
One More Bit Is Enough

Yong Xia∗ Lakshminarayanan Subramanian+ Ion Stoica+ Shivkumar Kalyanaraman∗

∗ ECSE Department + EECS Department
Rensselaer Polytechnic Institute University of California, Berkeley

{xiay@alum, shivkuma@ecse}.rpi.edu {lakme, istoica}@cs.berkeley.edu

ABSTRACT
Achieving efficient and fair bandwidth allocation while min-
imizing packet loss in high bandwidth-delay product net-
works has long been a daunting challenge. Existing end-
to-end congestion control (e.g., TCP) and traditional con-
gestion notification schemes (e.g., TCP+AQM/ECN) have
significant limitations in achieving this goal. While the re-
cently proposed XCP protocol addresses this challenge, XCP
requires multiple bits to encode the congestion-related infor-
mation exchanged between routers and end-hosts. Unfortu-
nately, there is no space in the IP header for these bits,
and solving this problem involves a non-trivial and time-
consuming standardization process.

In this paper, we design and implement a simple, low-
complexity protocol, called Variable-structure congestion
Control Protocol (VCP), that leverages only the existing two
ECN bits for network congestion feedback, and yet achieves
comparable performance to XCP, i.e., high utilization, low
persistent queue length, negligible packet loss rate, and rea-
sonable fairness. On the downside, VCP converges signifi-
cantly slower to a fair allocation than XCP. We evaluate the
performance of VCP using extensive ns2 simulations over a
wide range of network scenarios. To gain insight into the be-
havior of VCP, we analyze a simple fluid model, and prove
a global stability result for the case of a single bottleneck
link shared by flows with identical round-trip times.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Protocols

General Terms
Algorithms, Design, Experimentation, Performance, Theory

Keywords
Congestion Control, Protocol, TCP, AQM, ECN, XCP

1. INTRODUCTION
The Additive-Increase-Multiplicative-Decrease (AIMD) [10]

congestion control algorithm employed by TCP [25] is known

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’05,August 21–26, 2005, Philadelphia, Pennsylvania, USA.
Copyright 2005 ACM 1-59593-009-4/05/0008 ...$5.00.

to be ill-suited for high Bandwidth-Delay Product (BDP)
networks. With rapid advances in the deployment of very
high bandwidth links in the Internet, the need for a viable
replacement of TCP in such environments has become in-
creasingly important.

Several research efforts have proposed different approaches
for this problem, each with their own strengths and limita-
tions. These can be broadly classified into two categories:
end-to-end and network feedback based approaches. Pure
end-to-end congestion control schemes such as HighSpeed
TCP [15], FAST [31] and BIC [67, 59], although being at-
tractive solutions for the short-term (due to a lesser deploy-
ment barrier), may not be suitable as long-term solutions.
Indeed, in high BDP networks, using loss and/or delay as
the only congestion signal(s) poses fundamental limitations
on achieving high utilization and fairness while maintain-
ing low bottleneck queue length and minimizing congestion-
induced packet drop rate. HighSpeed TCP illustrates the
limitations of loss-based approaches in high bandwidth opti-
cal links with very low bit-error rates [15]. Similarly, Bullot
and Cottrell show that delay-based approaches are highly
sensitive to minor delay variations [7], a common case in
today’s Internet.

To address some of the limitations of end-to-end con-
gestion control schemes, many researchers have proposed
the use of explicit network feedback. However, while tra-
ditional congestion notification feedback schemes such as
TCP+AQM/ECN proposals [18, 2, 42, 57] are successful
in reducing the loss rate and the queue size in the network,
they still fall short in achieving high utilization in high BDP
networks [24, 49, 35]. XCP [35] addresses this problem by
having routers estimate the fair rate and send this rate back
to the senders. Congestion control schemes that use explicit
rate feedback have been also proposed in the context of the
ATM Available Bit Rate (ABR) service [40, 9, 33, 27, 34].
However, these schemes are hard to deploy in today’s Inter-
net as they require a non-trivial number of bits to encode
the rate, bits which are not available in the IP header.

In this paper, we show that it is possible to approximate
XCP’s performance in high BDP networks by leveraging
only the two ECN bits (already present in the IP header)
to encode the congestion feedback. The crux of our algo-
rithm, called Variable-structure congestion Control Proto-
col (VCP), is to dynamically adapt the congestion control
policy as a function of the level of congestion in the net-
work. With VCP, each router computes a load factor [27],
and uses this factor to classify the level of congestion into
three regions: low-load, high-load and overload [28]. The

1

router encodes the level of congestion in the ECN bits. As
with ECN, the receiver sends the congestion information to
the sender via acknowledgement (ACK) packets. Based on
the load region reported by the network, the sender uses
one of the following policies: Multiplicative Increase (MI) in
the low-load region, Additive Increase (AI) in the high-load
region, and Multiplicative Decrease (MD) in the overload
region. By using MI in the low-load region, flows can ex-
ponentially ramp up their bandwidth to improve network
utilization. Once high utilization is attained, AIMD pro-
vides long-term fairness amongst the competing flows.

Using extensive packet-level ns2 [52] simulations that cover
a wide range of network scenarios, we show that VCP can
approximate the performance of XCP by achieving high uti-
lization, low persistent queue length, negligible packet drop
rate and reasonable fairness. One limitation of VCP (as is
the case for other end-host based approaches including TCP
and TCP+AQM) is that it converges significantly slower to
a fair allocation than XCP.

To better understand the VCP’s behavior, we use a simple
fluid model that approximates the behavior of VCP. For the
case of a single bottleneck link shared by flows with identical
round-trip delays, we prove that the model asymptotically
achieves global stability independent of the link capacity, the
feedback delay and the number of flows. For more general
multiple-bottleneck topologies, we show that the equilibrium
rate allocation of this model is max-min fair [4]. While this
model may not accurately reflect VCP’s dynamics, it does
reinforce the stability and fairness properties that we observe
in our simulations and provides a good theoretical grounding
for VCP.

From a practical point of view VCP has two advantages.
First, VCP does not require any modifications to the IP
header since it can reuse the two ECN bits in a way that is
compatible with the ECN proposal [57]. Second, it is a sim-
ple protocol with low algorithmic complexity. The complex-
ity of VCP’s end-host algorithm is similar to that of TCP.
The router algorithm maintains no per-flow state, and it has
very low computation complexity. We believe that these
benefits largely offset VCP’s limitation of having a much
slower fairness convergence speed than XCP.

The rest of the paper is organized as follows. In Section 2,
we describe the guidelines that motivate the design of VCP
and in Section 3, we provide a detailed description of VCP.
In Section 4, we evaluate the performance of VCP using ex-
tensive simulations. In Section 5, we develop a fluid model
that approximates VCP’s behavior and characterize its sta-
bility, fairness and convergence properties (with the detailed
proofs presented in a technical report [66]). Section 6 ad-
dresses concerns on the stability of VCP under heteroge-
neous delays and the influence of switching between MI, AI
and MD on efficiency and fairness. We review related work
in Section 7 and summarize our findings in Section 8.

2. FOUNDATIONS
In this section, we first review why XCP scales to high

BDP networks while TCP+AQM does not. Then, we present
two guidelines that form the basis of the VCP design.

2.1 Why XCP outperforms TCP+AQM?
There are two main reasons of why TCP does not scale

to high BDP networks. First, packet loss is a binary con-
gestion signal that conveys no information about the degree

of congestion. Second, due to stability reasons, relying only
on packet loss for congestion indication requires TCP to use
a conservative window increment policy and an aggressive
window decrement policy [25, 35]. In high BDP networks,
every loss event forces a TCP flow to perform an MD, fol-
lowed by the slow convergence of the AI algorithm to reach
high utilization. Since the time for each individual AIMD
epoch is proportional to the per-flow BDP, TCP flows re-
main in low utilization regions for prolonged periods of time
thereby resulting in poor link utilization. Using AQM/ECN
in conjunction with TCP does not solve this problem since
the (one-bit) ECN feedback, similar to a packet loss, is not
indicative of the degree of congestion either.

XCP addresses this problem by precisely measuring the
fair share of a flow at a router and providing explicit rate
feedback to end-hosts. One noteworthy aspect of XCP is the
decoupling of efficiency control and fairness control at each
router. XCP uses MIMD to control the flow aggregate and
converge exponentially fast to any available bandwidth and
uses AIMD to fairly allocate the bandwidth among compet-
ing flows. XCP, however, requires multiple bits in the packet
header to carry bandwidth allocation information (∆cwnd)
from network routers to end-hosts, and congestion window
(cwnd) and Round-Trip Time (RTT) information (rtt) from
the end-hosts to the network routers.

2.2 Design Guidelines for VCP
The main goal of our work is to develop a simple con-

gestion control mechanism that can scale to high BDP net-
works. By “simple” we mean an AQM-style approach where
routers merely provide feedback on the level of network con-
gestion, and end-hosts perform congestion control actions
using this feedback. Furthermore, to maintain the com-
patibility with the existing IP header format, we restrict
ourselves to using only two bits to encode the congestion in-
formation. To address these challenges, our solution builds
around two design guidelines:

#1, Decouple efficiency control & fairness control.

Like XCP, VCP decouples efficiency and fairness control.
However, unlike XCP where routers run the efficiency and
fairness control algorithms and then explicitly communicate
the rate to end-hosts, VCP routers compute only a con-
gestion level, and end-hosts run one of the two algorithms
as a function of the congestion level. More precisely, VCP
classifies the network utilization into different utilization re-
gions [28] and determines the controller that is suitable for
a given region. Efficiency and fairness have different levels
of relative importance in different utilization regions. When
network utilization is low, the goal of VCP is to improve
efficiency more than fairness. On the other hand, when
utilization is high, VCP accords higher priority to fairness
than efficiency. By decoupling these two issues, end-hosts
have only a single objective in each region and thus need
to apply only one congestion response. For example, one
such choice of congestion response, which we use in VCP,
is to perform MI in low utilization regions for improving ef-
ficiency, and to apply AIMD in high utilization regions for
achieving fairness. The goal then is to switch between these
two congestion responses depending on the level of network
utilization.

#2, Use link load factor as the congestion signal.

