
1

Uncooperative Congestion Control
K. Chandrayana S. Kalyanaraman

R.P.I., Troy, NY, USA.
chandk@rpi.edu,shivkuma@ecse.rpi.edu

Abstract—Traditionally uncooperative rate control schemes have implied
open loop protocols such as UDP, CBR. In this paper we show that closed
loop uncooperative rate control schemes also exist and that the current AQM
proposals cannot efficiently control their mis-behavior. Moreover, these pro-
posals require that AQM be installed at all routers in the Internet which is
not only expensive but requires significant network upgrade.

In this paper we show that management of uncooperative flows need not be
coupled with AQM design but can be viewed as edge based policing question.
In this paper we propose an analytical model for managing uncooperative
flows in the Internet by re-mapping their utility function to a target range of
utlity functions. This mapping can be achieved by transparently manipulat-
ing congestion penalties conveyed to the uncooperative users.

The most interesting aspect of this research is that this task can be per-
formed at the edge of the network with little state information about unco-
operative flows. The proposed solution is independent of the buffer manage-
ment algorithm deployed on the network. Thus the framework presented in
this paper not only works on a network of Drop-Tail queues but also with any
AQM scheme. We have analyzed the framework and evaluated it on various
single and multi-bottleneck topologies with both Drop-Tail and RED. Our re-
sults show that the framework is robust and works well even in presence of
background traffic and reverse path congestion.

I. INTRODUCTION

Over the years as the Internet has evolved TCP has formed
the backbone of its stability. TCP placed the trust of respon-
sive behavior, i.e. decrease rate if there is congestion, at the
end-user and as a result the core network could be kept simple.
However as the application needs changed newer rate control
schemes were proposed. Moreover, new software advancements
have also placed users in a position where they can change their
congestion control schemes. As such we now have an Internet
which operates with a spectrum of transport protocols, some of
which don’t even react to congestion indications. Thus, over the
years, the trust placed in the end-system to react to congestion
indications has been sufficiently weakened.

It has been widely reported that this breach of trust or pres-
ence of uncooperative users can lead to TCP unfriendliness and
also cause congestion collapse [1], [6]. Moreover, as reported
recently and further validated by our results, these uncoopera-
tive flows can also force a traffic based denial-of-service to their
cooperative counterparts [9], [10]. Also as the network grows
and the access pipes get bigger, uncooperative flows will pose a
significant challenge before the network providers. This is be-
cause of uncooperative flows have the ability to monopolize bot-
tleneck space and their disregard to appropriate congestion re-
sponses may cause congestion collapse thus effecting the stabil-
ity of the Internet. Some architectural responses such as use of
AQM schemes, schedulers and pricing mechanisms have been
suggested to manage the uncooperative flows [6]. However, use
of AQM and schedulers require deployment at all (bottleneck)
routers in the network, which is not only expensive but also re-
quires significant network upgrade. These deployment consid-
erations coupled with presence of simple Drop-Tail queueing
schemes at all routers in the Internet present us with an interest-

U2

Us

Conformant

[U1,U2] defines the conformance space

U

x (Rate)

Remap U

Non Conformant

U1

Fig. 1. Mapping a uncooperative user to a conformant space.

ing question - What are the appropriate alternate architectural
responses for managing a network of un-cooperative users, such
that it requires minimal network support ?

In this paper we explore architectural responses for managing
the entire spectrum of uncooperative sources at the edge of the
network. The biggest advantages of the framework presented
in this paper are that it is independent of buffer management
scheme deployed on the network and works equally well in a
dropping or a marking based network. The framework presented
in this paper can also be used to distribute rates amongst user’s
according to some a-priori fair rate allocation, while still allow-
ing users to choose their rate control schemes. Thus this pro-
posal can be used to enforce congestion response conformance
e.g. TCP-Friendliness. Moreover, our framework allows for a
enforcement of a broader range of congestion response confor-
mance criteria.

The framework presented in this paper follows from the flow
optimization model [11], [12], [14], specifically the duality
framework of Low etal. [14]. The flow optimization framework
is a network-based approach for modeling rate control schemes
and computing average sending rates and end-to-end loss prob-
abilities for users. In this paper we describe a user with his
rate, � and a utility function,

��� ��� , while a network is identi-
fied with link capacities. Thereupon, the users try to maximize
their utility functions subject to link capacity constraints and in
the process we derive rate control schemes for the users and link
price update mechanisms for the network.

In this paper we call users cooperative if their utility func-
tions fall within some a-priori specified target range of utility
functions. For example in Fig 1 � ���
	����� defines the cooperation
boundaries or the target range. We show that through a transpar-
ent penalty function transformation the network provider can re-
map the utility functions of the uncooperative users to a target
range of utility functions, see Fig 1. Further, this re-mapping
can be easily implemented at the edge of the network. More-
over, our framework allows users freedom to choose arbitrary
concave utility functions or in other words they can pick any rate
control scheme [11], [12], [14]. This solution presented in this

2

⇒ Drop Tail/RED etc.

Core Network

(No Changes)

Any queue mgmt algorithm

Core Routers

Edge Routers

Edge Based Re-Marking Agent

Users

Free to choose
their congestion
control algorithm

Either marking or dropping

Fig. 2. Model for managing Uncooperative users at Network Edge

paper is attractive because it does not require any upgrades in
the routers of the network, they function as usual, i.e. they may
mark, or drop packets using any buffer management scheme (in-
cluding Drop-Tail policy). Fig 2 shows the model for policing
uncooperative users.

The problem of managing uncooperative users has been ac-
tively researched [1], [6], [5], [13], [17]. Router based mech-
anisms, such as Active Queue Management (AQM) schemes,
schedulers and pricing mechanisms, have been suggested for
managing uncooperative users in the network. However, use
of AQM schemes, schedulers require deployment at all (bot-
tleneck) routers in the network, which is not only expensive
but also requires significant network upgrade. Moreover AQM
schemes face configuration problems and also lack of deploy-
ment of ECN. As a result, they are not deployed and Internet
works on simple Drop Tail queueing and the problems due to
uncooperative flows persist.

This paper suggests that management of uncooperative flows
need not be coupled with AQM design and can be simply viewed
as an edge network based policing question. Our mechanisms
may also be thought of as a new class of “traffic conditioning”
techniques [4], where the “conditioning” can be achieved by
manipulating either the feedback or packet stream. Moreover,
since the users cannot always be trusted with their rate control
schemes, the network has to enforce this trust and the network
edge is the first place this trust is enforced. Additionally, this
function can combined with the other edge based functions like
preventing spams, denial-of-service attacks etc.

We have implemented this framework in NS-2 and evaluated
it for various single and multi-bottleneck topologies, for both
marking and dropping congestion notification policies and also
with and without AQM schemes. Our results show that the
framework can “re-map” any uncooperative user to co-operative
user for a broad range of network scenario. Further, the frame-
work is robust and works well even in the presence of back-
ground web-traffic and reverse-path congestion. However, for
our our scheme to perform well we need to estimate user’s util-
ity function. Towards this end we also outline and evaluate Lin-
ear Least Squares Errors (LLSE) and Non-Linear LSE (Least
Squared Error) methods for these purposes. Our initial results
show that these methods are easy to implement and work well,
even with a small sample set or in other words they can quickly
characterize sources. The paper also presents results for simple
differentiated services which can be derived from the model. Fi-
nally, we also compared the performance of CHOKe and BLUE
in managing un-cooperative flows.

To summarize, the main contributions of this paper are:
� Proposes an edge-based model for managing uncooperative
users.
� The framework is independent of AQM schemes, i.e., it works
with both RED or other AQM scheme and Drop Tail queues.
� The proposed framework works well with both marking and
dropping as congestion notification policies.
� The framework can also be thought of as a new class of traffic
conditioning where conditioning can be achieved by manipulat-
ing either the ack or packet stream.
� It suggests that management of uncooperative flows need not
be coupled with AQM design.
� The model presented in this paper can prevent traffic based
denial of service attacks.

The rest of the paper is organized as follows. In Section II we
first define cooperative behavior and then accordingly classify
uncooperative flows as open and closed loop protocols. Section
III further motivates the need for our work by evaluating the
impact of uncooperative flows on AQM and Drop Tail queues.
Thereafter, we present our utility function re-mapping model in
Section IV. In Section V we describe our implementation and
the simulation setups. Section VI presents the results. In Sec-
tions VII we describe the utility function estimation while Sec-
tion VIII we present the effect of estimation errors on the model.
We discuss the merits and drawbacks of the scheme in Section X
while Appendix D shows how simple differentiated services can
be obtained with out model. Finally we present the conclusions
and future work in Section XI.

II. CLASSES OF UNCOOPERATIVE FLOWS

In this section we will define what we imply by cooperative
and uncooperative flows. Using this definition we will classify
uncooperative flows and finally we will introduce responsive un-
cooperative flows.

