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Abstract—The self-similarity of network traffic has been established
in a variety of environments and it is well known that self-similar traffic
can lead to larger queueing delays, higher drop rates and extended pe-
riods of congestion. In this paper, we investigate the impact of various
buffer management algorithms on the self-similarity of network traf-
fic. In this paper we investigate the impact of active and passive queue
management policies used at the routers on the self-similarity of TCP
traffic. We also propose a modification to the RED algorithm, aimed at
reducing the timeouts and exponential backoffs in TCP flows, and show
that it can lead to significant reductions in the traffic self-similarity un-
der a wide range of network conditions, as compared to the currently
implemented active and passive buffer management policies. We also
show that though our techniques are aimed at TCP related causes, it
is also effective in reducing the degree of self-similarity in traffic even
when application and user level causes are also present, as long as TCP
is used as the underlying transport protocol.

I. INTRODUCTION

The self-similar nature of network traffic has been estab-
lished in a variety of network environments and its causes
have been traced to various factors. These causes range from
source and application level behavior of traffic sources [1],
[19] to transport layer [4], [6], [8], [11], [15], [17], [18] as
well as human factors [1]. In this paper we investigate the
impact of active and passive buffer management policies on
the protocol (TCP) related causes of self-similarity. It is also
well known that the self-similar and multifractal nature of
traffic can lead to a number of undesirable effects like high
buffer overflow rates, large delays and persistent periods of
congestion [2], [3], [12], and the severity of these condi-
tions is directly proportional to the degree of self-similarity
or the Hurst parameter. In this paper, we present a modified
version of the Random Early detection (RED) [7] algorithm
which can be used to reduce the degree of self-similarity in
TCP traffic.

Our focus in this paper is to investigate the impact of
buffer management policies on the self-similarity of network
traffic. In particular, we investigate how buffer management
policies can affect the TCP related causes of self-similarity.
TCP related causes of self-similarity have been investigated
in [4], [6], [8], [11], [15], [17], [18] and it is shown in [6],
[8], [15] that TCP’s reaction to losses through timeouts and
exponential backoffs can contribute to the self-similarity of
traffic. We evaluate the impact of current active and passive
buffer management protocols on the timeouts and exponen-
tial backoffs. Based on these results, we develop a variation
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of the Random Early Detection (RED) queue management
algorithm and show that it performs better than both passive
taildrop as well as RED queues. The improvement in per-
formance is both in terms of reduced self-similarity as well
as throughput, loss rates and percentage of timeouts in the
TCP flows. Our technique also works even when non TCP
related causes of self-similarity are present, as long as TCP
is used as the transport protocol. To support this claim, we
show using simulations that even with the presence of web-
traffic with heavy-tailed file sizes and typical user behavior
patterns, the self-similarity of the traffic is eliminated at low
loads and significantly reduced at moderate and high loads
if we implement our proposed schemes.

The rest of the paper is organized as follows. Section II
defines some of the terminology while Section III investi-
gates the impact of three buffer management schemes on
traffic self-similarity: taildrop, RED and a proposed modi-
fied RED algorithm. Finally, Section IV presents the results
and V presents the discussions and concluding remarks.

II. DEFINITIONS

In this paper, we use the following definition of self-
similarity: Let X � �Xt � t � �� �� �� � � �� be a covariance
stationary process with mean �, variance �� and autocor-
relation function r�k�� k � �. For each m � �� �� � � �, let
X�m� � �X

�m�
k � k � �� �� � � �� denote the new covariance

stationary time series (with corresponding autocorrelation
function r�m�) given by: X �m� � ��m�Xkm�m�� � � � ��
Xkm�� k � �. The process X is called (exactly) second-
order self-similar with self-similarity parameter H � � �
��� if for all m � �� �� � � �, var�X �m�� � ��m�� and

r�m��k� � r�k�� k � � (1)

and X is called (asymptotically) second order self-similar
with self-similarity parameterH � ����� if for all k large
enough,

r�m��k�� r�k�� as m�� (2)

III. BUFFER MANAGEMENT POLICIES AND

SELF-SIMILARITY

In this section we investigate the effect of different of
buffer management policies on the self-similarity of traf-
fic passing through it. We consider both passive and active
queue management algorithms as represented by taildrop



and RED queues respectively. We also propose a change to
the current RED algorithm which results in lower degrees of
self-similarity. We first investigate how the loss patterns re-
sulting from these policies affect the behavior of TCP flows
in terms of the number of timeouts before presenting the re-
sults on their impact on the self-similarity of network traffic.

A. Taildrop Queues

Taildrop queues are currently the most widely imple-
mented queueing mechanisms in routers in the Internet [10].
The first-in-first-out (FIFO) policy of taildrop queues, cou-
pled with the bursty nature of TCP traffic implies that the
packet drops from a taildrop queue become correlated and
multiple packets can get dropped from the same window.

To model the effect of taildrop queues on the probability
of timeouts in TCP flows, we use the correlated loss model
used in [10] and [13]. In this model, a packet in a window
is lost independently of losses in other rounds. However,
losses within a window are correlated and all packets fol-
lowing the first packet to be lost in window are also assumed
to be lost. As noted in [10] and [13], this model is quite re-
alistic for taildrop queues with TCP traffic given the bursty
nature of TCP sources with back to back packet transmis-
sion. With correlated losses, the probability that an arbitrary
packet loss in a TCP flow with cwnd � w and a loss rate of
p leads to a timeout is given by [10], [13]

Q�w� �

���
��

� for � � w � 	

�� p���p��w��

�����p�w for 
 � w � �

�� p���p����p��w��

�����p�w for � � w �Wmax

(3)
where Wmax is the maximum allowable window size.