XCP uses spare bandwidth (the difference between capac-

2

 0

 5

 10

 15

 20

 0 50 100 150 200 250

Flo
w T

hro
ugh

put
 (M

bps
)

Time (sec)

capacity
1st flow
2nd flow

Figure 1: The throughput dynamics of two flows of the

same RTT (80ms). They share one bottleneck with the

capacity bouncing between 10Mbps and 20Mbps. This

simple example unveils VCP’s potential to quickly track

changes in available bandwidth (with load-factor guided

MIMD) and thereafter achieve a fair bandwidth alloca-

tion (with AIMD).

ity and demand) as a measure of the degree of congestion.
In VCP, we use load factor as the congestion signal, i.e., the
relative ratio of demand and capacity [27].

While the load factor conveys less information than spare
bandwidth, the fact that the load factor is a scale-free pa-
rameter allows us to encode it using a small number of bits
without much loss of information. In this paper, we show
that a two-bit encoding of the load factor is sufficient to
approximate XCP’s performance. Note that in comparison
to binary congestion signals such as loss and one-bit ECN,
the load factor conveys more information about the degree
of network congestion.

2.3 A Simple Illustration
In this subsection, we give a high level description of VCP

using a simple example. A detailed description of VCP is
presented in Section 3. Periodically, each router measures
the load factor for its output links and classifies the load
factor into three utilization regions: low-load, high-load or
overload. Each router encodes the utilization regions in the
two ECN bits in the IP header of each data packet. In turn,
the receiver sends back this information to the sender via
the ACK packets. Depending on this congestion informa-
tion, the sender applies different congestion responses. If
the router signals low-load, the sender increases its sending
rate using MI; if the router signals high-load, the sender in-
creases its sending rate using AI; otherwise, if the router
signals overload, the sender reduces its sending rate using
MD. The core of the VCP protocol is summarized by the
following pseudo code.

1) Each router periodically estimates a load factor, and
encodes this load factor into the data packets’ IP header.
This information is then sent back by the receiver to the
sender via ACK packets.

2) Based on the load factor it receives, each sender per-
forms one of the following control algorithms:

2.1) For low-load, perform MI;
2.2) For high-load, perform AI;
2.3) For overload, perform MD.

Figure 1 shows the throughput dynamics of two flows shar-
ing one bottleneck link. Clearly, VCP is successful in track-
ing the bandwidth changes by using MIMD, and achieve fair
allocation when the second flow arrives, by using AIMD.

The Internet, however, is much more complex than this
simplified example across many dimensions: the link capac-
ities and router buffer sizes are highly heterogeneous, the
RTT of flows may differ significantly, and the number of
flows is unknown and changes over time. We next describe
the details of the VCP protocol, which will be able to handle
more realistic environments.

3. THE VCP PROTOCOL
In this section, we provide a detailed description of VCP.

We begin by presenting three key issues that need to be
addressed in the design of VCP. Then, we describe how we
address each of these issues in turn.

3.1 Key Design Issues
To make VCP a practical approach for the Internet-like

environments with significant heterogeneity in link capaci-
ties, end-to-end RTTs, router buffer sizes and variable traffic
characteristics, we need to address the following three key
issues.

Load factor transition point: VCP separates the net-
work load condition into three regions: low-load, high-load
and overload. The load factor transition point in VCP rep-
resents the boundary between the low-load and high-load
regions, which is also the demarcation between applying MI
and AI algorithms. The choice of the transition point repre-
sents a trade-off between achieving high link utilization and
responsiveness to congestion. Achieving high network uti-
lization requires a high value for the transition point. But
this choice negatively impacts responsiveness to congestion,
which in turn affects the convergence time to achieve fair-
ness. Additionally, given that Internet traffic is inherently
bursty [46][56], we require a reliable estimation algorithm of
the load factor. We discuss the issue of load factor estima-
tion in Section 3.2.

Setting of congestion control parameters: Using MI
for congestion control is often fraught with the danger of in-
stability due to its large variations over short time scales.
To maintain stability and avoid large queues at routers, we
need to make sure that the aggregate rate of the VCP flows
using MI does not overshoot the link capacity. Similarly, to
achieve fairness, we need to make sure that a flow enters the
AI phase before the link gets congested. In order to sat-
isfy these criteria, we need an appropriate choice of MI, AI
and MD parameters that can achieve high utilization while
maintaining stability, fairness and small persistent queues.
To better understand these issues, we first describe our pa-
rameter settings for a simplified network model, where all
flows have the same RTT and observe the same state of
the network load condition, i.e., all flows obtain the same
load factor feedback (Section 3.3). We then generalize our
parameter choice for flows with heterogeneous RTTs.

Heterogeneous RTTs: When flows have heterogeneous
RTTs, different flows can run different algorithms (i.e., MI,
AI, or MD) at a given time. This may lead to unpredictable
behavior. The RTT heterogeneity can have a significant
impact even when all flows run the same algorithm, if this
algorithm is MI. In this case, a flow with a lower RTT can
claim much more bandwidth than a flow with a higher RTT.
To address this problem, end-hosts need to adjust their MI
parameters according to their observed RTTs, as discussed
in Section 3.4.

3

cρ
l

^

ρ
l

l
ρ̂

0
0

(11)
2

>100%

(10)
2

80% 100%

80%

100%

: (01)
2

code

load: low high over

Figure 2: The quantized load factor ρ̂l at a link l is a

non-decreasing function of the raw load factor ρl and can

be represented by a two-bit code ρ̂c
l .

We now discuss these three design issues in greater detail.

3.2 Load Factor Transition Point
Consider a simple scenario involving a fixed set of long-

lived flows. The goal of VCP is to reach a steady state
where the system is near full utilization, and the flows use
AIMD for congestion control. To achieve this steady state,
the choice of the load factor transition point should satisfy
three constraints:

• The transition point should be sufficiently high to en-
able the system to obtain high overall utilization;

• After the flows perform an MD from an overloaded
state, the MD step should force the system to always
enter the high-load state, not the low-load state;

• If the utilization is marginally lower than the transition
point, a single MI step should only lift the system into
the high-load state, but not the overload state.

Let β < 1 denote the MD factor, i.e., when using the MD
algorithm, the sender reduces the congestion window with
the factor β (as in Equation (4) in Section 3.3). The first
constraint requires a high transition point. This choice cou-
pled with the second condition leads to a high value of β.
However, a very high value of β is undesirable as it decreases
VCP’s response to congestion. For example, if the transi-
tion point is 95%, then β > 0.95, and it takes VCP about 14
RTTs to halve the congestion window. At the other end, if
we chose β = 0.5 (as in TCP [25]), the transition point can
be at most 50%, which reduces the overall network utiliza-
tion. To balance these conflicting requirements, we chose
β = 0.875, the same value used in the DECbit scheme [58].
Given β, we set the load factor transition point to 80%.
This gives us a “safety margin” of 7.5%, which allows the
system to operate in the AIMD mode in steady state. In
summary, we choose the following three ranges to encode
the load factor ρl (see Figure 2):

• Low-load region: ρ̂l = 80% when ρl ∈ [0%, 80%);

• High-load region: ρ̂l = 100% when ρl ∈ [80%, 100%);

• Overload region: ρ̂l > 100% when ρl ∈ [100%,∞).

Thus, the quantized load factor ρ̂l can be represented us-
ing a two-bit code ρ̂c

l , i.e., ρ̂c
l = (01)2, (10)2 and (11)2 for

ρ̂l = 80%, ρ̂l = 100% and ρ̂l > 100%, respectively. The
code (00)2 is reserved for ECN-unaware source hosts to sig-
nal “not-ECN-capable-transport” to ECN-capable routers,
which is essential for incremental deployment [57]. The en-
coded load factor is embedded in the two-bit ECN field in
the IP header.

Estimation of the load factor: Due to the bursty na-
ture of the Internet traffic, we need to estimate the load
factor over an appropriate time interval, tρ. When choos-
ing tρ we need to balance two conflicting requirements. On
one hand, tρ should be larger than the RTTs experienced by
most flows to factor out the burstiness induced by the flows’
responses to congestion. On the other hand, tρ should be
small enough to avoid queue buildup. Internet measure-
ments [55, 30] report that roughly 75%∼90% of flows have
RTTs less than 200 ms. Hence, we set tρ = 200ms. During
every time interval tρ, each router estimates a load factor ρl

for each of its output links l as [27, 34, 18, 2, 42]:

ρl =
λl + κq · q̃l

γl · Cl · tρ
. (1)

Here, λl is the amount of input traffic during the period tρ, q̃l

is the persistent queue length during this period, κq controls
how fast the persistent queue drains [18, 2] (we set κq = 0.5),
γl is the target utilization [42] (set to a value close to 1), and
Cl is the link capacity. The input traffic λl is measured using
a packet counter. To measure the persistent queue q̃l, we use
a low-pass filter that samples the instantaneous queue size,
q(t), every tq ¿ tρ (we chose tq = 10ms).

3.3 Congestion Control Parameter Setting
In this section, we discuss the choice of parameters used by

VCP to implement the MI/AI/MD algorithms. To simplify
the discussion, we consider a single link shared by flows,
whose RTTs are equal to the link load factor estimation
period, i.e., rtt = tρ. Hence, the flows have synchronous
feedback and their control intervals are also in sync with
the link load factor estimation. We will discuss the case of
heterogeneous RTTs in Section 3.4.

At any time t, a VCP sender performs one of the three
actions based on the value of the encoded load factor sent
by the network:

MI : cwnd(t + rtt) = cwnd(t)× (1 + ξ) (2)

AI : cwnd(t + rtt) = cwnd(t) + α (3)

MD : cwnd(t + δt) = cwnd(t)× β (4)

where rtt = tρ, δt → 0+, ξ > 0, α > 0 and 0 < β < 1. Based
on the relationship between the choice of the load factor
transition point and the MD parameter β, we chose β =
0.875 (see Section 3.2). We use α = 1.0 as is in TCP [25].

Setting the MI parameter: The stability of VCP is
dictated by the MI parameter ξ. In network-based rate al-
location approaches like XCP, the rate increase of a flow at
any time is proportional to the spare capacity available in
the network [35]. Translating this into the VCP context, we
require the MI of the congestion window to be proportional
to 1 − ρ̂l where ρ̂l represents the current load factor. Dur-
ing the MI phase, the current sending rate of each flow is
proportional to the current load factor ρ̂l. Consequently, we
obtain

ξ(ρ̂) = κ · 1− ρ̂l

ρ̂l
, (5)

where κ is a constant that determines the stability of VCP
and controls the speed to converge toward full utilization.
Based on analyzing the stability properties of this algorithm
(see Theorem 1 in Section 5), we set κ = 0.25. Since end-

4

hosts only obtain feedback on the utilization region as op-
posed to the exact value of the load factor, they need to
make a conservative assumption that the network load is
near the transition point. Thus, the end-hosts use the value
of ξ(80%) = 0.0625 in the MI phase.