Shenker, Kelly etal have shown rate control schemes can be
defined in terms of utility function [11], [12], [14], [23]. The
biggest advantage of this method is that a broad class of rate
control schemes can be defined by a single utility function, for
e.g. all TCP-Friendly schemes can described by the utility func-
tion

��� ����������� � , where
��� ��� represents the utility function

and � the rate.
Definition 1: Flows whose utility function lie within some a-

priori specified target range are called cooperative.
For example in Fig 1 any rate control scheme whose utility
function lies between � � � 	�� � � is considered cooperative. TCP-
Friendliness can be an example of cooperative regime where the
target utility function range is

��� � � � �	���
� � . For reasons of
simplicity, in this paper, we choose TCP as our definition of co-
operation. TCP being the most widely used transport protocol in
the Internet further rationalizes our choice. Thus uncooperative
flows corresponds to any TCP unfriendly rate control schemes.
However, we would like to point out that TCP-Friendliness is
just one notion of cooperative flow under our model. We could
easily define any other notion of cooperation by suitably choos-
ing a single or range of objective utility functions.

Uncooperative flows can be classified into two categories:
� Unresponsive or Open-Loop flows

– Do not react to congestion indication.
� Responsive or Closed-Loop flows

– React to congestion indication by cutting down their rates.

3

Traditionally by uncooperative flows we have referred to UDP
and CBR. These protocols always send data at a constant rate
and since they do not use any feedback from the network are
generally referred to as open loop protocols. Open loop schemes
are used by most of the multimedia and gaming applications e.g.
Real Audio, Internet telephony, Quake,Half life etc [8]. These
unresponsive flows can be modeled by a constant utility func-
tion, i.e. U(x) = constant [23].

Responsive uncooperative flows encompass a larger range of
mis-behaving scenarios. Their misbehavior can be defined on
basis of their increase policy, (i.e. how they probe the network
for available bandwidth) and their decrease policy (or how they
respond to congestion indication). Further, these flows are com-
monly identified with concave utility functions, for e.g. TCP’s
utility function is

��� ��� � ���
�
� . Responsive uncooperative
flows can also be divided into two sub-categories: one whose
utility function does not change with time e.g.

��� � � � ����� � �
where � is a constant, while the other class has a time-varying
utility function e.g.

��� ��� � ���
� � ������� . In this section we will
briefly present uncooperative closed loop schemes derived from
time-invariant utility functions. The reader is referred to Ap-
pendix C for the time-varying utility function discussions.

Let x represent the rate and R the RTT. Then we could iden-
tify the utility function of any increase/decrease based rate (or
window) control scheme with the following relationship

�
	 � � � � �
� �� � ����� � ����� � � ������� 	 ����� � ����� � (1)

where the increase policy, I, and decrease policy are

� �
�
� � ����� � � � ��� (2)

Also it can be easily shown that these utility functions are
strictly concave. Utility function of TCP-Friendly is described
by

��� ��� ��� �� , any scheme which has � � ����� � ���! � will also
be TCP-Friendly. Similar conclusions about TCP-Friendliness
of these generalized schemes were shown by [16]. Binomial
Congestion Control Scheme (BCCS) proposed in [2] is one spe-
cial case of the above model with

� � � � � "�$# 	 � � ��� �&% �' (3)

where " 	 %)(�	+* are some constant. The utility function of bi-
nomial schemes is given as

��� ���, � ��.- where
(0/1* �32 .

TCP-Friendly schemes in BCCS can be defined by
(4/5* �	� .

Since in this paper we have chosen TCP-Friendly schemes to
be cooperative, the uncooperative BCCS schemes are defined by(6/7*98 � . Further, it can be shown that a more general definition
of uncooperative flows would be sub-linearity or � � ����� � ��� 8 � .
Uncooperative flows can also be obtained by choosing a large
value of " (";: �) or a small value of % (% 8 �=< >). However
for the simulations reported in this paper we use the

(
and

*
values to generate uncooperative flows. This is because such
flows can be obtained a simple tweaking of the TCP and thus
are more likely to to be found on the Internet.

Open and closed loop rate control schemes can have very dif-
ferent impact on bottleneck sharing. While open loop schemes
may not always shut-out cooperative flows their closed loop
counterpart’s affects may be more pronounced. Open loop pro-
tocols always send data at a fixed rate which may not always

exceed the bottleneck capacity. Thus open loop protocols will
always hog bandwidth equal to their sending rate leaving the rest
for cooperative flows. On the contrary, closed loop protocols are
always looking to absorb whatever capacity is available and as
such if a cooperative flow cuts down it’s rate these closed loop
uncooperative flows will step in to claim that bandwidth.

III. MOTIVATION: IMPACT OF UNCOOPERATIVE FLOWS ON

EXISTING BUFFER MANAGEMENT ALGORITHMS

Though many AQM schemes have been proposed to manage
uncooperative flows their deployment on the Internet has been
lacking because of variety of reasons: configuration problem,
lack of deployment of ECN and requirement of significant net-
work upgrade. As a result of these deployment constraints, the
present Internet works on simple Drop-Tail queueing. In this
section we evaluate the effect on uncooperative flows on the
buffer management schemes and motivate the need for our work.

A. Uncooperative Flows and AQM Schemes

Many AQM schemes have been proposed to limit the effect
of uncooperative flows. These proposals can be broadly classi-
fied into two categories: state-full schemes like FRED [13] etc
and stateless schemes like CHOKe [22], BLUE [5]. State-full
schemes also include some partial state schemes like RED-PD
[17] where states for only the mis-behaving sources are stored.
Each of these proposals has it’s own merits; stateless schemes
are easy to manage while state-full schemes patrol uncoopera-
tive flows more efficiently but do not scale. However, given the
number of AQM proposals it is beyond the scope of this paper
to do an exhaustive performance evaluation across all schemes,
hence we will only evaluate CHOKe and BLUE as they repre-
sent the stateless alternatives to this work.

We evaluated CHOKe and BLUE on NS-2 on various sin-
gle and multi bottleneck topologies with different degrees of
flow multiplexing. However, we will only present the results
for multi-bottleneck scenario. The multi-bottleneck topology
is shown in Fig 3 b). For this setup, we define long flow as
a flow which traverses both the bottleneck, whereas the short
flows are defined as flows traversing only one bottleneck. Since
limitations of CHOKe with unresponsive flows has already been
outlined in [17], for our simulations we will evaluate CHOKe
(and BLUE) with responsive uncooperative flows. For our sim-
ulations these uncooperative flows were generated using BCCS
with

(?/@*�8 � . There was one long flow and one short
flow on each bottleneck and the short flows were mis-behaving,(�A� 	+* �B�=< > . For the AQM settings we refer the reader to
Section V.

Fig 4 (a)-(c) plots the throughput of each flow as well as the
ideal share from each simulation while Fig 4 (e)-(g) shows the
link utilization for the same simulation. Since we have cho-
sen TCP-Friendliness as our definition of cooperation the ideal
shares correspond the simulation where both the long and short
flows were TCP flows. It can been seen from Fig 4 b) that
CHOKe marginally improves the throughput of long flow as
compared to that with RED, Fig 4 a). But more importantly
this marginal improvement in performance of CHOKe comes at
the expense of link utilization, i.e. the link utilization is almost
30% less with CHOKe (Fig 4 e, the thick curve in this plot is
the average utilization). On the other hand, BLUE does even
worse than RED and the long flow is further penalized as it’s

4

Router Router

x Mbps 20 ms

10 x Mbps 10 x Mbps

5ms 5ms

S1

S2

Sn

D1

D2

Dn

RouterRouter

�������
�

���
�

���
� ����

20ms
Router

D1

5ms

S1

Dn

S3

D3

D4

Sn

S4

5ms

5ms

5ms

5ms 5ms

5ms

0.8 Mbps

20ms

0.8 Mbps

5ms

8 Mbps

8 Mbps

8 Mbps

8 Mbps

(a) Single Bottleneck Topology (b) Multi-Bottleneck Topology

Fig. 3. Topologies used in the Simulations.

throughput goes down. Moreover BLUE also does not utilize
the link efficiently, Fig 4 f), though it’s better than CHOKe. Ta-
ble I shows a similar results when the number of flows on each
bottleneck was increased to 10 (5 long and 5 short flows), the
bottleneck capacity increased to 10Mbps and a buffer of 150
packets. Again it can be seen that marginal improvement in per-
formance of CHOKe comes at the expense of significantly low
link utilization (of 70%). Figure 4 d) plots the results with our
framework and shows that our framework can improve fair shar-
ing of the bottleneck without compromising link utilization.

