
Distributed Fine Grain Adaptive-FEC Scheme for Scalable

Video Streaming ∗

Yufeng Shan †, John W. Woods, and Shivkumar Kalyanaraman

Department of ECSE, Rensselaer Polytechnic Institute, TROY, NY 12180-3590

Email: shany@rpi.edu; {woods,shivkuma}@ecse.rpi.edu

ABSTRACT

In this paper, we investigate a distributed fine grain adaptive FEC (FGA-FEC) scheme for scalable video stream-
ing to heterogeneous users over a congested multihop network, where we do FGA-FEC decode/recode at selected
intermediate overlay nodes, and do FGA-FEC adaptation at remaining nodes. In order to reduce the overall
computational burden, we propose two methods: (1) a coordination between optimization processes running at
adjacent nodes to reduce the optimization computation, and (2) extension of our overlay multihop FEC (OM-
FEC1, 2) to reduce the number of FGA-FEC decode/recode nodes. Simulations show that the proposed scheme
can greatly reduce computation, and can provide near best possible video quality to diverse users.

Keywords: d istributed FEC, video streaming, scalable

1. INTRODUCTION

Scalable video bitstreams3, 4 are encoded to accommodate diverse user’s requirements in terms of quality,
frame rate and resolution. This kind of bitstream has the characteristic that the subsets corresponding to
lower frame-rate/resolution/quality of the video are embedded in bitstreams corresponding to higher frame-
rate/resolution/quality. Different sub-bitstreams can be extracted in a simple manner without transcoding, to
readily accommodate a variety of users considering their display size, computing power, connection bandwidth
and etc. While streaming, with the support of a service overlay network,5, 6 a single scalable bitstream would
be sufficient to satisfy the requirements of multiple diverse users as shown by an example in Fig. 1, where DSNs
are data service nodes with certain service functions, such as bitstream adaptation, network monitoring and so
on. Users “A” to “G” have different video preferences (shown as “frame-rate/resolution/bitrate”). Here C and
Q represent the common CIF and QCIF formats, respectively, and pa to pg are the average packet-loss rates of
the overlay virtual links.

Figure 1. Intermediate adaptation of the video bitstream according to user video requests and network conditions by
overlay data service nodes

In this example, the video server would store one bitstream (corresponding to the highest frame-rate/resolution/quality)
and send it onto the network. Inside the network, the DSNs adapt the scalable bitstream to serve diverse users

∗This work was partially supported by ARO contract W911NF0410300
†Yufeng Shan is now with Cisco Systems, e-mail: yshan@cisco.com

by forwarding appropriate parts of the bitstream. To match such bitstream adaptation in lossy networks, we
proposed a scalable error-correction coding method, called fine grain adaptive FEC (FGA-FEC).7 Our FGA-
FEC can encode scalable video in such a way that both the embedded bitstream and the error correction codes
can be easily and precisely adapted in a multidimensional way to satisfy diverse users without complex transcod-
ing at intermediate nodes. The server first encodes the scalable video based on the highest user request and
aggregated network conditions, then it sends the encoded bitstream onto the network. Inside the network, the
DSNs adapt the FGA-FEC encoded bitstream to satisfy heterogeneous users by shortening and/or dropping
packets. However, we assumed that there was no congestion on the network backbone, i.e. that the backbone
available bandwidth was large enough to accommodate all user requirements. This assumption is reasonable for
service-provider structured networks, where the congestion and packet loss mainly happen at the network edge.