3.4 Handling RTT Heterogeneity with
Parameter Scaling

Until now, we have considered the case where competing
flows have the same RTT, and this RTT is also equal to the
load factor estimation interval, tρ. In this section, we relax
these assumptions by considering flows with heterogeneous
RTTs. To offset the impact of the RTT heterogeneity, we
need to scale the congestion control parameters used by the
end-hosts according to their RTTs.

Scaling the MI/AI parameters: Consider a flow with
a round trip time rtt, and assume that all the routers use the
same interval, tρ, to estimate the load factor on each link.
Let ξ and α represent the unscaled MI and AI parameters
as described in Section 3.3, where all flows have an identical
RTT (= tρ). To handle the case of flows with different RTTs,
we set the scaled MI/AI parameters ξs and αs as follows: 1

For MI : ξs ← (1 + ξ)
rtt
tρ − 1 , (6)

For AI : αs ← α · rtt

tρ
. (7)

An end-host uses the scaled parameters ξs and αs in (2)
and (3) to adjust the congestion window after each RTT.
The scaling of these parameters emulates the behavior of all
flows having an identical RTT, which is equal to tρ. The
net result is that over any time period, the window increase
under either MI or AI is independent of the flows’ RTTs.
Thus, unlike TCP, VCP flow’s throughput is not affected by
the RTT heterogeneity [44, 53, 16].

Handling MD: MD is an impulse-like operation that is
not affected by the length of the RTT. Hence, the value of
β in (4) needs not to be scaled with the RTT of the flow.
However, to avoid over reaction to the congestion signal, a
flow should perform an MD at most once during an estima-
tion interval tρ. Upon getting the first load factor feedback
that signals congestion (i.e., ρ̂c

l = (11)2), the sender imme-
diately reduces its congestion window cwnd using MD, and
then freezes the cwnd for a time period of tρ. After this
period, the end-host runs AI for one RTT in order to obtain
the new load factor.

Scaling for fair rate allocation: RTT-based parameter
scaling, as described above, only ensures that the congestion
windows of two flows with different RTTs converge to the
same value in steady state. However, this does not guarantee
fairness as the rate of the flow is still inversely proportional
to its RTT, i.e., rate = cwnd/rtt. To achieve fair rate
allocation, we need to add an additional scaling factor to the
AI algorithm. To illustrate why this is the case, consider the
simple AIMD control mechanism applied to two competing
flows where each flow i (= 1, 2) uses a separate AI parameter
αi but a common MD parameter β. At the end of the M -th

1Equation (6) is the solution for 1 + ξ = (1 + ξs)
tρ
rtt where the

right-hand side is the MI amount of a flow with the RTT value
rtt, during a time interval tρ. Similarly, Equation (7) is obtained

by solving 1 + α = 1 +
tρ

rtt
αs.

Table 1: VCP Parameter Setting

Para Value Meaning

tρ 200 ms the link load factor measurement interval

tq 10 ms the link queue sampling interval

γl 0.98 the link target utilization

κq 0.5 how fast to drain the link steady queue

κ 0.25 how fast to probe the available bw (MI)

α 1.0 the AI parameter

β 0.875 the MD parameter

congestion epoch that includes n > 1 rounds of AI and one
round of MD in each epoch, we have

cwndi(M) = β · [cwndi(M − 1) + n · αi].

Eventually, each flow i achieves a congestion window that
is proportional to its AI parameter, αi. Indeed, the ratio of
the congestion windows of the two flows approaches α1/α2

for large values of M , and n > 1:

cwnd1(M)

cwnd2(M)
=

cwnd1(M − 1)/n + α1

cwnd2(M − 1)/n + α2

=
cwnd1(M − 2)/n2 + α1/n + α1

cwnd2(M − 2)/n2 + α1/n + α2

= · · · → α1

α2
.

Hence, to allocate bandwidth fairly among two flows, we
need to scale each flow’s AI parameter αi using its own RTT.
For this purpose, we use tρ as a common-base RTT for all the
flows. Thus, the new AI scaling parameter, αrate, becomes

For AI : αrate ← αs · rtt

tρ
= α · (rtt

tρ
)2. (8)

3.5 Summary of Parameters
Table 1 summarizes the set of VCP router/end-host pa-

rameters and their typical values. We note that throughout
all the simulations reported in this paper, we use the same
parameter values. This suggests that VCP is robust in a
large variety of environments.

4. PERFORMANCE EVALUATION
In this section, we use extensive ns2 simulations to evalu-

ate the performance of VCP for a wide range of network sce-
narios [19] including varying the link capacities in the range
[100Kbps, 5Gbps], round trip times in the range [1ms, 1.5s],
numbers of long-lived, FTP-like flows in the range [1, 1000],
and arrival rates of short-lived, web-like flows in the range
[1s−1, 1000s−1]. We always use two-way traffic with conges-
tion resulted in the reverse path. The bottleneck buffer size
is set to the bandwidth-delay product, or two packets per
flow, whichever is larger. The data packet size is 1000 bytes,
while the ACK packet is 40 bytes. All simulations are run
for at least 120s to ensure that the system has reached its
steady state. The average utilization statistics neglect the
first 20% of simulation time. For all the time-series graphs,
utilization and throughput are averaged over 500ms inter-
val, while queue length and congestion window are sampled
every 10ms. We use a fixed set of VCP parameters listed in
Table 1 for all the simulations in this paper.

5

0.6

0.7

0.8

0.9

1.0

1.1

 0.1 1 10 100 1000

Bo
ttle

ne
ck

 U
tili

za
tio

n

Bottleneck Capacity (Mbps)

VCP Utilization
XCP Utilization

0%

10%

20%

30%

40%

50%

 0.1 1 10 100 1000

Bo
ttle

ne
ck

 Q
ue

ue
 (%

 B
uf)

Bottleneck Capacity (Mbps)

VCP Avg Queue
XCP Avg Queue

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

 0.1 1 10 100 1000

Bo
ttle

ne
ck

 D
rop

s (
%

Pk
t S

en
t)

Bottleneck Capacity (Mbps)

VCP Drop Rate
XCP Drop Rate

Figure 3: VCP with the bottleneck capacity ranging from 100Kbps to 5Gbps. It achieves high utilization and almost

no packet loss with decreasing bottleneck queue as the capacity increases. Note the logarithmic scale of the x-axis in

this figure and the next one.

0.6

0.7

0.8

0.9

1.0

1.1

 1 10 100 1000

Bo
ttle

ne
ck

 U
tili

za
tio

n

Round−trip Propagation Delay (ms)

VCP Utilization
XCP Utilization

0%

5%

10%

15%

20%

 1 10 100 1000

Bo
ttle

ne
ck

 Q
ue

ue
 (%

 B
uf)

Round−trip Propagation Delay (ms)

VCP Avg Queue
XCP Avg Queue

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

 1 10 100 1000

Bo
ttle

ne
ck

 D
ro

ps
 (%

 P
kt

Se
nt)

Round−trip Propagation Delay (ms)

VCP Drop Rate
XCP Drop Rate

Figure 4: VCP with the round-trip propagation delay ranging from 1ms to 1500ms. It is able to achieve reasonably

high utilization, low persistent queue and no packet loss.

0.6

0.7

0.8

0.9

1.0

1.1

 0 200 400 600 800 1000

Bo
ttle

ne
ck

 U
tili

za
tio

n

Num of Long−lived Flows

VCP Utilization
XCP Utilization

0%

5%

10%

15%

20%

25%

30%

 0 200 400 600 800 1000

Bo
ttle

ne
ck

 Q
ue

ue
 (%

 B
uf

)

Num of Long−lived Flows

 VCP Avg Queue
 XCP Avg Queue

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

 0 200 400 600 800 1000

Bo
ttle

ne
ck

 D
ro

ps
 (%

 P
kt

Se
nt

)

Num of Long−lived Flows

VCP Drop Rate
XCP Drop Rate

Figure 5: VCP with the number of long-lived, FTP-like flows ranging from 1 to 1000. It achieves high utilization

with more bursty bottleneck queue for higher number of FTP flows.

These simulation results demonstrate that, for a wide
range of scenarios, VCP is able to achieve exponential con-
vergence to high utilization, low persistent queue, negligible
packet drop rate and reasonable fairness, except its signifi-
cantly slower fairness convergence speed compared to XCP.

4.1 One Bottleneck
We first evaluate the performance of VCP for the sim-

ple case of a single bottleneck link shared by multiple VCP
flows. We study the effect of varying the link capacity, the
round-trip times, the number of flows on the performance of
VCP. The basic setting is a 150Mbps link with 80ms RTT
where the forward and reverse path each has 50 FTP flows.
We evaluate the impact of each network parameter in isola-
tion while retaining the others as the basic setting.

Impact of Bottleneck Capacity: As illustrated in Fig-
ure 3, we observe that VCP achieves high utilization (≥93%)
across a wide range of bottleneck link capacities varying
from 100Kbps to 5Gbps. The utilization gap in comparison
to XCP is at most 7% across the entire bandwidth range.
Additionally, as we scale the bandwidth of the link, the aver-
age (maximal) queue length decreases to about 0.01% (1%)
buffer size. The absolute persistent queue length is very
small for higher capacities, leading to negligible packet drop
rates (zero packet drops for many cases). At extremely low
capacities, e.g., 100Kbps (per-flow BDP of 0.02 packets),
the bottleneck average queue significantly increases to 50%
of the buffer size, resulting in roughly 0.6% packet loss. This
happens because the AI parameter setting (α = 1.0) is too
large for such low capacities.

Impact of Feedback Delay: We fix the bottleneck ca-
pacity at 150Mbps and vary the round-trip propagation de-
lay from 1ms to 1500ms. As shown in Figure 4, we no-
tice that in most cases, the bottleneck utilization is higher
than 90%, and the average (maximal) queue is less than 5%
(15%) of the buffer size. We also observe that the RTT
parameter scaling is sensitive to very low values of RTT
(e.g., 1ms), thereby causing the average (maximal) queue
length to grow to about 15% (45%) of the buffer size. For
the RTT values larger than 800ms, VCP obtains lower uti-
lization (85%∼94%) since the link load factor measurement
interval tρ = 200ms is much less than the RTTs of the flows.
As a result, the load condition measured in each tρ shows
variations due to the bursty nature of window-based control.
This can be compensated by increasing tρ; but the trade-off
is that the link load measurement will be less responsive
causing the queue length to grow. In all these cases, we did
not observe any packet drops in VCP.