One of the reasons why CHOKe’s performance suffers is be-
cause it has poor estimate for the aggressiveness of the uncoop-
erative flow. For every incoming packet to the queue, CHOKe
picks a random packet from the queue and matches it’s header.
If the headers match then CHOKe drops both the packets oth-
erwise it probabilistically enques the incoming packet. Thus if
the selfish behavior of the uncooperative flows can be classi-
fied properly then depending upon the aggressiveness CHOKe
can pick 2 packets from the queue to match the header. Such a
method will then greatly improve the fair sharing of the bottle-
neck. Our proposal does better precisely because of this reason.
At the edge of the network we measure the loss probability and
rate of the uncooperative users and use it to decide the penalty
transformation for the uncooperative flow. In Section IV we will
present these arguments in detail.

We also ran simulation with partial network upgrade, i.e. se-
tups where CHOKe was turned on only one bottleneck router
while the other bottleneck had Drop Tail queueing. We found
performance of CHOKe in partial upgrade to be similar to that
of CHOKe on both bottlenecks. However, on a single bottle-
neck topology CHOKe does remarkably well and the all flows
share bandwidth fairly though link utilization remains poor. In
yet another set of simulations we enabled ECN on the network
and also modified CHOKe to mark packets instead of dropping
them. Since our sources were closed loop schemes we expected
CHOKe to limit the rates of uncooperative sources. However,
the results were most surprising as CHOKe performed even
worse than RED. Because of space constraints we are not pre-
senting those results here.

In summary, CHOKe performs remarkably well in patrolling
uncooperative users over single bottleneck scenarios. However,
it’s performance is only marginally better than RED on multi-
bottleneck scenarios and it also results in poor link utilization.
These wide fluctuations in link utilization suggests oscillations
in the bottleneck queue size which in turn cause window (or
rate) oscillations. These oscillations are considered harmful as
they increase jitter and make any kind of buffer or resource pro-

Type Ideal RED CHOKe BLUE
Long Flow (S1-D1) 132 82 95 63
Short Flow (S3-D3) 340 390 300 430

TABLE I

PERFORMANCE OF AQM SCHEMES: COMPARISON OF THROUGHPUT

(PACKETS/SEC) OF DIFFERENT AQM SCHEMES ON A MULTI-BOTTLENECK

TOPOLOGY WITH 10 FLOWS ON EACH BOTTLENECK.

visioning harder. Thus CHOKe and BLUE cannot always patrol
uncooperative flows, especially under multi-bottleneck scenar-
ios and also result in poor link utilization.

B. Uncooperative Flows and Drop-Tail Queues

Since AQM schemes require significant network upgrade,
network providers have not turned on these proposals on the
routers. As a result, the present Internet still works with sim-
ple FIFO queuing. In this section we will present the impact of
uncooperative flows on a network of Drop-Tail queues.

Fig 5 shows the shares of a long and short flow on a multi-
bottleneck topology. The simulation set-up is similar to the one
described above with one long and one short flow. It can be
seen from figure 5 a) TCP-Friendly is almost shut out by the
mis-behaving flows, who now get all the bandwidth. Not only is
the TCP-Friendly flow is forced into multiple timeouts (23 for
this case) but these timeouts occur with very small windows and
are often back to back. This result is also indicative of traffic
based denial-of-service attacks on cooperative users. Similar
results were obtained with a higher multiplexing (of flows) and
with single bottleneck scenarios but due to space constraints are
not reported here.

To summarize, with DropTail queues uncooperative flows
may get significant share of the bandwidth, almost to the extent
of shutting out cooperative flows. This might also be construed
as denial-of-service to the TCP flows [9], [10]. Thus given that
AQM proposals are yet to be deployed on the network and pres-
ence of simple FIFO queueing uncooperative flows not only get
more than their fair share but may also lead to denial-of-service
to conformant flows. As such we are presented with the follow-
ing question: What are the appropriate alternate architectural
responses for managing a network of un-cooperative users, such
that it requires minimal network support ? Moreover, as ECN
and AQMs are eventually deployed on the network, do these
solutions still work ? In the following section we present our
framework which addresses these questions.

5
T

h
ro

u
g
h
p
u
t

(i
n
 p

a
c
k
e
ts

/s
e
c
)

Number of Round Trip Times

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500

Short Flow (Ideal Share)
Long Flow (Ideal Share)

Mis−Behaving Long Flow
Mis−Behaving Short Flow

3000

T
h

ro
u

g
h

p
u

t
(i

n
 p

a
c
k

e
ts

/s
e
c
)

Number of Round Trip Times

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500

Short Flow (Ideal Share)
Long Flow (Ideal Share)

3000

Mis−Behaving Long Flow
Mis−Behaving Short Flow

Number of Round Trip Times

T
h

ro
u

g
h

p
u

t
(i

n
 p

a
c
k

e
ts

/s
e
c
)

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000

Long Flow (Ideal Share)

Mis−Behaving Long Flow
Mis−Behaving Short Flow

Short Flow (Ideal Share)

T
h
ro

u
g
h
p
u
t

(i
n
 p

a
c
k
e
ts

/s
e
c
)

Number of Round Trip Times

0

50

100

150

200

0 500 1000 1500 2000 2500 3000

Short Flow (Ideal Share)
Long Flow (Ideal Share)

Mis−Behaving Short Flow
Mis−Behaving Long Flow

(a) RED (b) CHOKe (c) BLUE (d) Our Proposal
Throughput with Different AQMs

%
 L

in
k
 U

ti
li

z
a
ti

o
n

Time in Seconds

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

%
 L

in
k

 U
ti

li
z
a
ti

o
n

Time in seconds

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

Number of Seconds

%
 L

in
k
 U

ti
li

z
a
ti

o
n

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

Time in Seconds

%
 L

in
k

 U
ti

li
z
a
ti

o
n

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

(e) RED (f) CHOKe (g) BLUE (h) Our Proposal
Link Utilization with Different AQMs

Fig. 4. Multi Bottleneck: Throughput of long TCP-Friendly flows and short uncooperative flows (k=0,l=0.5) flows with different buffer management schemes.

IV. RE-MARKING FRAMEWORK FOR MANAGING

NON-CONFORMANT USERS

Consider a user s, who is described with the help of his rate,��� , a utility function
� � and the Set of links which he uses,

L(s). Let the network be identified with links l of capacity
� '

and the set of users using a link, l, be given by S(l). Further,
assume that the rates are bounded and that the utility functions
are increasing with rates and strictly concave. Then the flow op-
timization problem can be defined as users trying to maximize
their individual utility functions and the network trying to maxi-
mize the resource allocation subject to link capacity constraints.
The problem is formally defined as [14]:

�0� �������	��
������ � � � � � � (4)

��������
�������� ������ � ' �
��� � � ' 	 �* (5)

for all � � � � . The solution to this problem is given by the
following update rules

��� � � � � �"! � �� � �
'$# '

� (6)

'
� � / �
� � � # '

� � � /&% � ������ � ' �
� � � � ' � �(' (7)

where # ' are the dual variables of the problem and can be iden-
tified as penalties, price or link loss probability [14], [12], [11].

From the above update rules it follows that both the rate con-
trol algorithm and the equilibrium rate can be associated with
the utility function user chooses to maximize (equation (6, 7)).
However, given that the same price is being communicated by
the network, the equilibrium rates can be different, but are still
fair from the utility function perspective. Thus a bias in equi-

librium rates can be created by choosing two different utility
functions.

Lets assume that the users are maximizing the utility func-
tion

� � and that the network decides to map every user to
�*)�+(,

.
Then if this mapping were successful, the rate updation algo-
rithm (and thus equilibrium rates) of the users would be

��� � � � � � ! � �)�+(, �
#
� �

where #
� �.- ' ��/ � � � # ' or the end-to-end price. However, the

actual rate control algorithm for users is still given by equation
6. Now suppose that instead of giving an end-to-end price of #

�
the network gives the user � the price #

�021�3
, where

#
�04153 � �"!� � �"! � �)�+6, � �

' ��/ � � � # '
� � (8)

If the user � uses this transformed end-to-end price then his rate
updation algorithm algorithm becomes

��� � � ! � �� �
#
�021�3 � (9)

� � ! � �� � � !� � � ! � �)�+(, � #
� � � � (10)

� � ! � �)�+6, �
#
� � (11)

Thus it follows from the above equation that by communicat-
ing a different price we have transformed the user’s utility func-
tion from

� � � ��� to
�)�+6, � ��� . This transformation can be imple-

mented using the following update rules

'
� � / �
� � � # '

� � � /$% � ������ � ' �
� � � � ' � �(' (12)

� � � � / �
� � �"! � �� �
#
�021�3 � (13)

Theorem 1: Given the non-negativity constraint on �7� and # 'and strictly concave utility functions
� � and

�)�+(,
, the new up-

date algorithm as defined in equations (12, 13) still converges to
the optimal point.