On a multihop network, congestion could be anywhere inside the network, especially in an ad hoc and/or
wireless network. Here we address the problem of extending FGA-FEC to work with a congested back-bone. Here,
a congested link is defined as a link whose available bandwidth is less than the minimum required bandwidth to
accommodate a user’s video request. One solution to address this problem is a hop-by-hop based solution.8 We
can optimize FEC protection for each individual link and apply FGA-FEC decode/recode at each DSN for each
user. By FGA-FEC decode/recode, we mean that a DSN decodes FGA-FEC of the received GOP, re-optimizes
the multiple descriptions, and then recodes the GOP using FGA-FEC designed for its downlinks. This would
be a heavyweight hop-by-hop computationally intensive method if done at every overlay node. Here, we argue
it may not be necessary to do FEC decode/recode at each DSN. For example, in Fig. 1, if the link between
the server and the DSN1 is congested, and other links are not, we may only do FGA-FEC decode/recode at
DSN1 and do FGA-FEC adaptation at the remaining DSNs. Thus, we should identify the congested links in the
backbone and apply the appropriate transformation at each DSN. Still, running the full FGA-FEC optimization
at even some DSN nodes may be computationally demanding. So, here we describe a distributed algorithm to do
FGA-FEC decode/recode at the selected DSNs. The proposed distributed FGA-FEC scheme includes two parts:
(1) a coordination method between individual FGA-FEC optimization processes running at neighbor nodes to
reduce the optimization computation, and (2) application of OM-FEC1 to reduce the number of FGA-FEC
decode/recode nodes, i.e we use FGA-FEC adaptation where permitted and perform FGA-FEC decode/recode
only at certain key DSNs. If there is no congestion over the backbone, we choose the end-to-end FGA-FEC
scheme, i.e. no FEC decode/recode at intermediate nodes, just efficient adaptation. If each backbone link is
congested, it is a heavyweight hop-by-hop FEC decode/recode scheme. In this paper we focus on SNR scalability,
and leave extension to spatial-resolution and frame-rate scalability as a future topic.

2. DISTRIBUTED FGA-FEC

2.1. Overview the FGA-FEC scheme��� �� ��� �� ��� �� ��� �� � ��	
� ���� � ����� ��� �� �� �	
� 	
 � ���� ��� �� ��	
� 	
 � ���� � ��� �� �� �	
 � 	
 � 	
� ��� �� ��� ��	
� 	
 � 	
� ��� �� �� �������
���� � � ���� � � �� �� � ���� ��� � � �� ��� ��� � �� � ����� ��� � �� � ����� ��� � � � ����� ��� � �� ������ ��� � �! �� � �� ��� ��� � "������

�� ��� �� ��� ��# � # �$� # � # � $ � # �# % ���� � " & ' ((((((&) ((((((&*) &+)������������������������ &'&*&,&)���- . /01 2 34 5 637 89 :3;<68. : =&)> '&)>*&)>,���&*) &*)> '((((((���&,) (((((((((���&+)?@A?@A��� ?@A?@A��� ?@A?@A��� ?@A?@A���
������������������������

��� ������ ����������BCDEFGHIEJ��� ��� ��� ���
Figure 2. FGA-FEC encoding of one GOP. Here, FEC is added vertically at block level and each horizontal row of blocks
is packetized into one network packet.

Our FGA-FEC encoding method (Fig. 2) extends MD-FEC9 by adding scalability (adaptation) features.
Given a GOP of scalable-coded video bitstream organized from MSB (R0) to LSB (RN), shown at the top in

Fig. 2, suppose we want to encode this GOP into N descriptions, we first run an optimal bit allocation scheme
and divide the bitstream into N sections Si, (i ∈ [1, N]), marked with source-rate break points R0, R1, R2, ..., RN ,
where R0 ≤ R1 ≤ R2 ≤ ... ≤ RN and R0 = 0. Section Si (i ∈ [1, N]) is further split into equal size subsections
with each subsection i blocks. These subsections are encoded by an RS(N, i) code vertically at block level to
generate parity blocks. Since each block column is independently coded, at intermediate nodes, we can adapt
the bitstream by easily removing related columns and/or dropping descriptions,7, 10 both source data and parity
bits, to satisfy diverse users. In this FGA-FEC scheme, no transcoding is needed, the adaptation method is very
efficient and near optimal.10

2.2. Distributed FGA-FECKLMNL M OPLMQ
OPLROPL MS

OPLMT OPL MU
OPLMV

OPL MW
OPLMXYKZV YKZT YKZUYKZS[\] ^\ [_] ^_[`] ^`[a] ^a [b] ^b[c] ^c[d] ^d[e] ^e[f] ^f [g] ^g[h] ^h[i] ^i

Figure 3. Streaming video from server to users through DSNs, red-dotted arrows are overhead information flows, black-
solid arrows are coded video flows.