Impact of Number of Long-lived Flows: With an in-
crease in the number of forward FTP flows, we notice that
the traffic gets more bursty, as shown by the increasing trend
of the bottleneck maximal queue. However, even when the
network is very heavily multiplexed by 1000 flows (i.e., the
average per-flow BDP equals to only 1.5 packets), the maxi-
mal queue is still less than 38% of the buffer size. The aver-
age queue is consistently less than 5% buffer size as shown in
Figure 5 across all these cases. For the heavily multiplexed
cases, VCP even slightly outperforms XCP.

Impact of Short-lived Traffic: To study VCP’s perfor-
mance in the presence of variability and burstiness in flow

6

0.6

0.7

0.8

0.9

1.0

1.1

 0 200 400 600 800 1000

Bo
ttle

ne
ck

 U
tili

za
tio

n

Mice Arrival Rate (/s)

VCP Utilization
XCP Utilization

0%

5%

10%

15%

20%

25%

30%

 0 200 400 600 800 1000

Bo
ttl

en
ec

k Q
ue

ue
 (%

 B
uf

)

Mice Arrival Rate (/s)

 VCP Avg Queue
 XCP Avg Queue

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

 0 200 400 600 800 1000

Bo
ttl

en
ec

k D
ro

ps
 (%

 Pk
t S

en
t)

Mice Arrival Rate (/s)

VCP Drop Rate
XCP Drop Rate

Figure 6: Similar to XCP, VCP remains efficient with low persistent queue and zero packet loss given the short-lived,

web-like flows arriving/departing at a rate from 1/ s to 1000/ s.

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 1 2 3 4 5 6 7

Bo
ttl

en
ec

k U
til

iza
tio

n

Bottleneck ID

 Same Bandwidth, Utilization
Different Bandwidth, Utilization

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

 1 2 3 4 5 6 7
Bo

ttl
en

ec
k Q

ue
ue

 (%
 B

uf
)

Bottleneck ID

 Same Bandwidth, Avg Queue
Different Bandwidth, Avg Queue

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

 1 2 3 4 5 6 7

Bo
ttl

en
ec

k D
ro

ps
 (%

 Pk
t S

en
t)

Bottleneck ID

 Same Bandwidth, Drop Rate
Different Bandwidth, Drop Rate

Figure 7: VCP with multiple congested bottlenecks. For either all the links have the same capacity (100Mbps), or the

middle link #4 has lower capacity (50Mbps) than the others, VCP consistently achieves high utilization, low persistent

queue and zero packet drop on all the bottlenecks.

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30

Fl
ow

 T
hr

ou
gh

pu
t (

M
bp

s)

Flow ID

Equal RTT (40ms)
Different RTT (40−156ms)

Very Different RTT (40−330ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120

Bo
ttle

ne
ck

 U
tili

za
tio

n

Time (sec)

Equal RTT (40ms)
Different RTT (40−156ms)

Very Different RTT (40−330ms)

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

Bo
ttle

ne
ck

 Q
ue

ue
 (p

ac
ke

ts)

Time (sec)

Very Different RTT (40−330ms)

Figure 8: To some extent, VCP distributes bandwidth fairly among competing flows with either equal or different

RTTs. In all the case, it maintains high utilization, keeps small queue and drops no packet.

arrivals, we add web traffic into the network. These flows
arrive according to the Poisson process, with the average
arrival rate varying from 1/ s to 1000/ s. Their transfer size
obeys the Pareto distribution with an average of 30 pack-
ets. This setting is consistent with the real-world web traf-
fic model [11]. As shown by Figure 6, the bottleneck always
maintains high utilization with small queue lengths and zero
packet drops, similar to XCP.

In summary, we note that across a wide range of net-
work configurations with a single bottleneck link, VCP can
achieve comparable performance as XCP including high uti-
lization, low persistent queues, and negligible packet drops.
All these results are achieved with a fixed set of parameters
shown in Table 1.

4.2 Multiple Bottlenecks
Next, we study the performance of VCP with a more com-

plex topology of multiple bottlenecks. For this purpose, we
use a typical parking-lot topology with seven links. All the
links have a 20ms one-way propagation delay. There are 50
FTP flows traversing all the links in the forward direction,
and 50 FTP flows in the reverse direction as well. In addi-
tion, each individual link has 5 cross FTP flows traversing
in the forward direction. We run two simulations. First, all
the links have 100Mbps capacity. Second, the middle link
#4 has the smallest capacity of only 50Mbps, while all the
others have the same capacity of 100Mbps.

Figure 7 shows that for both cases, VCP performs as good
as in the single-bottleneck scenarios. For the first case, VCP
achieves 94% average utilization, less than 0.2%-buffer-size

average queue length and zero packet drops at all the bot-
tlenecks. When we lower the capacity of the middle link, its
average utilization increases slightly to 96%, with the largest
maximal queue representing only 6.4% buffer size. In com-
parison to XCP, one key difference is that VCP penalizes
long flows more than short flows. For example, in the sec-
ond case, VCP allocates 0.39Mbps to each long flow, and
4.96Mbps to each cross flow that passes the middle link;
while all these flows get about 0.85Mbps under XCP. We
discuss the reason behind this in Section 5.

4.3 Fairness
TCP flows with different RTTs achieve bandwidth allo-

cation that is proportional to 1/ rttz where 1 ≤ z ≤ 2 [44].
VCP alleviates this issue to some extent. Here we look at
the RTT-fairness of VCP. We have 30 FTP flows sharing a
single 90Mbps bottleneck, with 30 FTP flows on the reverse
path. We perform three sets of simulations: (a) the same
RTT; (b) small RTT difference; (c) huge RTT difference.
We will see that VCP is able to allocate bottleneck band-
width fairly among competing flows, as long as their RTTs
are not significantly different. This capability degrades as
the RTT heterogeneity increases.

In the case where all the flows have a common RTT or
have a small RTT difference, VCP achieves a near-even dis-
tribution of the capacity among the competing flows (refer to
Figure 8). However, when the flows have significantly differ-
ent RTTs, VCP does not distribute the bandwidth fairly be-
tween the flows that have huge RTT variation (with through-
put ratio of up to 5). This fairness discrepancy occurs due to

7

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500 600

Fl
ow

 T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

Flow 1 (rtt = 40ms)
Flow 2 (rtt = 50ms)
Flow 3 (rtt = 60ms)
Flow 4 (rtt = 70ms)
Flow 5 (rtt = 80ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Bo
ttl

en
ec

k
Ut

ili
za

tio
n

Time (sec)

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

Bo
ttl

en
ec

k
Qu

eu
e (

pa
ck

ets
)

Time (sec)

Figure 9: VCP converges onto good fairness, high utilization and small queue. However, its fairness convergence

takes significantly longer time than XCP.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200

Co
ng

es
tio

n
W

in
do

w
(p

ac
ke

ts
)

Time (sec)

RTT: 60ms −− 158ms

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200

Co
ng

es
tio

n
W

in
do

w
(p

ac
ke

ts
)

Time (sec)

RTT: 60ms −− 158ms

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200

Co
ng

es
tio

n
W

in
do

w
(p

ac
ke

ts
)

Time (sec)

RTT: 60ms −− 158ms

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200

Co
ng

es
tio

n
W

in
do

w
(p

ac
ke

ts
)

Time (sec)

RTT: 60ms −− 158ms

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

Bo
ttl

en
ec

k U
til

iza
tio

n

Time (sec)

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200

Bo
ttl

en
ec

k Q
ue

ue
 (p

ac
ke

ts)

Time (sec)

Figure 10: VCP is robust against and responsive to sudden, considerable traffic demand changes, and at the same

time maintains low persistent bottleneck queue.

the following reason. A flow with a very high RTT is bound
to have high values for their MI and AI parameters due to
parameter scaling (see Section 3.4). Due to practical oper-
ability constraints, we place artificial bounds on the actual
values of these parameters (specifically the MI parameter)
to prevent sudden bursts from VCP flows which can cause
the persistent queue length at the bottleneck link to increase
substantially. These bounds restrict the throughput of flows
with very high RTTs.

4.4 Dynamics
All the previous simulations focus on the steady-state be-

havior of VCP. Now, we investigate its short-term dynamics.

Convergence Behavior: To study the convergence be-
havior of VCP, we revert to the single bottleneck link with
a bandwidth of 45Mbps where we introduce 5 flows into the
system, one after another, with starting times separated by
100s. We also set the RTT values of the five flows to dif-
ferent values. The reverse path has 5 flows that are always
active. Figure 9 illustrates that VCP reallocates bandwidth
to new flows whenever they come in without affecting its
high utilization or causing large instantaneous queue. (All
the figures of queue dynamics in this paper use the router
buffer size to scale their queue-length axis.) However, VCP
takes a much longer time than XCP to converge to the fair
allocation. We theoretically quantify the fairness conver-
gence speed for VCP in Theorem 4 in Section 5.

Sudden Demand Change: We illustrate how VCP re-
acts to sudden changes in traffic demand using a simple sim-
ulation. Consider an initial setting of 50 forward FTP flows
with varying RTTs (uniformly chosen in the range [50ms,
150ms]) sharing a 200Mbps bottleneck link. There are 50
FTP flows on the reverse path. At t=80s, 150 new forward
FTP flows become active; then they leave at 160s. Figure 10
clearly shows that VCP can adapt sudden fluctuations in the
traffic demand. (The left figure draws the congestion win-
dow dynamics for four randomly chosen flows.) When the
new flows enter the system, the flows adjust their rates to
the new fair share while maintaining the link at high uti-
lization. At t=160s, when three-fourths of the flows depart

creating a sudden drop in the utilization, the system quickly
discovers this and ramps up to 95% utilization in about 5
seconds. Notice that during the adjustment period, the bot-
tleneck queue remains much lower than its full size. This
simulation shows that VCP is responsive to sudden, signifi-
cant decreases/increases in the available bandwidth. This is
no surprise because VCP switches to the MI mode which by
nature can track any bandwidth change in logarithmic time
(see Theorem 3 in Section 5).