6

Number of Round Trip Times

T
hr

ou
gh

pu
t

in
 p

ac
ke

ts
/s

ec

0

50

100

150

200

250

0 200 400 600 800 1000 1200

Short Flow

Long Flow

Number of Round Trip Times

T
hr

ou
gh

pu
t

in
 P

ac
ke

ts
/S

ec

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

Short Flow

Long Flow

Number of Round Trip Times

T
h
ro

u
g
p
u
t

in
 p

ac
k
et

s/
se

c

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

Short Flow

Long Flow

(a) Ideal Share (b) Impact of Uncooperative Flow (c) With our Proposal

Fig. 5. Performance of Drop-Tail Queueing: Throughputs (in pkts/sec) for two competing flows on a multi-bottleneck setup, long flow is TCP Friendly while the short
flows are uncooperative.

Proof: : See Appendix A

Since all the utility functions are strictly increasing and con-
cave this update rule does not change the network objective,
still minimizes the dual function and converges asymptotically.
Moreover, the above update rule also does not change the core
network, as we retain the price update rule as proposed in [14].
Further, the price being communicated to the user can be up-
dated at the edge. We now state the algorithm for the edge re-
marker as

Edge Marker’s Algorithm:
� For each source, receive from the network the total price for
the source’s traffic as #

� � � � � - ' ��� � ' � # '
� � � .

� Recalculate (or Re-mark) the new price for the source as

#
�041�3 � �"!� � �"! � �)�+6, � �

' ��/ � � � # '
� � <

� Communicate this re-marked price to the source.
The update algorithm for the network and the source are given
by equation (12) and (13) respectively. Finally, we will conclude
this section by the following two theorems on the convergence
of the the algorithm.

Theorem 2: Assume that utility functions,
� � , are increasing,

strictly concave and continuously differentiable, and their cur-
vature is bounded away from 0. Then starting from any initial
rates in the interior of X and prices p(0) � 0, every accumulation
point (� � 	 #

�
) of the sequence (x(t), p(t)) generated by the above

algorithm and equations (12,13) is primal dual optimal.
Proof: See Appendix B.

Theorem 3: The rate of convergence of the edge re-marker’s
algorithm is given by the smallest eigen vector of

����� �
where

A is the routing matrix and B is diag
� � ! � �)�+(, �

#
� � � 	 and #

�
is equi-

librium price.
Proof: Will be outlined in a Tech-Report.

V. IMPLEMENTATION AND SIMULATION SETUP

We implemented the edge based re-marker in the NS (Net-
work Simulator). For a marking based network, the edge based
re-marker was placed on the reverse path (i.e. on the reverse
access link of the user) and re-marked the ACKs. However,
for a dropping based network, we configured the edge-based re-
marker on the exit router in the forward path.

The edge re-marker also estimated the loss rate for each flow
and subsequently used it to re-mark the ACKs. For the purposes
of estimating losses, we used Exponential Weighted Moving
Average (EWMA) and the Weighted Average Loss Indication
(WALI) methods of Equation-based rate control algorithm [7].
We updated these loss indications every RTT and we have as-
sumed that the network knows the RTT of the flows. We also as-
sumed that we know the utility functions of all the flows. In this
paper we present the results for EWMA based loss-estimator.
Similar results were obtained with WALI based estimator. For
EWMA based system we gave 60% weight to the history, while
with the WALI based estimator we measured samples over 8
windows to estimate losses. A more detailed discussion on the
merits and demerits of these schemes can be found in [7]. For
our simulation we used the congestion control and loss recovery
mechanisms of TCP New Reno. Also in this paper, we disabled
the delayed acknowledgments option. The maximum advertised
window is set sufficiently high so that it does not constrain the
actual window. We plot the throughput of competing flows in
packets/sec, averaged over 20 round-trip times.

Figure 3(a) shows the single bottleneck topology used in the
simulations. The access links were configured at a rate 10 times
greater than that of the bottleneck link. All the links use Ran-
dom Early Drop (RED) queues with min thresh and max thresh
set as buffer/3 and 0.8*buffer respectively, where buffer is the
total bottleneck buffer length. Further, the weight was set as
0.002 and the marking probability for RED was set to 0.1. The
RTT was 60ms and the packet size 500B. For simulations with
BLUE, the probability increment and decrement were set to
0.0025 and 0.00025 respectively. Further the hold time was set
to 100ms.

Figure 3(b) shows a multi-bottleneck topology used in the
simulation. The bottleneck buffer was set to 25 packets. We also
evaluated our framework for another multi-bottleneck setup of
bottleneck link of 10 Mbps, access link of 100 Mbps and a buffer
of 150 packets. The link delays were kept the same. RED min-
imum and maximum threshold settings were similar to those of
single bottleneck. Also for all the simulation setups (single or
multi-bottleneck) the access link rate are always 10 times greater
than that of the bottleneck link.

VI. RESULTS

In the following sections we present our simulation results.
Our simulation objectives can be stated as
� Validate the model with single and multi-bottleneck topolo-
gies with varying degrees of (flow) multiplexing.

7

� Examine the robustness of the model in presence of back-
ground (web) traffic and reverse path congestion.
� Verify if the model works with dropping as a congestion no-
tification mechanism.
� Validate if it can work with and without AQMs. Specifically,
evaluate its performance on a network of Drop Tail queues.
� Substantiate and test how to estimate utility functions.
� Test the sensitivity of the model with respect to inaccurate
RTT and utility function estimates.

In the results presented in this section the bias due to large
RTT persists. Removing this bias was not a design goal of
this paper. However, this is not a limitation of our work either.
Removing bias against long RTT flows will imply a Max-Min
sharing of the bottleneck. This can be achieved in our frame-
work by simply choosing an objective function as

�)�+6, � � � �
���������	� � ���
 . This essentially follows from the argument that a
particular form of fairness is associated with every utility func-
tion, for e.g.

��� ��� � * � � � ��� represents proportional fairness.
We refer the reader to [18] for more details.

A. ECN Enabled Network

In this section we will evaluate the performance of the frame-
work when marking can be used a congestion indication. For
the results presented in this section RED was configured on all
routers and it marked packets. We extensively tested our frame-
work with various single and multi-bottleneck topologies and
with different kind of selfish schemes. However, due to space
constraints, in this section we will only present some results with
multi bottleneck topologies.

A.1 Multi Bottleneck Topology

Figure 3 b) shows the multi-bottleneck topology used for sim-
ulations reported in this section. We define long flow as a flow
which traverses both the bottleneck, whereas the short flows are
defined as flows traversing only one bottleneck. In this simu-
lation setup (0.8Mbps, 25 packet buffer), we first measured the
optimal rate allocations when all the flows (long and short) are
TCP friendly and plot them in 6 a). As expected, the short flows
grab more share of the bottleneck because they have smaller
RTTs and go through a single bottleneck as compared to the long
flow. We then changed the short flows to be uncooperative (k=0,
l=0.5) and plot the result in 6 b). The effect of mis-behavior
is more pronounced in this case as the uncooperative flows are
trying to shut out the TCP friendly flow. However, when we
used our model to re-mark the uncooperative flows we see that
(figure 6 c)) the flows now share the bandwidth fairly. More im-
portantly, we see that the result in figure 6 c) is very similar to
6 a), i.e., we have successfully mapped the utility function of the
non-cooperative flows.

In figures 6 d), e) and f) we plot the results for a multi-
bottleneck topology (10Mbps, 250 packets buffer) where on
each bottleneck there are 5 TCP Friendly flows and 5 uncoop-
erative flows (k=0, l=0.5). Figure 6 (d) plots the throughput
of long and short flows, if they all were TCP Friendly. As ex-
pected the longer flows get a smaller share of the bottleneck
than the shorter flows. In Figure 6 (e), we changed the shorter
flows to act as uncooperative flows and plot the throughput, and
it can be seen that the uncooperative shorter flows conveniently
beat down the TCP friendly flows. However, in presence of re-
marking, (Figure 6 (f)) the uncooperative flows are conveyed

higher price by the edge-re-marker and thereby share the bottle-
neck more favorably with the longer flows. Once again, we see
that re-marking tends to achieve the same performance as those
as if all the flows were TCP Friendly.

A.2 Background Traffic

In this section we evaluate the framework in presence of
noise-like mice traffic. HTTP sources were added to the per-
sistent uncooperative and conformant sources. Each http page
sends a single packet request to the destination, which then
replies with a file of size which was exponentially distributed
with 12 1Kb packets. After a source completes this transfer it
waits for a random time, which was exponentially distributed
with a mean of 1 second and then repeats the process.

We tested our framework for both single and multi-bottleneck
simulation setups with different levels of noise where represents
the bottleneck bandwidth occupied by the background (or http
source in this case) flows. For both the setups we varied the
noise level case from 15% to 65%.

Figure 7 shows the results of a multi-bottleneck simula-
tion with 10 competing persistent flows and of these, 7 flows
were TCP Friendly while the remaining 3 where uncoopera-
tive (k=0,l=0.5). The bottleneck bandwidth for this simulation
was 10Mbps and a buffer of size 150 packets. 80 http sources
were added to generate 65% noise (ie the http sources occupied
65% of the bottleneck bandwidth). shows where the noise traf-
fic is 65%. From the results it can be concluded that re-marker
still manages to efficiently patrol uncooperative users. This thus
shows the robustness of the scheme, even when sufficiently high
(65%) noise is present in the network.