We outline our idea in a simplified form as shown in Fig. 3, where a server streams video to 8 diverse users
through DSNs over a congested backbone. Before the streaming session, each end user sends its ideal video
request (Dmin in terms of distortion) and maximum tolerable distortion (Dmax) to its directly connected DSN.
During the streaming, at each time interval, edge DSNs (eg. DSN4, whose downlinks have only end users)
initialize optimization processes for each child to figure out what kind of bitstream it needs to request from
its parent DSN (eg. DSN3). This request is based on its children’s link conditions and their video requests.
The combined video request of its child nodes along with the optimization result is sent to DSN3 as overhead
information. DSN3 then runs optimizations for its own children, including DSN4 (DSN3 treats DSN4 as one
ordinary user), and generates the requested information to its parent DSN2. This process is repeated until we
arrive back at the server. The server then runs the same algorithms as the DSNs to determine the amount
of FEC that should be applied to the video and then sends the encoded video onto the network. Inside the
network, certain pre-selected DSNs will decode, redo the FGA-FEC design, and recode FEC for some users, but
the other DSNs are just adaptation nodes. We consider two kinds of flows in our distributed algorithm, upstream
overhead information flow (shown via red-dotted arrows in Fig. 3) and downstream video data flow (shown via
black arrows). Each DSN only exchanges optimization information with its direct parent or children, generating
only local overhead information traffic. The DSNs use this information to coordinate with the optimization
processes running at neighbor nodes to reduce the computational burden, as well as to decide which nodes that
will be involved in the FGA-FEC decode/recode. We apply the idea of OM-FEC to minimize the number of
involved FGA-FEC decode/recode nodes while still maintaining near optimal video quality for each user, as
measured by PSNR. We turn next to how to reduce the optimization computation.

2.2.1. Coordination Between Algorithm Processes Running at Neighbor Nodes

Here we run the FGA-FEC optimization algorithm at both the DSNs and the video server. A DSN runs
optimization for its children to figure out what kind of bitstream it needs to request from its parent DSN or
server. The server runs optimization to design the FEC and to encode the next GOP. The only difference in the
optimization algorithms running at DSNs and server are their input parameters. In this study, the optimization
time interval is one GOP. Here, we briefly overview our optimization algorithm.

Our goal is to find a near-optimal bitrate partition R = {R1, R2, · · · , RN} of a GOP, which approximately
minimizes the end-to-end mean distortion E[D(R)] over a channel with available bandwidth B and packet-loss

probability p. We write

E[D(R)] =

N
∑

i=0

qiD(Ri), (1)

subject to:

0 ≤ R1 ≤ R2 ≤ ... ≤ RN

Rtotal ≤ B

Ri − Ri−1 = ri × i, ri ≥ 0, ∀ i ∈ [1, N],

where N is the number of descriptions encoded in one GOP, ri is the source rate of each subsection in section
i (i ∈ [1, N]) of the bitstream (see Fig. 2). The probability that any i out of N packets are successfully delivered
is qi and Rtotal is the total available bandwidth (bitrate) for both FEC and video data.

Solving (1) is a constrained optimization problem. To find the optimal solution, we can use the Lagrange
multiplier method and construct the function

F (R1, · · · , R2, λ) =

N
∑

i=0

qiD(Ri) + λ(

N
∑

i=0

αiRi − B). (2)

Taking the partial derivative of (2) with respect to Ri, i = 0, 1, · · · , N , and setting them to 0, then, we can use a
bisection search to find the appropriate λ and the corresponding rate break points R = {R1, R2, · · · , RN}, and
the E[D] value.

The motivation for coordinating among neighbors comes from the following considerations: (1) video statistics
between adjacent GOPs usually do not change rapidly (except for scene cuts), and (2) server and parent DSNs
will have already calculated the optimization information from their child DSNs for the same GOP, with only
different B and p. Again, these B and p values are usually highly correlated. Therefore, we wish to utilize this
previous optimization information. Edge DSNs initialize optimization for a new GOP. There, and at internal
DSNs, we can use optimization information from the previous GOP, we call this method search with previous
GOP. Intermediate DSNs and the server have local information not only of the same GOP from child DSNs but
also have their own prior GOP optimization result. Thus, they can use information of either of these GOPs to
initialize their optimization search. Using the optimization information from child DSN, will be called search
with neighbor. For reference, we also will consider a full-search method, wherein each node runs the optimization
algorithm independently. There, the upstream communication between nodes only consists of the aggregated
video requests. The optimization parameters shared between nodes are λ’s and rate break points Ri’s.