We have also performed a variety of other simulations
to show VCP’s ability to provide bandwidth differentiation.
Due to the limited space we are unable to present the results
here. We refer the reader to our technical report for more
details [66].

5. A FLUID MODEL
To obtain insight into the behavior of VCP, in this section,

we consider a simple fluid model, and analyze its stability
and fairness properties. We also analyze VCP’s efficiency
and fairness convergence speed.

Our model approximates the behavior of VCP using a
load-factor guided algorithm which combines the MI and AI
steps of VCP as described in (2) and (3) in Section 3.3:

ẇi(t) =
1

T
· [wi(t) · ξ(ρ(t)) + α] (9)

with the MI parameter

ξ(ρ(t)) = κ · 1− ρ(t)

ρ(t)
, (10)

where κ > 0 is the stability coefficient of the MI parameter.
In the remainder of this section we will refer to this model
as the MIAIMD model. It assumes infinite router buffers,
and that end-hosts know the exact value of the load factor
ρ(t), as computed by the routers.

We start our analysis by considering a single bottleneck
link traversed by N flows that have the same RTT, T . As
shown in Figure 11, the load factor ρ(t) received by the
source at a time t is computed based on the sender’s rate at
time t− T ,

8

router ρ
ξ

tt−Tsource

destination

time

Figure 11: A simplified VCP model. The source sending

rate at time t − T is used by the router to calculate a

load factor ρ, which is echoed back from the destination

to the source at time t. Then the source adjusts its MI

parameter ξ(ρ(t)) based on the load factor ρ(t).

ρ(t) =

∑N
i=1 wi(t− T)

γCT
, (11)

where wi(t) is the flow i’s congestion window at time t, C
is the link capacity, and 0 < γ ≤ 1 is the target link uti-
lization. We assume that wi(t) is a positive, continuous and
differentiable function, and T is a constant.

Since ξ(ρ(t)) is proportional to the available bandwidth,
the MIAIMD algorithm tracks the available bandwidth ex-
ponentially fast and thus achieves efficiency. It also con-
verges to fairness as we will show in Theorem 2. 2

Using (9) to sum over all N flows yields

ẇ(t) =
1

T
· [w(t) · ξ(ρ(t)) + Nα] (12)

where w(t) =
∑N

i=1 wi(t) is the sum of all the congestion
windows. This result, together with (10) and (11), leads to

ẇ(t) =
1

T
· {κ · w(t) · [γCT

w(t− T)
− 1] + Nα } (13)

where w(t) > 0. We assume the initial condition w(t) = N
(i.e., wi(t) = 1), for all t ∈ [−T, 0]. In [66], we prove the
following global stability result.

Theorem 1. Under the model (9), (10) and (11) where
a single bottleneck is shared by a set of synchronous flows
with the same RTT, if κ ≤ 1

2
, then the delayed differential

equation (13) is globally asymptotically stable with a unique
equilibrium w∗ = γCT + N α

κ
, and all the flows have the

same steady-state rate r∗i = γC
N

+ α
κT

.

This result has two implications. First, the sufficient con-
dition κ ≤ 1

2
holds for any link capacity, any feedback delay,

and any number of flows. Furthermore, the global stability
result does not depend on the network parameters. Second,
this result is optimal in that at the equilibrium, the system
achieves all the design goals: high utilization, fairness, zero
steady-state queue length, and zero packet loss rate—this is
because we can always adjust γ such that the system stabi-
lizes at a steady-state utilization slightly less than 1.

Importance of γ: While (11) defines γ as the target

utilization, the actual utilization is w∗
CT

= γ + α
κP

where

P = CT
N

is the per-flow BDP. To achieve a certain target
utilization γ∗, γ should be treated as a control variable and
set to γ = γ∗ − α

κP
. For more details on how to make this

adjustment process automatic without even knowing α, κ
and P , we refer the reader to [66].

2Theorem 2 actually proves the max-min fairness for a general
multiple-bottleneck topology. For a single link, max-min fairness
means each flow gets an equal share of the link capacity.

Next, we consider a more general multiple-bottleneck net-
work topology. Let ρi(t) denote the maximal link load fac-
tor on flow i’s path Li that includes a subset of links, i.e.,
Li = { l | flow i traverses link l}. The MI parameter of flow
i is then

ξ(ρi(t)) = κ · [1

ρi(t)
− 1], (14)

where ρi(t) = maxl∈Li ρl(t), ρl(t) =
∑

i∈Il
wi(t−T)

γClT
, and the

subset of flows Il = { i | flow i traverses link l}. We prove
the following fairness result in [66].

Theorem 2. In a multiple-bottleneck topology where all
flows have the same round-trip time T , if there exists a
unique equilibrium, then the algorithm defined by (9) and
(14) allocates a set of max-min fair rates r∗i = α

κT (1− 1
maxl∈Li

ρ∗
l

)

where ρ∗l =
∑

i∈Il
w∗i

γCT
.

To better understand this result note that a flow’s sending
rate is determined by the most congested bottleneck link
on its path. Thus, the flows traversing the most congested
bottleneck links in the system will naturally experience the
lowest throughputs.

Having established the stability and fairness properties of
the MIAIMD model, we now turn our attention on the con-
vergence of the VCP protocol. The following two theorems,
proved in [66], give the convergence properties.

Theorem 3. The VCP protocol takes O(log C) RTTs to
claim (or release) a major part of any spare (or over-used)
capacity C.

Theorem 4. The VCP protocol takes O(P log ∆P) RTTs
to converge onto fairness for any link, where P is the per-
flow bandwidth-delay product, and ∆P > 1 is the largest
congestion window difference between flows sharing that link.

Not surprisingly, due to the use of MI in the low-load
region, VCP converges exponentially fast to high utilization.
On the other hand, VCP’s convergence time to fairness is
similar to other AIMD-based protocols, such as TCP+AQM.
In contrast, explicit feedback schemes like XCP require only
O(log ∆P) RTTs to converge to fairness. This is because
the end-host based AIMD algorithms improve fairness per
AIMD epoch, which includes O(P) rounds of AI and one
round of MD, while the equivalent operation in XCP takes
only one RTT.

The VCP protocol can be viewed as an approximation of
the MIAIMD model along three axes. First, the MIAIMD
model uses the exact load factor feedback, ρ(t), while VCP
uses a quantized value of the load factor. Second, in the
MI and AI phases, VCP uses either the multiplicative factor
or the additive factor term, but not both as the MIAIMD
model does. Third, in the overload region, VCP applies a
constant MD parameter β instead of ξ(ρ(t)).

The comparison between the simulation results of VCP
and the analytical results of the MIAIMD model suggests
that the two differ most notably in terms of the fairness
model. While in the case of multiple bottleneck links, the
MIAIMD model achieves max-min fairness [4], VCP tends
to allocate more bandwidth to flows that traverse fewer bot-
tleneck links (see Section 4.2). This is because VCP relies
on the quantized representation of the load factor instead of
the exact value.

9

6. DISCUSSIONS
Since VCP switches between MI, AI, and MD algorithms

based on the load factor feedback, there are natural concerns
with respect to the impact of these switches on the system
stability, efficiency, and fairness, particularly in systems with
highly heterogeneous RTTs. We discuss these concerns in
this section. We discuss VCP’s TCP-friendliness and incre-
mental deployment in [66].

6.1 Stability under Heterogeneous Delays
Although the MIAIMD model presented in Section 5 is

provably stable, it assumes synchronous feedback. To ac-
commodate heterogeneous delays, VCP scales the MI/AI
parameters such that flows with different RTTs act as if
they were having the same RTT. This scaling mechanism
is also essential to achieving fair bandwidth allocation, as
discussed in Section 3.4.

In normal circumstances, VCP makes a transition to MD
only from AI. However, even if VCP switches directly from
MD to MI, if the demand traffic at the router does not
change significantly, VCP will eventually slide back into AI.

Finally, to prevent the system from oscillating between
MI and MD, we set the load factor transition point ρ̂l to
80%, and set the MD parameter β to 0.875 > ρ̂l. This gives
us a safety margin of 7.5%.

The extensive simulation results presented in Section 4
suggest that VCP is indeed stable over a large variety of net-
work scenarios including per-flow bandwidths from 2Kbps to
100Mbps and RTTs from 1ms to 1.5s.

6.2 Influences of Mode Sliding
From an efficiency perspective, VCP’s goal is to bring and

maintain the system into the high utilization region. While
MI enables VCP to quickly reach the high link utilization,
VCP needs also to make sure that the system remains in this
state. The main mechanisms employed by VCP to achieve
this goal is the scaling of the MI/AI parameters for flows
with different RTTs. In addition to improving fairness, this
scaling is essential to avoid oscillations. Otherwise, a flow
with a low RTT may apply MI several times during the
estimation interval, tρ, of the link load factor. Other mech-
anisms employed by VCP to maintain high efficiency include
choosing an appropriate value of the MD parameter to re-
main in the high utilization region, using a safety margin be-
tween MI and AI, and bounding the burstiness (Section 4.3).

As discussed in Section 3.4, there are two major concerns
with respect to fairness. First, a flow with a small RTT
probes the network faster than a flow with a large RTT.
Thus, the former may increase its bandwidth much faster
than the latter. Second, it will take longer for a large-RTT
flow to switch from MI to AI than a small-RTT flow. This
may give the large-RTT flow an unfair advantage. VCP ad-
dresses the first issue by using the RTT scaling mechanism
(see (6)-(7)). To address the second issue, VCP bounds the
MI gain, as discussed in Section 4.3. To illustrate the effec-
tiveness of limiting the MI gain, Figure 12 shows the con-
gestion window evolution for two flows with RTTs of 50ms
and 500ms, respectively, traversing a single 10Mbps link. At
time 12.06s, the 50ms-RTT flow switches from MI to AI. In
contrast, due to its larger RTT, the 500ms-RTT flow keeps
performing MI until time 12.37s. However, because VCP
limits the MI gain of the 500ms-RTT flow, the additional

BA

MD <==> AI

MI ==> AI

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20

Co
ng

est
ion

 W
ind

ow
 (p

ack
ets

)

Time (sec)

flow with rtt = 50ms
flow with rtt = 500ms

Figure 12: The congestion window dynamics of

two flows with dramatically different RTTs (50ms vs.

