No. 4, August 1998,
pp 349-361.

A Pseudo Code

26

Algorithm 1 Pseudo Code
average rtt: TCP-like average round trip time
current rtt: Most recent round trip time sample
mean deviation: mean deviation of RTT
congestion epoch start time: The time when the rate was last reduced
NAK Filter Timer: Timer used for NAK �ltering
Silence Timer: Timer used for silence period.
congestion state: Either: CONGESTED and NOT CONGESTED
RTT Estimator() estimates the average rtt and mean deviation of RTT using the same
algorithm as used in TCP [25]. In addition, it pre-�lters a sample with a 90% probability
if it is smaller than 0.5 � average rtt.

EVENT: A NAK is received for a packet sent at time T1
if (congestion state == NOT CONGESTED) then
if (This is a New NAK) then
Cut rate by half. Set a \old NAK" bit for this sequence number.
Set silence period to average rtt=2. Indicate beginning of silence period
congestion state = CONGESTED
congestion epoch start time=current time
Call RTT Estimator()
Set the NAK �lter timer to silence period + average rtt + 4 � mean deviation

else
Call RTT Estimator()

end if
else
Call RTT Estimator()

end if

EVENT: NAK Filter Timer expires: congestion state = NOT CONGESTED

EVENT: Silence Timer expires: Indicate end of silence period

EVENT: Rate Increase Timer expires
if (congestion state == NOT CONGESTED) then
Increment rate by MSS/(rtt average + 2 � mean deviation)

end if
Set Rate Increase Timer to rtt average + 2 � mean deviation

27