2.3. Finding Congested Links

An extreme case of our distributed FGA-FEC would be hop-by-hop FGA-FEC decode/recode, i.e do FGA-FEC
decode/recode at each DSN. This method will provide the best quality for the users on a congested backbone,
since the protection is specifically optimized for each individual link. However, it should not be necessary to do
the FGA-FEC decode/recode at every DSN, if only part of the network is congested. For example, we already
have shown that if the network backbone is not congested, our simpler FGA-FEC adaptation can also provide a
near optimal solution if the user diversity is not too great.7, 10 Combining these two ideas together, we propose
to do FGA-FEC decode/recode at only selected nodes, while still providing a similar video quality to hop-by-hop
FGA-FEC decode/recode.

We use the topology of Fig. 3 to illustrate the idea. In Fig. 3, if there is no congestion on the backbone, we
can directly encode a video using FGA-FEC only at the server and then use simpler FGA-FEC adaptation inside
the network. If some links in the backbone are congested, we need to identify them and then apply FGA-FEC
decode/recode functions at the boundary nodes of these congested links as detailed in Algorithm 1 Distributed
FGA-FEC Algorithm. Note, we only use local information to determine the congested links.

Referring to Fig. 3, the network conditions are listed for each link. Before the streaming session, each end
user sends its video requirement to its parent DSN as overhead information. This requirement can be described
as a quality range [Dmin, Dmax], where Dmin is the user’s ideal video preference and Dmax is his/her maximum

Algorithm 1: Distributed FGA-FEC Algorithm

1 Edge DSNs initialize new GOP optimizations for their children
using search with previous GOP.

2 Edge DSNs send video requests and optimization information
{D, Dmax, λ, B, p, pmax} to their parent DSNs.

3 Intermediate DSNs run optimization for their children using
search with neighbor.

4 Intermediate DSNs tests if their children DSNs have enough available bandwidth B

for an FGA-FEC adaptation.
If yes, intermediate DSNs set their children DSNs as adaptation nodes.
Otherwise, we have a congested link, and child DSNs will do
FGA-FEC decode/recode.

5 Intermediate DSNs send video requests and optimization
parameters to their parents.

6 This process is repeated at all intermediate DSNs and eventually reaches the server.
Thus, the congested links are detected along with the FGA-FEC
decode/recode nodes.

tolerable distortion. The optimization starts from the edge DSN (DSN4) and proceeds up to the server using a
bottom up procedure through all the intermediate DSNs, in detail as below.

1. DSN4 runs optimization algorithm for its child User7, the result will be Dmin7 + λ7Rtotal7, given B7 ≥
Rtotal7, we can only use part of the available bandwidth, since Dmin7 is satisfied. If B7 < Rtotal7, the link is
congested, and the result will be D′

7 + λ′

7R
′

total7, where Dmin7 < D′

7 and R′

total7 = B7, i.e. we use up all the
available bandwidth to get the best quality possible for User7. If Dmax7 < D′

7, no video is sent to User7.

Similarly for User8, the result will be Dmin8 + λ8Rtotal8 given B8 ≥ Rtotal8. If B8 < Rtotal8 the result will be
D′

8 + λ′

8R
′

total8, where Dmin8 < D′

8, and R′

total8 = B8.

2. DSN4 generates its video request to send upstream which is the union of both users’ requests, in this case,
it is D =min(Dmin7 or D′

7, Dmin8 or D′

8), given both users have a valid data request. The maximum tolerable
distortion will be Dmax =max(Dmax7, Dmax8) (at least we should satisfy one user), the requested bitstream range
will be at [D, Dmax]. DSN4 sends this combined video request to its parent DSN3, along with its optimization
information {λ, B, p}. Here, (B, p) corresponds to D. The total request is the set {D, Dmax, λ, B, p, pmax}, where
pmax is the maximum loss probability among its children links and is used for FGA-FEC optimization test.