A.3 Cross Traffic

In this section we present the results for our penalty function
transformer when two way traffic is present. We evaluate this
scenario with the multi-bottleneck topology, where we have 5
TCP Friendly long flows and 5 uncooperative (k=0, l=0.5) short
flows on each bottleneck. Additionally, on the reverse path,
there are 5 TCP Reno flows on each bottleneck. The bottleneck
bandwidth for this simulation was 10Mbps and a buffer of size
250 packets. Re-marking, once again achieves equitable sharing
of the bottleneck (as shown in Figures 8 (a) and (b)).

B. Performance Evaluation on a Network of Drop-Tail Queues

Up till now we have discussed the uncooperative framework
with re-marking, i.e., we have assumed that ECN support is
available in the network. In this section, we look at the al-
ternative scenario, when drops are used to convey congestion
penalties. Further, we assume that the network operates with
Drop-Tail queues only. Again, we evaluated the performance of
the model with varying degrees of multiplexing but only present
some results for both single and multi bottleneck topologies.

B.1 Single Bottleneck Topologies

We present the result with a single bottleneck of 0.8Mbps and
access links of 8Mbps for 2 competing flows. One of the flows
is TCP-Friendly while the other is misbehaving flow (with k=0,
l=0.5). Both the flows have same RTT of 60ms. Figure 9 shows
the results of with and without the re-marking framework. It can

8

0

50

100

150

200

250

0 2000 4000 6000 8000 10000 12000 14000

Number of Round Trup Times

TCP Friendly Long Flow

T
h

ro
u

g
h

p
u

t
in

 P
ac

k
et

s/
se

c

TCP Friendly Short Flow 2
TCP Friendly Short Flow 1

0

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

TCP Friendly Long Flow

Number of Round Trip Times

T
hr

ou
gh

pu
t

in
 p

ac
ke

ts
/s

ec

Mis-Behaving Short Flow 2
Mis-Behaving Short Flow 1

0

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

TCP Friendly Long Flow

T
hr

ou
gh

pu
t

in
 p

ac
ke

ts
/s

ec

Number of Round Trip Times

Mis-Behaving Short Flow 2

Mis-Behaving Short Flow 1

(a) Ideal Share (b) No-Remarking (c) With Remarking
2 Long, 2 Short Flows on Each Bottleneck

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200

T
h
ro

u
g

h
p

u
t

in
 p

ac
k

et
s/

se
c

TCP Friendly Short Flows (10 in all)

TCP Friendly Long Flows (5 in all)

Number of Round Trip Times

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200

Number of Round Trip Times

T
h

ro
u

g
h

p
u

t
in

 p
ac

k
et

s/
se

c

TCP Friendly Long Flows (5 in all)

Mis-Behaving Short Flows (10 in all)

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200

TCP Friendly Long Flow (5 in all)
Mis-Behaving Short Flows (10 in all)

Number of Round Trip Times

T
h
ro

u
g

h
p

u
t

in
 p

ac
k

et
s/

se
c

(d) Ideal Share (e) No-Remarking (f) With Remarking
5 Long, 5 Short Flows on Each Bottleneck

Fig. 6. Multi Bottleneck: Throughputs (in pkts/sec) for competing flows (2 and 10), where the long flows are TCP Friendly while the short flows are Uncooperative
with (k=0, l=0.5). Ideal bottleneck shares for the long and short flows for 2,10 competing flows are plotted in figures (a) and (d) respectively.

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts

/s
ec

Number of Round Trip Times

TCP Friendly Flows (7 in all)

Mis-Behaving Flows (3 in all)

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts

/s
ec

TCP Friendly Flows (7 in all)

Mis-Behaving Flows (3 in all)

(a) No Re-Marking (b) Re-Marking

Fig. 7. Background Traffic:Throughputs (in pkts/sec) for 10 competing flows in a single bottleneck topology, where 7 flows are TCP Friendly while the other 3 are
Uncooperative with (k=0, l=0.5) with 65% noise.

0

100

200

300

400

500

600

0 200 400 600 800 1000

TCP Friendly Long Flows (5 in all)

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts

/s
ec

Mis-Behaving Short Flows (10 in all)

0

100

200

300

400

500

600

0 200 400 600 800 1000

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts

/s
ec Mis-Behaving Short Flows (10 in all)

TCP Friendly Long Flows (5 in all)

(a) No Re-Marking (b) With Re-Marking

Fig. 8. Cross Traffic: Throughputs (in pkts/sec) for 10 competing flows in a multi-bottleneck topology, where on each bottleneck there are 5 TCP Friendly flows and 5
Uncooperative with (k=0, l=0.5), with two-way traffic.

be seen from the figure 9 that in absence of re-marking the unco-
operative flow gets most of the bottleneck share. However, when
we start re-marking the misbehaving flows this bias against the
TCP-Friendly is reversed. Interestingly, as seen from the figure

9, TCP-Friendly flow gets a better share of the bottleneck. This
is because unlike marking, dropping is a stricter means to con-
vey congestion notification as it can lead to uncooperative flow
timing out and consequently the misbehaving flow suffers.

9

0

50

100

150

200

0 150 300 450 600 750 900 1050 1200

TCP-Friendly Flow (No Remarking)
Misbehaving Flow (No Remarking)

TCP-Friendly Flow (With Remarking)
Misbehaving Flow (With Remarking)

Number of Roundtrip Times

T
hr

ou
gh

pu
t i

n
pa

ck
et

s/
se

c

Fig. 9. DropTail Queues: Throughputs (in pkts/sec) for two competing flows in a
single bottleneck scenario with DropTail queues throughout the network, with
and without Re-Marking. One of the competing flows is TCP Friendly while
the other is uncooperative.

B.2 Multi Bottleneck Topology

Fig 5 presents the results with a multi-bottleneck topology
with two flows on each bottleneck. In this simulation the long
flows were cooperative (or TCP-Friendly) while the short flows
were uncooperative. Fig 5 (a) plots the ideal share, which cor-
responds to the scenario where both long and short flows are
TCP-Friendly. When these short flows are replaced by uncoop-
erative flows,

(� � 	+* � � 	 > it can be seen that these short flows
shut out long flows, see Fig 5 (b). In other words uncooperative
sources are creating a traffic based denial of service to the TCP
flows. However, when we re-map the uncooperative flows, it
can bee seen, Fig 5 (c) that the bottleneck is shared fairly now.
Moreover, the long flows get more than their fair share, which
is because dropping sometimes forces uncooperative flows into
timeouts.

B.3 Background Traffic

C. Background Traffic

In this section we evaluate the robustness of our framework
in presence of noise-like mice traffic. The reader is referred
to VI-A.2 for details about mice traffic generation. We used
a single bottleneck topology and used different level of flow
multiplexing to evaluate the effect of background traffic on the
performance of a DropTail queue network with and without re-
marking. However we only report the results for the case where
there were 10 persistent and of these, 7 flows were TCP Friendly
while the remaining 3 where uncooperative (

(� � , * � �=< >).
The bottleneck bandwidth for this simulation was 10Mbps and
a buffer of size 150 packets. Also in this setup we increased the
noise sufficiently high to validate the robustness of the scheme in
presence of many flows and noise. Figures 10 a) and 10 b) plot
the results for the cases where the noise traffic is 65% (or 80 http
sources), i.e. mice traffic occupied 65% of the bandwidth. Fig-
ure 10 b) shows the robustness of the scheme when sufficiently
high (65%) noise is present in the network and the re-marker
still manages to efficiently patrol uncooperative users.

VII. ESTIMATING THE UTILITY FUNCTION

The framework presented in this paper works well if the net-
work has some information about the rate control scheme being
used by the uncooperative user. Essentially what we need is a
relationship between the rate and the loss probability. This is

then used to compute the re-mapping or re-marking function, as
specified in equation (6). Moreover, this relationship between
rate and loss probability also quantifies the utility function of
the user. With this introduction we will now briefly explain how
we can estimate the utility function of a flow.

In this paper we have chosen BCCS schemes as uncooperative
users. These schemes can be described by their exponent, n, by
the following relationship

��� ��� ���
� 0 (14)

Thus for describing these class of uncooperative flows we just
need to estimate the parameter, n. Consider the following rela-
tionship between rate and the loss probability

� !� � ��� �
(15)

#
 2

� 0 ' � (16)
* � � �
#
� � * � � � 2�� � � � 2 / � � * � � � ��� (17)

where K is some constant. From equation (17), it follows that
estimating the parameter n is nothing but a regression analysis.
Thus to estimate the utility function all we need is measure of
the throughput x and the loss probability p. These can be cal-
culated by either sampling the packet stream (at the egress) or
the ack-stream. Then, given the loss and throughput samples,
Linear Least Squared Errors (LLSE) method could be applied
to estimate n, which is nothing but the slope of the least-square
fit. Moreover, the intercept of the least-squared fit gives us the
ratio of the increase and decrease parameters. This is because
the relationship between loss probability and rate represents the
throughput formula. Since we already know the exponent, 2 ,
and supposing we know the RTT,

�
then it can be shown that for

BCCS schemes 2�� ������ . Thus this simple estimation tech-
nique can also be used to re-map uncooperative flows which are
derived from changing the increase and decrease parameters.