500ms). Due to its longer delay, the larger-RTT flow al-

ways slides its mode later than the one with smaller RTT

(see the regions labeled as A and B). However, the ef-

fect of this asynchronous switching is accommodated by

VCP and does not prevent it from maintaining stability

and achieving efficiency and fairness.

bandwidth acquired by this flow during the 0.31s interval
is only marginal when compared to the bandwidth acquired
by the 50ms-RTT flow.

7. RELATED WORK
This paper builds upon a great body of related work, par-

ticularly XCP [35], TCP [25, 1, 17, 51], AIMD [10, 29],
AQM [18, 2, 42] and ECN [57, 58]. Congestion control is
pioneered by TCP and AIMD. The research on AQM starts
from RED [18, 47], followed by Blue [14], REM [2], PI con-
troller [23], AVQ [21, 42], and CHOKe [54], etc. Below we
relate VCP to three categories of congestion control schemes
and a set of analytical results.

Explicit rate based schemes: XCP regulates source
sending rate with decoupled efficiency control and fairness
control and achieves excellent performance. ATM ABR ser-
vice (e.g., see [40, 9, 33, 27, 34]) previously proposes explicit
rate control. VCP learns from these schemes. In contrast,
VCP is primarily an end-host based protocol. This key dif-
ference brings new design challenges not faced by XCP (and
the ATM ABR schemes) and thus VCP is not just a “two-
bit” version of XCP. The idea of classifying network load
into different regions is originally presented in [28]. The link
load factor is suggested as a congestion signal in [27], based
on which VCP quantizes and encodes it for a more compact
representation for the degree of congestion. MaxNet [65]
uses the maximal congestion information among all the bot-
tlenecks to achieve max-min fairness. QuickStart [26] oc-
casionally uses several bits per packet to quickly ramp up
source sending rates. VCP is complementary to QuickStart
as it constantly uses two bits per packet.

Congestion notification based schemes: For high BDP
networks, according to [35], the performance gap between
XCP and TCP+RED/REM/AVQ/CSFQ [60] with one-bit
ECN support seems large. VCP generalizes one-bit ECN
and applies some ideas from these AQM schemes. For exam-
ple, RED’s queue-averaging idea, REM’s match-rate-clear-
buffer idea and AVQ’s virtual-capacity idea obviously find
themselves in VCP’s load factor calculation in Equation (1).
This paper demonstrates that the marginal performance gain
from one-bit to two-bit ECN feedback could be significant.
On the end-host side, two-bit ECN is also used to choose
different decrease parameters for TCP in [13], which is very
different from the way VCP uses. GAIMD [68] and the bino-

10

mial control [3] generalize the AIMD algorithm, while VCP
goes even further to combine MIMD with AIMD.

Pure end-to-end schemes: Recently there have been
many studies on the end-to-end congestion control for high
BDP networks. HighSpeed TCP [15] extends the standard
TCP by adaptively setting the increase/decrease parame-
ters according to the congestion window size. H-TCP [45]
employs an adaptive AIMD with its parameters set as func-
tions of the elapsed time since the last congestion event.
Adaptive TCP [38] also applies dynamic AIMD parameters
with respect to the changing network conditions. STCP [36]
changes to a fixed MIMD algorithm. FAST [31] uses queue-
ing delay, like TCP Vegas [6], instead of packet loss, as
its primary congestion signal and improves Vegas’ Additive-
Increase-Additive-Decrease policy with a proportional con-
troller. BIC [67, 59] adds a binary search phase into the
standard TCP to probe the available bandwidth in a log-
arithmic manner. LTCP [5] layers congestion control of
two scales for high speed, large RTT networks. TCP West-
wood [8] enhances the loss-based congestion detector using
more robust bandwidth estimation techniques. All these
end-to-end schemes do not need explicit feedback. There-
fore, it is hard for them to achieve both low persistent bottle-
neck queue length and almost zero congestion-caused packet
loss rate. VCP does need explicit two-bit ECN but is able to
maintain low queue and almost zero loss. However, it is un-
clear whether these end-to-end schemes, if given AQM/ECN
support from network, can achieve similar performance as
VCP in high BDP networks.

Analytical Results: The nonlinear optimization frame-
work [37, 48, 41] provides the above schemes a unified the-
oretic underpin and proposes a class of control algorithms.
The local stability of the algorithms when homogeneous de-
lay is present is considered by [32, 62] and then extended to
the case of heterogeneous delays by [50]. The local stability
of a modified algorithm for the case of heterogeneous delays
is proved by [70], which establishes a model that is similar
to what we show in Section 5. In contrast, a global stabil-
ity result is obtained in this paper for the case of a single
bottleneck with homogeneous delays. The global stability of
more general congestion controllers are considered by other
researchers, e.g., in [63, 12, 69].

Variable-structure control with sliding modes has a long
history in control theory [61]. It is useful when a set of
features are desired in a system but no single algorithm can
provide all of them. In computer networking areas, it has
been used to solve a traffic engineering problem in [43]. Our
work can be viewed as an application of this idea to network
congestion control.

8. SUMMARY
In this paper, we propose VCP, a simple, low-complexity

congestion control protocol for high BDP networks. Us-
ing extensive ns2 simulations, we show that VCP achieves
high utilization, reasonable fairness, low persistent bottle-
neck queue, and negligible packet loss rate. VCP achieves
all these desirable properties while requiring only two bits
to encode the network congestion information. Since it can
leverage the two ECN bits to carry this information, VCP
requires no changes of the IP header. In this respect, VCP
can be seen as an extension of the TCP+AQM/ECN pro-
posals that scales to high BDP networks.

To better understand the behavior of VCP, we propose
a fluid model, and use this model to analyze the efficiency,
fairness, and convergence properties of a simplified version of
VCP. Particularly, we prove that the model is globally stable
for the case of a single bottleneck link shared by long-lived
flows with identical RTTs.

As future work, it would be interesting to study what im-
provements are possible in VCP by using more than two
bits for the congestion-related information. One obvious
possibility would be to use a finer granularity encoding of
the network load factor to improve the fairness convergence
speed. While in this paper we evaluate VCP through exten-
sive simulations, ultimately, only a real implementation and
deployment will allow us to asses the strengths and limita-
tions of VCP.

9. ACKNOWLEDGEMENTS
The authors are very grateful to Sally Floyd, Dina Katabi,

K. K. Ramakrishnan, Scott Shenker and the anonymous re-
viewers for their insightful comments, and to Dina Katabi
for shepherding this paper. The authors owe their gratitude
to Jianghai Hu and John Wen for proof-reading Theorem 1,
to Xinzhe Fan and Yang Kuang for their suggestions on the
stability analysis, to Dilip Anthony Joseph and Jayanthku-
mar Kannan for reading earlier drafts of this paper, to David
Harrison for making his ns2 graphing tools available, and to
Lan Shi for her help. We would like to thank them all.

10. REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens. TCP Congestion
Control. IETF RFC 2581, April 1999.

[2] S. Athuraliya, V. Li, S. Low, and Q. Yin. REM: Active Queue
Management. IEEE Network, 15(3):48-53, May 2001.

[3] D. Bansal and H. Balakrishnan. Binomial Congestion Control
Algorithms. INFOCOM’01, April 2001.

[4] D. Bertsekas and R. Gallager. Data Networks. 2nd Ed., Simon
& Schuster, December 1991.

[5] S. Bhandarkar, S. Jain, and A. Reddy. Improving TCP
Performance in High Bandwidth High RTT Links Using
Layered Congestion Control. PFLDNet’05, February 2005.

[6] L. Brakmo and L. Peterson. TCP Vegas: End to End
Congestion Avoidance on a Global Internet. IEEE J. Selected
Areas in Communications, 13(8):1465-1480, October 1995.

[7] H. Bullot and R. Les Cottrell. Evaluation of Advanced TCP
Stacks on Fast Long-Distance Production Networks. Available
at http://www.slac.stanford.edu/grp/scs/net/talk03/tcp-slac-
nov03.pdf.

[8] C. Casetti, M. Gerla, S. Mascolo, M. Sansadidi, and R. Wang.
TCP Westwood: End-to-End Congestion Control for
Wired/Wireless Networks. Wireless Networks Journal,
8(5):467-479, September 2002.

[9] A. Charny, D. Clark, and R. Jain. Congestion Control with
Explicit Rate Indication. IEEE ICC’95, June 1995.

[10] D. Chiu and R. Jain. Analysis of the Increase/Decrease
Algorithms for Congestion Avoidance in Computer Networks.
J. of Computer Networks and ISDN, 17(1):1-14, June 1989.

[11] M. Crovella and A. Bestavros. Self-Similarity in World Wide
Web Traffic: Evidence and Possible Causes. IEEE/ACM
Trans. Networking, 5(6):835-846, December 1997.

[12] S. Deb and R. Srikant. Global Stability of Congestion
Controllers for the Internet. IEEE Trans. Automatic Control,
48(6):1055-1060, June 2003.

[13] A. Durresi, M. Sridharan, C. Liu, M. Goyal, and R. Jain.
Multilevel Explicit Congestion Notification. SCI’01, July 2001.

[14] W. Feng, K. Shin, D. Kandlur, and D. Saha. The BLUE active
queue management algorithms. IEEE/ACM Trans.
Networking, 10(4):513-528, August 2002.

[15] S. Floyd. HighSpeed TCP for Large Congestion Windows.
IETF RFC 3649, December 2003.

11

[16] S. Floyd, M. Handley, J. Padhye, and J. Widmer.
Equation-Based Congestion Control for Unicast Applications.
SIGCOMM’00, August 2000.

[17] S. Floyd and T. Henderson. The NewReno Modification to
TCP’s Fast Recovery Algorithm. IETF RFC 2582, April 1999.

[18] S. Floyd and V. Jacobson. Random Early Detection Gateways
for Congestion Avoidance. IEEE/ACM Trans. Networking,
1(4):397-413, August 1993.

[19] S. Floyd and V. Paxson. Difficulties in Simulating the Internet.
IEEE/ACM Trans. Networking, 9(4):392-403, August 2001.

[20] E. Gafni and D. Bertsekas. Dynamic Control of Session Input
Rates in Communication Networks. IEEE Trans. Automatic
Control, 29(11):1009-1016, November 1984.

[21] R. Gibbens and F. Kelly. Resource Pricing and the Evolution
of Congestion Control. Automatica, 35:1969-1985, 1999.

[22] K. Gopalsamy. Stability and Oscillations in Delay Differential
Equations of Population Dynamics. Kluwer Academic
Publishers, 1992.