3. DSN3 runs the optimization algorithm for its children (including DSN4 with video request [D, Dmax] and
network conditions (Bd, pd), based on the optimization parameter λ from DSN4 (DSN3 uses the optimization
information to start its own process).

4. DSN3 does one FGA-FEC optimization test, it optimizes FGA-FEC based on Bd and the aggregated loss
probability, roughly 1 − (1 − pd)(1 − pmax). If Bd is large enough for FGA-FEC encoding (i.e. it can provide
the video quality D with FGA-FEC), DSN4 is set as an FGA-FEC adaptation node, otherwise, the link between
DSN3 and DSN4 is congested, and both DSN3 and DSN4 need to do FEC decode/recode.

5. DSN3 sends its own request {D, Dmax, λ, B, p, pmax} to DSN2.

6. This process is repeated upwards to the server through DSN2 and DSN1. The backbone is then divided
into segments and appropriate nodes are selected for FEC decode/recode.

7. The server runs the optimization based on video request and optimization information from DSN1, encodes
the GOP with FGA-FEC, and sends it to DSN1.

3. EXPERIMENTS AND SIMULATIONS

We did experiments and simulations to show the efficiency of our proposed distributed FGA-FEC scheme using
test clips Foreman CIF, 18 GOPs, Mobile, SIF, 8 GOPs and Football, SIF, 7 GOPs, all with 16 frames/GOP.

The source encoder is the highly scalable and embedded MC-EZBC,3 N = 64. The proposed scheme includes
two approaches (1) a coordination method between optimization processes running at adjacent nodes to reduce
computation, (2) the OM-FEC concept to reduce the number of FGA-FEC decode/recode nodes while still
maintaining near optimal video quality, measured in terms of PSNR. Regarding the first approach, we compare
the number of iterations needed to reach the optimization stoping point using full search, search with previous
GOP, and search with neighbor. For the later approach, we compare with hop-by-hop FEC decode/recode scheme
and show that we can get similar video quality, but using far fewer nodes involved in full FEC decode/recode.
We use CPU time as a measure of algorithm efficiency.

3.1. Optimization Performance

We solve the optimization problem using a bisection search to find the best λ value. For stopping criteria, we
use |Rtotal − B| < 1

N
× B and |λ − λprevious| < ε, i.e. the total rate should be close to the available bandwidth

and λ should be fairly constant, where ε is a given threshold . Intuitively, a larger threshold should correspond
to coarser precision. After the optimization, (N − 1

N
× B) < Rtotal < (N + 1

N
× B). If Rtotal < B, we need

to allocate more video data to RN to satisfy Rtotal = B. If Rtotal > B, we need to remove some video data
from RN to satisfy Rtotal = B. Experimentally, we found that ε = 1 × 10−5 is a reasonable choice, with almost
negligible quality loss.10

2 4 6 8 10 12 14 16 18
0

200

400

600

800

1000

1200

1400

GOP number

A
va

ila
bl

e
ba

nd
w

id
th

 (
K

bp
s)

Channel condition

p=0.06

p=0.03

p=0.09

p=0.12

p=0.06

p=0.03

(a) Channel condition

2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

GOP number

N
um

be
r

of
 it

er
at

io
ns

Full search
Search with previous GOP
Search with neighbor

(b) Number of iterations

Figure 4. Dynamic link (channel) conditions: full-search algorithm vs. proposed search with previous GOP and search

with neighbor, in terms of number of iterations for a dynamic channel, (a) channel conditions varying with GOP number,
(b) the number of iterations to reach stopping point.

In Fig. 4, we compare the full-search algorithm with our proposed search with previous GOP and search
with neighbor methods on a dynamicly changing link, where the link (channel) condition changes versus GOP
as shown in Fig. 4(a). The corresponding number of iterations to reach stopping point for the three methods
are shown in Fig. 4(b). Here one iteration is defined as one λ-step calculation. Initially, we set λ = 1 × 10−3

in the full search method.10 For full-search optimization, the bisection search always starts from this initial λ.
In the search with previous GOP method, the first GOP is the same as full search, and we start from the same
λ value. However, after the first GOP, we use the previous GOP final λ (optimal point value) as our starting
point to optimize the current GOP for the current network conditions. In search with neighbor, we use the same
GOP’s information in prior network condition at the from child DSN. For the search with neighbor method, if
the network condition does not change, the optimization value can be used directly without optimization. From
Fig. 4, we see that if the channel condition changes, both search with previous GOP and search with neighbor
have similar performance, but when channel condition is statistically consistent, using search with neighbor gains
over search with previous GOP, saving about 2 iterations on average.