Now we elaborate on our efforts to estimate the utility func-
tion of the misbehaving user. We have assumed that the identity
of misbehaving user is revealed to us. At the edge router, we
can collect samples of throughput (packets sent over time) and
loss rate and a time-series can be constructed. For estimating the
utility function we constructed three time series with bin sizes
of 0.5, 1.0 and 2 seconds, where in each bin we measured the
number of packets sent and the loss rate for that bin. Figure
11 shows the results of a simulation of 2 flows, one TCP and
the other a uncooperative flow with

(� �)* � � < > compet-
ing on a single bottleneck (see 3 a), with the bin size of 2 sec-
onds. The bottleneck capacity was 0.8Mb, the access links of
8Mb and the bottleneck employs RED with a buffer size of 25
packets. Figure 11 a) and b) show the estimation results for the
uncooperative and the TCP flow respectively. The slope of the
graph in each case measures -(n+1), where n is the exponent.
For the uncooperative flow we estimated the exponent to be ap-
proximately 0.6 (the slope of the graph is 1.5) while the actual
value of 2 was 0.5. Similarly for the TCP flow we estimated
the exponent to be approximately 0.8 instead of 1.0. In the fol-
lowing section we will try to quantify the effects of inaccurate
estimates. Specifically, we will use these estimated exponents
to remark the uncooperative flows.

Although LLSE is simple and has faster convergence it suf-
fers from implementational complexities. Specifically its time

10

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 pa
ck

ets
/se

c

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800

TCP Friendly Flow

Mis−Behaving Flow

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 pa
ck

ets
/se

c

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800

Mis−Behaving Flow

TCP−Friendly Flow

(a) No Re-Marking (b) With Re-Marking

Fig. 10. Background Traffic:Throughputs (in pkts/sec) for 10 competing flows in a single bottleneck topology, where 7 flows are TCP Friendly while the other 3 are
Non-Conformant with (k=0, l=0.5) with 65% noise.

4.8 5.0 5.2 5.4 5.6 5.8

log(x)

-6

-5

-4

-3

-2

log
 (p

)

3.85 4.10 4.35 4.60 4.85 5.10 5.35 5.60

log(x)

-6

-5

-4

-3

-2

log
 (p

)
(a) Estimation of Utility Function: Uncooperative Flow (b) Estimation of Utility Function: TCP Flow

Fig. 11. Estimation of Utility Function for 2 competing flows in a single bottleneck topology, where one flow is TCP Friendly flow while other is Uncooperative with
(k=0, l=0.5).

Ex
po

ne
nt

(k
+l

+1
) V

alu
e f

ro
m

LL
SE

Number of Samples

1

1.2

1.4

1.6

1.8

2

0 50 100 150 200

Fig. 12. Exponent Value Vs Sample Size: As the Sample Size increases estimation
gets better. Even Smaller samples give good estimates. Motivates use of RLS.

complexity is � ��� � � , where M is the order of the filter [21].
Moreover, it needs the entire data set a-posteriori to estimate the
parameters. However, there exist LLSE schemes which com-
promise the implementation complexity with convergence. Re-
cursive Least Squares (RLS) [21] is one such scheme. It has a
time complexity of � ��� � and it can recursively use new data
with some incremental work. We will now motivate the need for
using RLS and show that good estimates can be gathered with
small sample set and then the estimates can be improved by fur-
ther measurements. Moreover, with RLS the new measurements
can be incrementally consumed.

A point of concern in estimation is - how many samples are
needed to characterize a source ?. We will address this con-
cern using the example presented above. We took the time-
series used in previous examples and broke it into smaller se-
ries. This thus gives us the results for estimation with smaller
sample space; the new sample sets corresponded to 5, 7, 10, 12,
.., 250 samples. In Fig 12 we have plotted the exponent value
versus number of samples for the uncooperative user. As the
figure shows even with 5 samples the exponent, 2 , is detected to

be 0.7 and as the sample size increases the exponent value fast
approached the true value. This suggests that using estimation
schemes like RLS will make the estimation task easier.

VIII. SENSITIVITY ANALYSIS OF FRAMEWORK

In this section we investigate the effect of inaccurate estima-
tion. Specifically we test the validity of the model in presence of
inaccurate utility function and RTT estimates. RTT-estimation
is needed for updating our congestion indication estimations
(which is similar to the one presented in [7]) while utility func-
tion estimation is needed for re-mapping. Our simulation re-
sults suggests that the inaccurate RTT estimates don’t have a
pronounced effect on the re-mapping, at most they might slow
the convergence (to the objective utility function). However,
large errors in estimation of utility function may over-penalize
the non-conformant sources.

A. Effect of Inaccurate RTT Estimate

In all our previous simulations we assumed that the network
knows the RTT of the flows. We used these RTT estimates to
update our congestion indication estimations. For the results
presented in this section we looked at two cases, one when we
under-estimated the RTT and the other when we over-estimated
it. We present the results with a single-bottleneck of 0.8Mbps,
25 packet buffer and 2 competing flows.

Figure 13 a) shows the results when the RTT was under-
estimated as 0.05 (instead of 0.06). Figure 13 b) shows similar
results when we over-estimated the RTT as 0.07. The figures
suggest that inaccuracy in RTT estimates alters the convergence
speed to the optimal point; a larger value of RTT will slow down
the convergence while a smaller value will increase the conver-
gence. However, from both the results its easy to see that the

11

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

50

60

70

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200

Mis−Behaving Flow (No Remarking)

TCP Friendly Flow (No Remarking)

Mis−Behaving Flow (Remarking)

TCP Friendly Flow (Remarking)

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

Number of Round Trip Times

50

60

70

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200

Mis−Behaving Flow (Remarking)

Mis−Behaving Flow (No Remarking)

TCP Friendly Flow (No Remarking)

TCP Friendly Flow (Remarking)

(a) Under-estimation of RTT (rtt=0.05s) (b) Over-Estimation of RTT (rtt=0.07s)

Fig. 13. Inaccurate RTT Estimates: Throughputs (in pkts/sec) for 2 competing flows in a single-bottleneck topology, where one flow is TCP Friendly flow while other
is Non-Conformant with (k=0, l=0.5), when network has inaccurate RTT estimates.

effect of inaccurate RTT estimation is not pronounced and the
model works well. We ran simulations with higher degree of
multiplexing and came to a similar conclusion. However, we do
not present those results here.

B. Effect of Inaccurate Utility Function Estimate

In this section we evaluate the model’s sensitivity to utility
functions; when the utility functions are under-estimated and
when they are over-estimated. Under-estimation here refers to
the case when we estimate the utility function to be less aggres-
sive than it really is, i.e. when

(/ *
values are reported to be

larger than the actual values. Over-estimation refers to the case
where we report the flow to be more aggressive than it really is,
i.e.
(/ *

values are reported to be smaller than the actual values.
We present the results with a single-bottleneck topology (figure
3 a)) for 2 flows.

Figure 14 a) shows the results when the utility function was
under-estimated as 0.6 (instead of 0.5). Figure 14 b) shows sim-
ilar results when we over-estimated it as 0.4. It can be seen from
the results that the model is sensitive to inaccurate estimate of
utility functions. When we under-estimated the utility function
(
(/�* � �=< �) the model didn’t penalize the uncooperative flow

much, and as such it still garners more bandwidth than the TCP
flow. In the case of over-estimation (

(�/ * �@� < �) we see that
the network penalizes the uncooperative flow more and conse-
quently brings it share down below the TCP Friendly flow.

However, the estimation errors pointed out in the simulation
are large (the error is 20% since we estimate the

(4/ *
values as

0.5 � 0.1). We evaluated the model for two other error estimates,
10% and 5%. As expected, as the estimation error decreases the
model starts to get better. Further we found that for estimation
errors of more than 10% the model does not penalize (or over
penalizes) the uncooperative flow much and it consequently has
a larger (or smaller) share at the bottleneck. We evaluated the
model for different simulation setup, with 10 flows (5 uncoop-
erative, 5 TCP-Friendly) and came to a similar conclusion.

IX. UNRESPONSIVE FLOWS

Unresponsive flows can be identified with constant utility
function, i.e.

��� ��� � ��� 2 � � �=2�� [23]. However, to re-map a
utility function we require of strictly concave utility function.
This is because then these functions can be uniquely inverted
and equation (8) can be applied to them. However unrespon-
sive flows break this strict concavity requirement and as such
our re-mapping does not apply to them.