[23] C. Hollot, V. Misra, D. Towlsey, and W. Gong. On Designing
Improved Controllers for AQM Routers Supporting TCP
Flows. INFOCOM’01, April 2001.

[24] C. Hollot, V. Misra, D. Towsley, and W. Gong. Analysis and
Design of Controllers for AQM Routers Supporting TCP Flows.
IEEE Trans. Automatic Control, 47(6):945-959, June 2002.

[25] V. Jacobson. Congestion Avoidance and Control.
SIGCOMM’88, August 1988.

[26] A. Jain and S. Floyd. Quick-Start for TCP and IP. IETF
Internet Draft draft-amit-quick-start-02.txt, October 2002.

[27] R. Jain, S. Kalyanaraman, and R. Viswanathan. The OSU
Scheme for Congestion Avoidance in ATM Networks: Lessons
Learnt and Extensions. Performance Evaluation, 31(1):67-88,
November 1997.

[28] R. Jain and K. K. Ramakrishnan. Congestion Avoidance in
Computer Networks with A Connectionless Network Layer:
Concepts, Goals, and Methodology. Proc. IEEE Computer
Networking Symposium, April 1988.

[29] R. Jain, K. K. Ramakrishnan, and D. Chiu. Congestion
Avoidance in Computer Networks with a Connectionless
Network Layer. DEC-TR-506, August 1987.

[30] H. Jiang and C. Dovrolis. Passive Estimation of TCP
Round-Trip Times. ACM Computer Communications Review,
32(3):75-88, July 2002.

[31] C. Jin, D. Wei, and S. Low. FAST TCP: Motivation, Architec-
ture, Algorithms, Performance. INFOCOM’04, March 2004.

[32] R. Johari and D. Tan. End-to-End Congestion Control for the
Internet: Delays and Stability. IEEE/ACM Trans.
Networking, 9(6):818-832, December 2001.

[33] L. Kalampoukas, A. Varma, and K. K. Ramakrishnan.
Dynamics of an Explicit Rate Allocation Algorithm for
Available Bit-Rate (ABR) Service in ATM Networks.
Proceedings of the IFIP/IEEE Conference on Broadband
Communications, April 1996.

[34] S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, and B.
Vandalore. The ERICA Switch Algorithm for ABR Traffic
Management in ATM Networks. IEEE/ACM Trans.
Networking, 8(1), February 2000.

[35] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for
High Bandwidth-Delay Product Networks. SIGCOMM’02,
August 2002.

[36] T. Kelly. Scalable TCP: Improving Performance in Highspeed
Wide Area Networks. Submitted, December 2002.

[37] F. Kelly, A. Maulloo, and D. Tan. Rate Control in
Communication Networks: Shadow Prices, Proportional
Fairness and Stability. Journal of the Operational Research
Society, 49:237-252, 1998.

[38] A. Kesselman and Y. Mansour. Adaptive TCP Flow Control.
PODC’03, July 2003.

[39] Y. Kuang. Delay Differential Equations with Applications in
Population Dynamics. Academic Press, 1993.

[40] H. Kung, T. Blackwell, and A. Chapman. Credit-Based Flow
Control for ATM Networks: Credit Update Protocol, Adaptive
Credit Allocation, and Statistical Multiplexing.
SIGCOMM’94, August 1994.

[41] S. Kunniyur and R. Srikant. End-To-End Congestion Control:
Utility Functions, Random Losses and ECN Marks.
INFOCOM’00, March 2000.

[42] S. Kunniyur and R. Srikant. Analysis and Design of an
Adaptive Virtual Queue (AVQ) Algorithm for Active Queue
Management. SIGCOMM’01, August 2001.

[43] C. Lagoa, H. Che and B. Movsichoff. Adaptive Control
Algorithms for Decentralized Optimal Traffic Engineering in
the Internet. IEEE/ACM Trans. Networking, 12(3):415-428,
June 2004.

[44] T. Lakshman and U. Madhow. The Performance of TCP/IP
for Networks with High Bandwidth-delay Products and
Random Loss. IEEE/ACM Trans. Networking, 5(3):336-350,
June 1997.

[45] D. Leith and R. Shorten. H-TCP: TCP for High-speed and
Long-distance Networks. PFLDnet’04, February 2004.

[46] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the
Self-Similar Nature of Ethernet Traffic. SIGCOMM’93, August
1993.

[47] D. Lin and R. Morris. Dynamics of Random Early Detection.
SIGCOMM’97, August 1997.

[48] S. Low and D. Lapsley. Optimization Flow Control, I: Basic
Algorithm and Convergence. IEEE/ACM Trans. Networking,
7(6):861-875, December 1999.

[49] S. Low, F. Paganini, J. Wang, and J. Doyle. Linear Stability of
TCP/RED and a Scalable Control. Computer Networks
Journal, 43(5):633-647, December 2003.

[50] L. Massoule. Stability of Distributed Congestion Control with
Heterogeneous Feedback Delays. IEEE Trans. Automatic
Control, 47(6):895-902, June 2002.

[51] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP
Selective Acknowledgement Options. IETF RFC 2018,
October 1996.

[52] Network Simulator ns-2. Http://www.isi.edu/nsnam/ns/.

[53] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP Throughput: A Simple Model and its Empirical
Validation. SIGCOMM’98, September 1998.

[54] R. Pan, K. Psounis, and B. Prabhakar. CHOKe, A Stateless
Active Queue Management Scheme for Approximating Fair
Bandwidth Allocation. INFOCOM’00, March 2000.

[55] V. Paxson. End-to-End Internet Packet Dynamics.
SIGCOMM’97, September 1997.

[56] V. Paxson and S. Flyod. Wide-Area Traffic: The Failure of
Poisson Modeling. SIGCOMM’94, August 1994.

[57] K. K. Ramakrishnan and S. Floyd. The Addition of Explicit
Congestion Notification (ECN) to IP. IETF RFC 3168,
September 2001.

[58] K. K. Ramakrishnan and R. Jain. A Binary Feedback Scheme
for Congestion Avoidance in Computer Networks.
SIGCOMM’88, August 1988.

[59] I. Rhee and L. Xu. CUBIC: A New TCP-Friendly High-Speed
TCP Variant. PFLDNet’05, February 2005.

[60] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair
Queueing: Achieving Approximately Fair Bandwidth
Allocations in High Speed Networks. SIGCOMM’98,
September 1998.

[61] V. Utkin. Variable Structure Systems with Sliding Modes.
IEEE Trans. Automatic Control, 22(2):212-222, April 1977.

[62] G. Vinnicombe. On the Stability of End-to-end Congestion
Control for the Internet. Univ. of Cambridge Tech Report
CUED/F-INFENG/TR.398, December 2000.

[63] J. Wen and M. Arcak. A Unifying Passivity Framework for
Network Flow Control. INFOCOM’03, March, 2003.

[64] E. Wright. A Non-linear Difference-Differential Equation. J.
Reine Angew. Math., 494:66-87, 1955.

[65] B. Wydrowski and M. Zukerman. MaxNet: A Congestion
Control Architecture for Maxmin Fairness. IEEE Comm.
Letters, 6(11):512-514, November 2002.

[66] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman. One
More Bit is Enough. UC Berkeley Tech Report, June 2005.

[67] L. Xu, K. Harfoush, and I. Rhee. Binary Increase Congestion
Control (BIC) for Fast Long-Distance Networks.
INFOCOM’04, March 2004.

[68] Y. Yang and S. Lam. General AIMD Congestion Control.
ICNP’00, November 2000.

[69] L. Ying, G. Dullerud, and R. Srikant. Global Stability of
Internet Congestion Controllers with Heterogeneous Delays.
Proc. American Control Conference, June 2004.

[70] Y. Zhang, S. Kang, and D. Loguinov. Delayed Stability and
Performance of Distributed Congestion Control.
SIGCOMM’04, September 2004.

12

11. APPENDIX

11.1 Proof of Theorem 1
To analyze the stability of Equation (13), let y(t) = γCT

w(t)
,

then after some manipulation we obtain

ẏ(t) = k1 y(t) [1− y(t− T)− k2 y(t)] (15)

where k1 = κ
T

> 0, and k2 = Nα
κ γCT

> 0. We also have, for

all t > 0, y(t) ≥ 0 since w(t) > 0, and the initial condition
y(t) > 0 (since we assume w(t) = N < ∞) for t ∈ [−T, 0].

Observing that the trivial solution y(t) = 0 is not a stable
equilibrium of this equation, since any small perturbation
will move the system further off the origin, we therefore
assume y(t) > 0, ∀t > 0. Physically, this assumption means
that, at any time, the congestion window w(t) is not infinite,
which generally holds in reality.

To prove this theorem, we first establish two lemmas, ap-
plying the techniques developed in [64, 39, 22], to which we
would like to give credit.

Lemma 1. If κ ≤ 1 − Nα
γCT

, then (15) has a unique equi-

librium y∗ = 1
1+k2

that is globally asymptotically stable.

Proof. Substituting x(t) = y(t)− y∗ in (15) we get

ẋ(t) = −k1 [y∗ + x(t)] [x(t− T) + k2 x(t)] (16)

with a solution

y∗+ x(t) = [y∗+ x(t0)] · e−k1
∫ t−T

t0−T
[x(τ)+k2 x(τ+T)] dτ

(17)

where t0 is a constant [39]. To show limt→+∞ x(t) = 0, we
treat separately the following two cases.