The results in this section show that the coordination between adjacent nodes can greatly reduce the opti-
mization computation.

3.2. Comparison of Distributed FGA-FEC with Hop-by-hop FGA-FEC Decode/recode

In this section, we compare hop-by-hop FGA-FEC decode/recode versus the distributed FGA-FEC scheme in
a congested multicast scenario. We use the ns-211 network simulator with network topology the same as8 and
shown in Fig 5. The network backbone is congested with 1.15 Mbps between source and node 1. Packet-loss
rates were not specified in,8 but here we set the probability of packet drop for each link to p = 0.01.jklmno p

pq prps pptu vwx y qr
pxpy

pzpx
s zvqs zwss zww s zwwpzyu pzqrpzyypzqr pzqupzpxpzrx pzqr pzxppzrx

{mkl|}
{mkl|~{mkl|� {mkl|�

Figure 5. Network topology for a network of 16 nodes (link bandwidths are in Mbps, each link has packet-loss probability
of 0.01). The backbone is congested, with smaller bandwidth than some end users.

In the hop-by-hop FGA-FEC decode/recode, all intermediate nodes are involved in FEC decode/recode for
their direct children. In our distributed FGA-FEC scheme, the entire network is partitioned into segments
and appropriate FGA-FEC decode/recode nodes are selected. In this topology, distributed FGA-FEC would
identify three congested links in the backbone: (1) from source to node 1, (2) from node 1 to node 2, and (3)
from node 10 to node 12. Thus, nodes 1, 2, 10, 11 are FGA-FEC decode/recode nodes. In the hop-by-hop
FGA-FEC decode/recode method, all intermediate nodes are involved in FEC decode/recode, for a total of 7
nodes. Fig. 6 shows the PSNR quality delivered to receivers 5 and 12, respectively. For receiver 5, hop-by-hop
FGA-FEC decode/recode is about 0.01 dB better on average than the distributed FGA-FEC, with the relative
loss mainly caused by the better performance of FGA-FEC decode/recode at node 1. For hop-by-hop FGA-FEC
decode/recode, the received video is FGA-FEC recoded at node 4 with packet-loss probability p = 0.01. For the
distributed FGA-FEC, the video is FGA-FEC recoded at node 1 with a aggregated packet-loss probability of
about p = 0.02. Regarding receiver 12, these two schemes perform about the same, since they both do FGA-FEC
decode/recode at node 10 specifically for node 12.

The results in this Section show that our distributed FGA-FEC algorithm can provide similar quality to
hop-by-hop FGA-FEC decode/recode, but with less than half the nodes involved in FEC computation, 7 nodes
in FGA-FEC decode/recode versus 4 in distributed FGA-FEC in the section’s simulation.

3.3. Distributed FGA-FEC CPU-Time

In the distributed FGA-FEC algorithm, a DSN either does FGA-FEC adaptation or FGA-FEC decode/recode.
Here, we compare the computational complexity of these two methods. We measured the CPU time of both
schemes using the topology of Fig. 7, where the DSN is a Dell desktop with Pentium 4, 1.6 GHz CPU, 256
MB Memory, running Red Hat Linux 8.2. We used test sequences Foreman and Mobile, 7 GOPs/sequence, and
number of descriptions encoded for each GOP N =64. The D(R) curve rate interpolation interval is 100 bytes.
The number of D(R) points actually transmitted is 21, thus constituting a negligible overhead. Table 1 lists the
measured items for both schemes.