In order to police these sources we suggest an approach simi-
lar to one described in [17]. Let us denote by

�
the target RTT

and by # the loss rate seen at a router by the responsive flows.
Then using an approximation for the TCP throughput formula
the equivalent TCP steady state rate for a flow with round-trip�

seconds and a loss rate of # is given by

� � � ��< >
���
#

(18)

The network provider can use this target rate, � � , as the fair rate
allowed for the unresponsive flows and then can appropriately
decide where to enforce this rate. Since unresponsive flows do
not react to congestion indications we will need a traffic shaper
to enforce the fair rate. We evaluated this proposal on a single
bottleneck topology and our initial results suggest that for small
number of flows in the system this method can lead to fair shar-
ing of the bottleneck. However, because of space constraints we
do not present the results here.

X. LIMITATIONS OF THE MODEL

In this paper we have proposed an abstract model for mod-
eling and managing uncooperative flows. This paper suggests
that management of mis-behaving flows need not be coupled
with AQM design and can be simply viewed as an edge network
based policing question. We believe that this design arguments
has clear incentives and needs to be pursued further. In this sec-
tion we will debate the merits and the limitations of the model.

The scheme proposed in this paper is sensitive to loss and
utility function estimation. Techniques for loss estimation have
been discussed in detail in [7]. However, these techniques are
still empirical at best and need to to be evaluated further. Estima-
tion of utility function also has a significant impact on the per-
formance of the uncooperative congestion control framework.
Though we have outlined and evaluate LLSE and Non-Linear
LLSE methods for estimating the utility function we need to ex-
pand our work in this direction to include more efficient lattice
based and recursive estimation techniques like RLS. For a more
general utility function as defined in equation (1) we could use
the Non-Linear Least Squared to detect a power-series in x and
n. We are currently working on this estimation problem.

In this paper we do not present any methods for detecting un-
cooperative users, rather we assume that their identity is given
to us. We believe this is a separate but very important issue.
Recently various hashing, filtering and other similar proposals
have been put forward for identifying misbehaving flows [19],

12

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

50

60

70

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200

TCP Friendly Flow (No Remarking)

Mis−Behaving Flow (Remarking)

TCP Friendly Flow (Remarking)

Mis−Behaving Flow (No Remarking)

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

50

60

70

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200

TCP Friendly Flow (No Remarking)
Mis−Behaving Flow (No Remarking)

Mis−Behaving Flow (Remarking)
TCP Friendly Flow (Remarking)

(a) Under-estimation of Utility Function: In-sufficient (b) Over-Estimation of Utility Function: Excessive
Re-marking, Misbehaving Flow Still Wins Re-marking, Misbehaving Over Penalized (Loses to TCP)

Fig. 14. Inaccurate Utility Function Estimates, 20% Estimation Errors: Throughputs for 2 competing flows in a single-bottleneck topology, where one flow is TCP
Friendly flow while other is Non-Conformant with (k=0, l=0.5), when network has inaccurate estimates of source’s utility function.

[5], [3]. Also the increasing use of Smart Sampling in Netflow
benefits us as its puts a first level filter on high bandwidth flows.
This then considerably reduces the number of flows to be moni-
tored and thereafter we can apply any of the methods presented
above to detect uncooperative flows. However, we would also
like to point that the objective of this paper was not to identify
uncooperative flows but how to manage them.

Path asymmetry is another issue which we need to look in de-
tail. If a single exit router is used by the flow then the model
is immune to path-asymmetry problems in the network. Both
unique entry or exit routers is generally true in the present Inter-
net. However, if different exit and entry routers are used for any
flow then we need to study the effect of path-asymmetry.

Despite these limitations, we believe our work is a first step in
modeling and managing uncooperative flows at the edge of the
network by keeping state for only the mis-behaving flows. The
incentives for such an approach are clearly high: the model pro-
posed in this paper can be implemented at the network edges,
works well with both dropping based or an ECN enabled net-
work and more importantly is independent of the buffer manage-
ment scheme deployed on the network. Further, this framework
presented in this paper can be considered as a general traffic
conditioner. Packeteer boxes, deployed widely on the Internet,
already do a similar, though limited, traffic conditioning of re-
ducing congestion by pacing the acks [20] and work well with
large number of flows.

XI. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed an abstract model for model-
ing and managing uncooperative flows. We show that we can
describe the uncooperative (as well as cooperative) flow by util-
ity function. This utility function space can thus be partitioned
to identify uncooperative flows. Within the flow optimization
framework, we propose an edge based model to map a uncoop-
erative user’s utility function,

� � , to any target range of objec-
tive utility function,

�)�+(,
. This re-mapping can be carried by a

transparent manipulation of the congestion penalties.
The model presented in the paper can be implemented at the

network edge and as thus is incrementally deployable. More-
over, this model does not require any changes in the core routers.
However, we do need to store some information about uncoop-
erative sources at the network edge. The model presented in this
paper is also independent of the buffer management algorithm,
i.e. it works not only with any AQM scheme but also with Drop

Tail queues. Also, the proposed solution can work in a dropping
based network as well as in an ECN enabled network.

We have analyzed the framework and evaluated it for various
single and multi-bottleneck scenarios with marking and drop-
ping policies being used for congestion notification. Further we
showed model is robust and works well even in presence of high
background (web) traffic and reverse path congestion. In this pa-
per we also presented a scheme to estimate the utility function
of the uncooperative user. We have also evaluate the impact of
uncooperative flows on existing AQM proposals and our results
suggest that these schemes cannot always manage uncoopera-
tive behavior. We are currently working on ways to improve the
utility function estimation schemes presented in this paper.

REFERENCES

[1] A. Akella etal. Selfish Behavior and stability of the Internet: A Game Theoretic Analysis
of TCP. In Proc. of ACM Sigcomm, Aug 2002.

[2] D. Bansal and H. Balakrishnan. Binomial Congestion Control Scheme. Proc. of IEEE IN-
FOCOM, Tel-Aviv, Israel, March 2000.

[3] F. Baboescu, G. Varghese. Scalable Packet Classification. In Proc. of ACM Sigcomm, San
Diego, Aug 2001.

[4] S. Blake et. al. An Architecture for Differentiated Services. IETF RFC-2475.
[5] W. Feng et. al. Stochastic Fair Blue: A Queue Management Algorithm for Enforcing Fair-

ness. In Proc. of INFOCOM, April 2001.
[6] S. Floyd and K. Fall. Promoting the Use of End-to-end Congestion Control in the Internet.

IEEE/ACM Transactions on Networking, 7(4):458-472, 1999.
[7] S. Floyd, etal. Equation-Based Congestion Control for Unicast Applications. In Proc. of

ACM SIGCOMM, Aug 2000.
[8] S. Floyd and M. Handley and E. Kohler. Problem Statement of DCP.

http://www.icir.org/floyd/papers.html
[9] A. Kuzmanovic and E. Knightly. Low-Rate TCP-Targeted Denial of Service Attacks (The

Shrew vs. the Mice and Elephants). In Proc. of ACM SIGCOMM, Aug 2003.
[10] S. Gorinsky, S. Jain, H. Vin and Y. Zhang. Robustness to Inflated Subscription in Multicast

Congestion Control. In Proc. of ACM SIGCOMM, Aug 2003.
[11] Frank Kelly, Aman Maulloo and David Tan. Rate control in communication networks:

shadow prices, proportional fairness and stability. Journal of the O.R. Society, 49 (1998)
237-252.

[12] S. Kunniyur and R. Srikant. End-To-End Congestion Control: Utility Functions, Random
Losses and ECN Marks., Proc. of IEEE INFOCOM , Tel-Aviv, Israel, March 2000.

[13] D. Lin and R. Morris, “Dynamics of Random Early Detection, ” Proceedings of ACM
SIGCOMM, 1197.

[14] S. H. Low, D. E. Lapsley. Optimization Flow Control, I: Basic Algorithm and Conver-
gence. IEEE/ACM Transactions on Networking, 7(6):861-75, 1999

[15] S. H. Low. A Duality Model of TCP and Queue Management Algorithms. Proc. of ITC
Specialist Seminar on IP Traffic Measurement, Modeling and Management, Sept, 2000.

[16] ”Nishanth R. Sastry and Simon S. Lam. CYRF: A Framework for Window-based Unicast
Congestion Control. In Proc. of ICNP, 2002.

[17] R. Mahajan and S. Floyd. Controlling High-Bandwidth Flows at the Congested Routers.
In ICNP 2001.

[18] J. Mo and J. Walrand. Fair end-to-end window-based congestion control. IEEE/ACM
Trans. on Networking, 8(5):556–567, 2000.

[19] T.J. Ott, T.V. Lakshman, L.H. Wong, SRED: Stabilized RED. In Proc. of IEEE INFO-
COM, 1999.