Case #1. If x(t) is not oscillatory, i.e., |x(t)| > 0 when t >
t1 for some t1 > 0. For x(t) > 0, when t > t1 + T , we have
ẋ(t) < 0 due to (15), which means x(t) is strictly decreasing
for all t > t1 + T . Because x(t) > 0, there exists a constant
c such that limt→+∞ x(t) = c and thus limt→+∞ ẋ(t) = 0.
We must have c = 0. Otherwise c > 0, then limt→+∞ ẋ(t) =
−c k1(y

∗ + c)(1 + k2) < 0 according to (15), resulting in a
contradiction. The same analysis applies to when x(t) < 0;

Case #2. If x(t) is oscillatory, i.e., there is a sequence
t′l > t2 for some t2 > 0, t′l → +∞ as l → +∞, such that
x(t′l) = 0 for all t′l. We firstly prove that x(t) is bounded
when t > t2. Obviously x(t) is lower bounded, since x(t) =
y(t)− y∗ > −y∗ as y(t) > 0. Now we show that x(t) is also
upper bounded. Let t3, t4 ∈ (t2,∞), t3 < t4 be any two
consecutive zeros of x(t) such that x(t) > 0 for t3 < t < t4.
(If x(t) < 0 we get an upper bound 0.) Because w(t) is
continuous and differentiable, so does x(t) = y(t) − y∗ =
γCT
w(t)

−y∗. Since x(t3) = x(t4) = 0, x(t) has a local maximum

in the interval (t3, t4). Denote it as x(tm) where t3 < tm <
t4, we have x(t) ≤ x(tm) for all t ∈ (t3, t4). We also have
ẋ(tm) = 0, which deduces x(tm − T) + k2 x(tm) = 0 from
(16). Substituting this result, x(t) > −y∗, and y∗ = 1

1+k2

in (17) and setting t0 = tm − T , t = tm, we get

−k1

∫ t−T

t0−T

[x(τ) + k2 x(τ + T)] dτ < k1T

and thus

x(t) ≤ x(tm) <
y∗(ek1T − 1)

1 + k2ek1T
(18)

for all t ∈ [t3, t4]. Repeating this process for all the consec-
utive zero pairs of x(t) in (t2,∞), we conclude that x(t) is
bounded for t > t2.

Since x(t) is continuous and bounded, denote

u = lim sup
t→+∞

x(t), v = − lim inf
t→+∞

x(t). (19)

Obviously we have

u ≥ −v. (20)

We now prove that u = v = 0 (therefore limt→+∞ x(t) = 0).
Let ε > 0 be an arbitrarily small constant such that, for all
t > t5 = t5(ε) > 0,

−v − ε < x(t) < u + ε. (21)

As per the definition of u, we can always find a local max-
imum x(tn) > u − ε for tn > t5 + T . Applying the same
technique used to derive (18) on tn, plus the left half of
(21), we get

u− ε < x(tn) <
y∗[eφ(v+ε) − 1]

1 + k2eφ(v+ε)
(22)

where φ = k1(1 + k2)T = κ + Nα
γCT

> 0. Since (22) holds for
all ε > 0, we conclude

u ≤ y∗(eφv − 1)

1 + k2eφv
, (23)

where 0 < y∗ = 1
1+k2

< 1 and k2 > 0. Following similar

steps in deriving (23) on a local minimum generates

v ≤ y∗(1− e−φu)

1 + k2e−φu
. (24)

Now we discuss the following combinations of u and v and
show that the only possibility is u = v = 0, if φ ≤ 1.

i) If u < 0, then v < 0 according to (24), so −v > 0 > u,
violating (20);

ii) If u = 0, then v ≥ 0 from (20). We have v ≤ 0 as well
due to (24). Therefore v = 0;

iii) If u > 0, then v > 0 according to (23). From (24) we
have v < y∗ < 1. If φ ≤ 1, we get

1 + u < eφv ≤ ev < e1−e−φu ≤ e1−e−u

. (25)

However, for u > 0, we have

1 + u− e1−e−u

=

∫ u

0

∫ ζ

0

(1− e−η)e(1−e−η−η)dηdζ > 0

which is a conflict with (25).
To sum up, we must have u = v = 0 if φ ≤ 1, i.e.,

κ ≤ 1− Nα
γCT

, which deduces limt→+∞ x(t) = 0.

Next we turn to the second lemma.

Lemma 2. If κ < Nα
γCT

, then (15) has a unique equilibrium

y∗ = 1
1+k2

that is globally asymptotically stable.

Proof. Consider the following function [22]

V (t) = y(t)− y∗ log y(t) +
k1

2

∫ t

t−T

[y(τ)− y∗]2 dτ. (26)

13

Again let x(t) = y(t)− y∗. Due to (15) and k1 > 0 we have

dV

dt
= ẏ(t) [1− y∗

y(t)
] +

k1

2
[x2(t)− x2(t− T)]

=
ẏ(t) x(t)

y(t)
+

k1

2
[x2(t)− x2(t− T)]

= −k1 x(t)[k2 x(t) + x(t− T)] +
k1

2
[x2(t)− x2(t− T)]

= −k1

2
[(2k2 − 1) x2(t) + x2(t− T) + 2x(t)x(t− T)]

= −k1

2
{ 2(k2 − 1) x2(t) + [x(t) + x(t− T)]2 }

≤ −k1(k2 − 1) x2(t). (27)

Integrating this inequality over [0, t], we have

V (t) + k1(k2 − 1)

∫ t

0

x2(τ) dτ ≤ V (0) (28)

where V (0) = y(0) − y∗ log y(0) + k1
2

∫ 0

−T
[y(τ) − y∗]2 dτ is

bounded since y(t) is finite when t ∈ [−T, 0].
Note we have proved in Lemma 1 that x(t) is bounded for

all t > t2 for some t2 > 0. So does y(t) because y(t) = x(t)+
y∗. Thus V (t) is also bounded. If k2 > 1 (i.e., κ < Nα

γCT
),

we must have limt→+∞ x(t) = 0 since otherwise we obtain

k1(k2 − 1)
∫ t

0
x2(τ) dτ → +∞ as t → +∞, resulting in a

conflict with (28).

Now we are ready to prove the theorem. When κ ≤ 1
2
, we

always have at least one of the two inequalities, κ ≤ 1− Nα
γCT

and κ < Nα
γCT

, holds. We thus complete the proof using

the above two lemmas. The equilibrium of (13) is therefore
w∗ = γCT

y∗ = γCT + N α
κ
.

The steady-state load factor, due to (11), is ρ∗ = w∗
γCT

=

1 + Nα
κγCT

. Let (9) be 0, we obtain, for all i ∈ [1, N], flow i’s

steady-state congestion window w∗i = γCT
N

+ α
κ
. Its steady-

state rate is thus r∗i =
w∗i
T

= γC
N

+ α
κT

. QED.

11.2 Proof of Theorem 2
Denote the aggregate rate at link l as Al =

∑
i∈Il

ri where

ri = wi
T

is the sending rate of flow i. The load factor, ac-

cording to (11), is thus ρl = Al
γCl

where Cl is link l’s capacity.

Define function [20]

g(ρl) =
α

κT (1− 1
ρl

)
(29)

which is strictly decreasing when ρl > 1. (Note ρl > 1 for all
l ∈ L according to Theorem 1.) Then, if we set ẇ(t) = 0 in
(9) and consider (14), we have the equilibrium rate of flow
i as

ri =
α

κT (1− 1
maxl∈Li

ρl
)

= min
l∈Li

g(ρl)

≤ g(ρl) ∀l ∈ Li. (30)

Consider the subset of link(s) L∗m that has the highest
load factor ρ∗m = maxl∈L ρl among all the links:

L∗m = { l ∈ L | ρl = ρ∗m }, (31)

and the subset I∗m of flow(s) that traverse at least one link
in L∗m, i.e.,

I∗m = { i ∈ I |Li ∩ L∗m 6= φ }. (32)

So all the flows in I∗m have the same rate r∗m = g(ρ∗m) =
minl∈L g(ρl), which is the lowest rate allocation.

Suppose r∗m is not maximized, then there exists r̃i1 > r∗m
for i1 ∈ I∗m. If we pick one link l1 from Li1 ∩ L∗m 6= φ,
we have ρ̃l1 =

∑
i∈Il1

r̃i/Cl >
∑

i∈Il1
r∗m/Cl = ρ∗m. How-

ever, because g(ρl) is strictly decreasing, this leads to r̃i1 ≤
g(ρ̃l1) < g(ρ∗m) = r∗m, resulting in a conflict.

If there is no such r̃i1 > r∗m for i1 ∈ I∗m, we remove the sets
L∗m and I∗m from the network and reduce the capacity of the
remaining links (if any, otherwise we are done) by the sum of
the passing flows’ sending rates, then repeat the above pro-
cess until there is no link/flow left. The flow rates defined by
(30) thus solve a hierarchy of optimization problems within
each of them the minimal allocation is maximized—this is
the definition of max-min fairness. QED.

11.3 Proof of Theorem 3
We first consider the MI part of VCP in Section 3.3 when

there is bandwidth to claim. Due to the MI/AI parameter
scaling in Section 3.4 that handles RTT difference, we can
assume that flows have the same RTT. Suppose the flows
start from the unit aggregate rate r(0) = 1. At the end of
m rounds of MI, the aggregate rate

r(m) = r(0) · (1 + ξ)m

where ξ = 0.0625 as set in Section 3.3. Given any capacity
C > 1, to reach a major part (i.e., the load factor transition
point, ρ̂l = 80%) of it with MI, let r(m) = ρ0C, and then
we obtain

m =
log ρ̂lC

log(1 + ξ)
= O(log C). (33)

The same result also holds when the flows have to release
bandwidth with the MD algorithm of VCP. Now suppose
the initial aggregate rate r(0) = C > 1, to reach r(m) = 1
where r(m) = β · r(m− 1) = ... = βm · r(0), we get

m =
log C

log(1/β)
= O(log C) (34)

as well. QED.

11.4 Proof of Theorem 4
For fairness convergence speed we focus on the AIMD part

of VCP in Section 3.3. Consider any bottleneck of capacity
C shared by N flows of the same RTT value T . After an
MD that cuts the aggregate congestion window w from CT

to βCT , it takes (1−β)CT
Nα

rounds of AI (which we call an
epoch) to increase w from βCT to CT . Note during AI all
flows grow the same amount of congestion window; only MD
reduces the congestion window difference. For any two flows
i and j, at the m-th epoch, we have

∆wij(m) = β ·∆wij(m− 1) = ... = βm ·∆wij(0),

where ∆wij(m) = wi(m)−wj(m). To reach a small-enough
congestion window difference, e.g., ∆wij(m) = 1, then we
have

m =
log ∆wij(0)

log(1/β)
.

14

The total number of RTTs spent is

m · (1− β)CT

Nα
=

1− β

α log(1/β)
· P log ∆wij(0) (35)

where P = CT
N

is the per-flow BDP.
The fairness convergence time of a link l is obviously the

time needed for the two passing flows with the largest initial
congestion window difference to reach the fair allocation,
which is O(P log ∆P), where ∆P = maxi,j∈Il ∆wij(0).

In contrast, XCP’s fairness convergence time is O(log ∆P),
since it shuffles bandwidth in each round of AIMD control.
QED.

15