50 100 150 200 250 300
36

37

38

39

40

41

42

Frame Number

P
S

N
R

−
Y

 (
dB

)

Distributed FGA−FEC
Hop−by−hop FEC decode/recode

(a) Receiver 5

50 100 150 200 250 300
33

34

35

36

37

38

39

40

Frame Number

P
S

N
R

−
Y

 (
dB

)

Distributed FGA−FEC
Hop−by−hop FEC decode/recode

(b) Receiver 12

Figure 6. Quality delivered in PSNR (dB) at two receivers. For receiver 5, distributed FGA-FEC average performance
is less than 0.01 dB lower than the hop-by-hop FGA-FEC decode/recode algorithm. At receiver 12, both schemes have
about the same video quality since they both do transcoding at parent node.� � �� � � � � � � � � � �� � �� � �� � � � � �� �� � � �� � � � �� � � � � �� �� � � �� �

Figure 7. A simple topology video streaming to one user through DSN.

3.3.1. FGA-FEC Decode/recode Scheme

In the FGA-FEC decode/recode scheme, the server first does optimization over a channel (B = 1200 Kbps and
p = 0.05), then encodes the video using RS codes. At the DSN, RS decoding is first performed, then it does the
optimization for its downlink channel (B = 1000 Kbps and p = 0.05), finally it does the RS encoding.

FEC optimization time

To optimize FEC protection for each GOP, the DSN needs to: (1) interpolate the D(R) curve, (2) convexify
D(R) curve and calculate related parameters such as αi, qi, (3) perform bisection search at appropriate initial λ

value (one step of λ value calculation is one iteration), and (4) output the results. Table 2 shows the measured
CPU time (in ms) of the different steps of the optimization algorithm for the two test clips.

FGA-FEC decode/recode time

Table 3 shows the measured CPU time (in ms) of RS decode/recode at the intermediate node for Foreman,
only first 7 GOPs.

3.3.2. FGA-FEC Adaptation Time

In the FGA-FEC adaptation, the server does the optimization and RS encoding based on aggregated network
condition which is 1200 Kbps and p = 0.1. At the DSN, the FGA-FEC encoded bitstream is adapted for its
downlink with 1000 Kbps, p = 0.05 only by shortening packets and dropping descriptions. Here, we measure the

FGA-FEC decode/recode FGA-FEC adaptation

FGA-FEC decode time, The time to find the
FGA-FEC optimization time, appropriate combination of
and FGA-FEC recode time dropping/shortening packets

Table 1. The measured items in FGA-FEC decode/recode and FGA-FEC adaptation methods

Sequences Total Optimization Bisection search Time/iteration
time/GOP (ms) time/GOP (ms) (ms)

Foreman, FTFS 8.1 3.5 0.4
Foreman, HTFS 7.1 3.5 0.4
Foreman, FTHS 7.4 3.5 0.4
Mobile, FTFS 7.8 3.5 0.4

Table 2. Optimization CPU time. Here FTFS means full-temporal full-spatial resolution, HTFS means half temporal
(frame-rate) full-spatial resolution and FTHS denotes full frame-rate half resolution. We show the average optimization
time per GOP (sum of all four steps), the bisection search time, and the CPU time per iteration.

Sequences decode time (ms) recode time (ms) total (ms)

Foreman, FTFS 28.7 15.8 44.5

Table 3. Measured CPU time (in ms) of RS decode/recode at intermediate node. Results show that to perform FGA-FEC
decode/recode takes 44.5 ms on average per GOP.

CPU time to find the appropriate combination of dropping/shortening packets. In this scheme, the DSN needs
to: (1) interpolate the D(R) curve, (2) find the appropriate combination of dropping/shortening packets, and
(3) output the results. Table 4 shows the measured CPU time of FGA-FEC adaptation.

Sequences FGA-FEC adaptation time (ms)

Foreman, FTFS 2.9
Foreman, HTFS 1.8
Foreman, FTHS 1.9
Mobile, FTFS 2.6

Table 4. Measured CPU time (ms) of FGA-FEC adaptation

In summary, Table 5 compares the CPU time of running FGA-FEC decode/encode scheme and FGA-FEC
adaptation on Foreman for the first 7 GOPs. If the FGA-FEC direct truncation method (i.e. just shorten
packets) is used, the CPU time to process one GOP is less than 10−2ms.

Scheme performed in DSN CPU time (ms)

FGA-FEC decode/recode 52.6
FGA-FEC adaptation 2.9

FGA-FEC direct truncation 1 × 10−2

Table 5. Intermediate node FGA-FEC decode/recode vs. FGA-FEC adaptation in terms of CPU time.