13

[20] Packeteer. http://www.packeteer.com
[21] J. G. Proakis et. al, ”Algorithms for Statistical Signal Processing”, Prentice Hall, 1st edi-

tion, Jan 2002.
[22] R. Pan, B. Prabhakar and K. Psounis. CHOKe, A Stateless Active Queue Management

Scheme for Approximating Fair Bandwidth Allocation. Proc of INFOCOM, Mar 2000.
[23] S. Shenker. Fundamental Design Issues for the Future Internet. JSAC, vol 13(7), 1995.

APPENDIX

This section will not appear in the final paper but will be made
available through a Tech-Report.
The assumptions used in the paper are as follows
� A1: The Utility functions are continuous, strictly concave and
increasing in their arguments. Further the rates are bounded by
I: [� � 	 � �].
� A2: The curvature of

� � are bounded away from 0 on I, i.e.
� � ! !� � � � � � ��� " � : � .

I. PROOF FOR RE-MAPPING UNCOOPERATIVE FLOWS

FRAMEWORK

Proposition 4: Given the non-negativity constraint on �7� and

' and strictly concave utility functions
� � and

�)�+(,
, the new

update algorithm as defined in equations (12, 13) still converges
to the optimal point.
Proof: The re-mapping function,

� 	� � � ! � �)�+6, �
#
� � , can also be ex-

plained as the solution to the following set of equations:

������ � ' �
� � � � ' 	 �$* (19)

'
� ������ � ' �

��� � � ' � � � (20)

� !� � ����� � � � �
' ��/ � � � # '

� (21)

and #
	 �@� � , which are in turn the KKT conditions for the

following strictly concave maximization problem

�0� �� ��� �
�
- ����� � ����
	 � � !� ��� � � �� � � (22)

������ � ' �
��� � � ' 	 �$* 	 � ��� (23)

	 � � �"!� � �"! � �)�+(, � � � ����� � � (24)

Now differentiating the objective function (as defined in equa-
tion (22) twice with respect to ��� we get� ��� � �� 	 � � !� ��� � � �� � �� � �� � 	 	 � �
	� � � � � � �"! !� � � � � � �"! !)�+6, � � � �

(25)
Then using assumption we conclude that the objective function
(equation 22) is indeed strictly concave. Further it can be con-
cluded that the optimization problem is presented as if all flows
have a utility function of

�)�+6,
. Since the objective utility func-

tions are strictly increasing and concave it follows that the solu-
tion converges to the optimal point.

II. PROOF FOR THEOREM 2

In this section we will outline the proof for Theorem 2. How-
ever this proof requires some Lemmas. Here we will only state

the lemmas and omit their proofs, for reasons of space con-
straints.

Let a function, � � # '
� � � � # '

� � � , � # ' , f(0) = 0 exists for all
links and the following condition holds true�

' ��/ � � �
� �
'
� � �"!� � �"! � �)�+6, � �

' ��/ � � � # '
� � �
#
�041�3

(26)

Then the utility function transformation outlined in equation
(11) can be explained by the following modified dual

� � #
� � ������ � � � � � � �&� '

� �
'
� � ������ � ' �

� � � � ' � (27)

where � � # '
� is defined by equation 26. Now if, � � # '

� is an in-
creasing function in # ' and is always greater than 0; then this
function will not change the minima (because � � # '

� satisfies all
the properties of Lagrangian multipliers).

Lemma 5: Given the non-negativity constraint on � � and # 'and strictly concave utility functions
� � and

�)�+6,
, the function

#
�041�3

, � � # '
� as defined in (26) are non-negative and strictly in-

creasing in their argument.

Lemma 6: Under Assumptions (A1, A2) � � � # � is Lips-
chitz.

Lemma 7: Under assumption (A1, A2) D(p) is lower
bounded, continuously differentiable and convex.

Theorem 8: Assume that utility functions,
� � , are increasing,

strictly concave and continuously differentiable, and their cur-
vature is bounded away from 0. Then starting from any initial
rates in the interior of X and prices p(0) � 0, every accumulation
point (� � 	 #

�
) of the sequence (x(t), p(t)) generated by the above

algorithm and equations (12,13) is primal dual optimal.
Proof: By Lemma 6 and 7 the dual objective function

D(p) is convex, lower bounded and � � � # � is Lipschitz, then
any accumulation point #

�
of the sequence � p(t) � generated by

the gradient projection algorithm is dual optimal [14]. More-
over, the constraints are linear and the primal problem is strictly
concave hence there is no duality gap. Therefore dual optimal is
also primal optimal.

III. TIME VARYING UTILITY FUNCTIONS

Section II outlined some rate control schemes which can be
obtained from time-invariant utility functions. There we only
considered strictly concave utility function. This assumption
implied that all the schemes derived from utility function which
are strictly concave will result in stable schemes. In this sec-
tion we will present some guidelines for deriving rate control
schemes from time varying utility functions. Further, we will
also put forward some conditions which make these rate control
schemes Lyapunov stable.

Consider BCCS schemes where it’s parameters " 	 % 	+()* are
allowed to vary with time. Then our analysis shows that for a
scheme where only % varies with time, either of the following
limitations on % result in a stable scheme (where stability is de-
fined a Lyapunov stability).���

% � � �
�
8�� % � � � � �

" (28)�
% � : � (29)

14

Number of Round Trip Times

Th
ro

ug
hp

ut
 (i

n p
ac

ke
ts/

se
c)

0

20

40

60

80

100

120

140

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Remarking Flow 1 (10% More Bandwidth)
Remarking Flow 2

Flow 1 (No Remarking)
Flow 2 (No Remarking)

Th
ro

ug
hp

ut
 (i

n p
ac

ke
ts/

se
c)

Number of Round Trip Times

0

20

40

60

80

100

0 500 1000 1500 2000 2500

Short Flow (No DiffServ)
Long Flow (No DiffServ)

Short Flow (With DiffServ)
Long Flow (With DiffServ)

3000

(a) Single Bottleneck (b) Multi-Bottleneck

Fig. 15. Differentiated Services: Example illustrating how Simple Service Differentiations can be achieved. The objective here was to increase the share of one flow
by 10%.

where
�

is some constant which depends on number of links
traversed by the flow. The utility function of such a scheme
would then be given by

��� ��� � � "� � � 0 % � � � (30)

and uncooperative (with respect to TCP) flows are given by
�
% � � �

�
¡ � . Similarly, it can be shown that if only the exponents,

i.e.
(+*

, are allowed to vary with time then the rate control
schemes are guaranteed to be Lyapunov stable if�

(�� � � /
�
* � � � � � (31)

and the utility function of such a scheme would be

��� ��� � � "� � � 0 � ��� % (32)

where 2 � � � � (�� � � /�* � � � and again uncooperative sources can
be generated by choosing 2 � � � 8 � .

IV. DIFFERENTIATED SERVICES

In this section we will briefly present how simple differenti-
ated services can be obtained from our framework. As shown
in Fig 1 any uncooperative user can be mapped to a confor-
mant utility space. Exploit this mapping simple differentiated
services can be obtained by re-mapping the utility function to a
higher utility function curve, for example map

� �
to
� �

(Fig 1).
Though theoretically it is possible to map a utility function to

a higher utility function, e.g. map
� �

to
� �

, but in practice it im-
plies reducing the end-to-end price for

� �
. This clearly cannot

work in a dropping based network. Moreover this line of direc-
tion is also flawed when applied to a marking based network.
This is because a mark always represents a congestion state and
by removing a mark would only delay the congestion indication,
which is in turn more harmful for the source. Hence we need
to take a slightly different approach. Suppose that there are two
flows, 	 � 	 	 � , in the network, and the utility function of both the
flows is

���
. Further assume we need to provide differentiated

services to 	 � such that it always receives 10% more bandwidth
than 	 � . This can be implemented in our framework by sim-
ply re-mapping the utility function of 	 � to

� �
, such that the

function
� � � ���� �
#
� � ��� � � � ���� �

#
� � � where � � #

� represents the re-
marking function which achieves the mapping of

� �
to
� �

and� � 	 � � represents the steady state rates of 	 � 	 	 � respectively.
In Fig 15 a) we plot one such result for a single bottleneck

topology, where both the flows use TCP and go over a bottleneck

link of 0.8Mbps, the buffer size is 25 packets and the RTT is
60 ms. The aim of the simulation was to given one flow 10%
more bandwidth than the other flow. As shown in the figure,
by re-mapping one of the flows to a lower utility function we
can achieve simple differentiated service. A similar result is
plotted for a multi-bottleneck scenario in Fig 15 b) where the
aim was to increase the share of the long flow by 10%. In this
simulation the bottleneck capacity was again 0.8Mbps, buffer
size of 25 packets, there was one long and one short flow on
each bottleneck and all the flows used TCP.

Thus the framework presented in this paper can be extended
to provide service differentiation. This solution is attractive be-
cause it can be achieved irrespective of the congestion control
scheme employed by the user and also does not require any sup-
port from the core routers in the network. Moreover, it works
with Drop-Tail queues.