In our distributed FGA-FEC method, we coordinate between optimization processes running at adjacent
nodes to reduce the number of iterations needed to reach the stopping point. The DSNs usually need 2-3
iterations for each user in our distributed scheme vs. 8-10 iterations for a full search without coordination, thus
we can save 30-40% CPU time in the optimization computation, or about 3 ms for each user. The optimization
time saving is even more significant with FGA-FEC adaptation. The 3 ms saving is comparable to one FGA-FEC
adaptation (2.9 ms) but much larger than direct truncation (< 10−2 ms). In the FGA-FEC decode/recode case,
FEC coding dominates the computation, about 52.6 ms. Since we only need to do one decoding and many
encodings, for each encoding, the CPU time is about 16 ms, the total savings for one user is about 3÷16 = 20%.
In addition to the coordination method, we apply the idea of OM-FEC to reduce the number of nodes involved
in FEC decoding/recoding. The gain in the latter method is very significant, since the decoding/recoding time

is nearly twenty times longer than that of FGA-FEC adaptation (52 ms vs. 2.9 ms). i.e. each DSN can support
nearly twenty times as many users if using FGA-FEC adaptation than using FGA-FEC decode/recode.

4. CONCLUSIONS

In this paper, we proposed a distributed FGA-FEC algorithm for video streaming to diverse users on a congested
network. We proposed a distributed approach to greatly reduce the computational burden of optimization by
exchanging overhead information between adjacent nodes. We also extended the idea of OM-FEC to determine
find the congested links and hence to reduce the number of needed FGA-FEC decode/encode nodes. Here we
apply FGA-FEC adaptation whenever permitted and do FGA-FEC decode/recode only at the edge of congested
links. Simulations have shown the performance of the proposed scheme.

REFERENCES

1. Y. Shan, I. V. Bajic, S. Kalyanaraman, and J. W. Woods, “Overlay multi-hop FEC scheme for video
streaming,” Signal Processing: Image Commun. 16, pp. 710–727, September 2005.

2. Y. Shan, I. V. Bajic, S. Kalyanaraman, and J. W. Woods, “Overlay multi-hop FEC scheme for video
streaming over peer-to-peer networks,” in International Conference on Image Processing, pp. 3133 – 3136,
IEEE, Oct. 2004.

3. S. T. Hsiang and J. W. Woods, “Embeded video coding using invertible motion compensated 3-D sub-
band/wavelet filter bank,” Signal Processing: Image Commun. 16, pp. 705–724, May 2001.

4. B.-J. Kim, Z. Xiong, and W. A. Pearlman, “Low bit-rate scalable video coding with 3-D set partitioning in
hierarchical trees (3-D SPIHT),” IEEE Trans. Circuits Syst. Video Technol. 10, pp. 1374–1387, Dec. 2000.

5. H. J. W. V. N. Padmanabhan and P. A. Chou, “Distributing streaming media content using cooperative
networking,” Microsoft Corporation, Tech. Rep MSR-TR-02-37, 2002.

6. X. Gu and K. Nahrstedt, “QOS-assured service composition in managed service overlay networks,” in
International Conference on Distributed Computing Systems, pp. 194 – 201, IEEE, May 2003.

7. Y. Shan, I. V. Bajic, S. Kalyanaraman, and J. W. Woods, “Joint source-network error control coding for
scalable overlay streaming,” in International Conference on Image Processing, pp. 11 – 14, IEEE, Sept 2005.

8. R. Puri, K. Ramchandran, K. Lee, and V. Bharghavan, “Forward error correction codes based multiple
description coding for internet video streaming and multicast,” Signal Processing: Image Commun 16,
pp. 645 – 657, May 2001.

9. R. Puri and K. Ramchandran, “Multiple description coding using forward error correction codes,” in Proc.
33rd Asilomar Conf. (ACSS), pp. 342–346, IEEE, Oct 1999.

10. Y. Shan, Scalable Joint Source-Network Coding of Video. PhD thesis, Rensselaer Polytechnic Institute,
May 2007.

11. “The network simulator- ns-2; http://www.isi.edu/nsnam/ns/.”