B. RED Queues

RED is an active queue management algorithm which
randomly drops packets before a queue becomes full, so that
end nodes can respond to congestion before buffers over-
flow and was proposed in [7]. RED probabilistically drops
packets even before the queue is full based on a weighted
average of the queue length. An RED queue maintains two
thresholds which determine the rate of packet drops: a lower
threshold, minth, and an upper threshold, maxth. For each
packet arrival at the queue, based on the current average
queue length k, the drop drop probability for the packet d�k�
is calculated and is given by

d�k� �

��
�

� for k � minth
k�minth

maxth�minth
maxp for minth � k � maxth

� otherwise
(4)

where maxp is a control variable denoting the maximum
drop probability. The reader is referred to [7] for the detailed
RED algorithm.

For a RED queue the packet drop pattern is closely mod-
eled by an independent loss model as noted in [14] and the

references therein. When the average queue length is be-
tween minth and maxth, as it should be when the con-
trol parameters are properly selected, the incoming packets
are dropped randomly conforming to the independent loss
model. In the independent loss model, losses in a window
are assumed to be independent of losses in other rounds. Ad-
ditionally, losses in a given window are also assumed to be
independent of each other. From [9] and [14], with the inde-
pendent loss model the probability that an arbitrary packet
drop leads to a timeout in a TCP flow with a window of w
packets experiencing a loss rate of p is given by

Q�w� �

�����
����

� for � � w � 	

�� wp���p�w

�����p�w for 
 � w � �

�� wp���p�w

�����p�w for � � w �Wmax

�w�w���p����p�w�n��

�����p�w

(5)
Note that with independent losses, the probability of time-
outs is much lesser than that predicted by the correlated
model. This leads to the intuition that the self-similarity
in traffic passing through RED queues will be much lesser
than that through taildrop queues. We verify this intuition
through simulations later in this section.

C. Modified RED Queues

The independent loss model for the packet drop in a RED
queue is very accurate for the cases when the average queue
length stays between maxth and minth. However, if the of-
fered load is so high that the average queue length becomes
close to maxth, RED fails to perform better than taildrop
queues and the traffic passing through the RED bottleneck
can have higher values ofH as compared to taildrop queues.
This is due to the fact that when the average queue length
becomes greater than maxth, RED drops each packet with
probability 1. This leads to multiple packet drop from the
same window, resulting in timeouts.

To deal with this situation, we propose a change to RED’s
dropping policy. The new algorithm for packet dropping
is shown in Algorithm 1. The idea is not to drop any two
consecutive packets which arrive at the queue, unless of
course if the queue is full. Since TCP generally sends back
to back packets, ensuring that no two consecutive packets
are dropped will reduce the probability that multiple pack-
ets from the same window are dropped, thereby reducing
the occurrence of timeouts. Note that in the algorithm, we
do not change the unconditional dropping probability d�k�
as calculated for the original RED algorithm.

To calculate the probability that any arbitrary packet ar-
riving when the average queue size is k is dropped, d��k�,
we first refer to Figure 1. The three states, denoted by fi� jg
with i� j � �� � and i � j �� �, represent the possible condi-
tions the queue can be in depending on whether the current
or the previous packet was dropped or not. The global bal-
ance equations for the transition probabilities from the three



Algorithm 1 Modified Dropping algorithm of RED
last drop flag 	 0
for Each Packet Arrival do

if last drop flag = 1 then
last drop flag = 0;
goto enqueue;

else ifminth � avg � maxth then
with probability d�k�, drop the packet
if packet is dropped then

last drop flag = 1;
end if

else ifmaxth � avg then
Drop the packet;
last drop flag = 1;

else
goto enqueue;

end if
end for

1-d(k)

1-d(k)

d(k)

d(k)

1
0,1

1,00,0

Fig. 1. Packet drop probabilities with the modified RED algorithm

states can be written as

P���d�k� � P������ d�k��

P��� � P���d�k� � P���d�k�

P��� � P��� (6)

where Pi�j denotes the steady state probability of being in
state i� j. These steady-state are then given by

P��� �
�� d�k�

� � d�k�
P��� �

d�k�

� � d�k�
P��� �

d�k�

� � d�k�

In this modified RED algorithm, the probability that any ar-
bitrary arriving packet is dropped when the average queue
length is k, � � k � qlen, is thus

d��k� � P���d�k� � P���d�k� �
d�k�

� � d�k�
(7)

The analysis above assumes that successive packets see the
same weighted average queue length and thus the same d�k�.
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Fig. 2. Comparison of packet drop probabilities in the RED and modified
RED buffer management policies.

Correlated
Independent

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

1.0

0.6

0.8

P
ro

b
ab

il
it

y
 t

h
at

 a
 L

o
ss

 L
ea

d
s 

to
 T

im
eo

u
t

Packet Loss Probability

Fig. 3. Comparison of timeout probabilities for TCP flows with a window
of 5 with correlated and independent loss models.

We note that if maxp is small as is suggested in litera-
ture on RED parameter configuring, then this modification
does not significantly affect the drop rates while the aver-
age queue length is less than maxth. However, when the
average queue length exceeds maxth but is less than qlen,
the packet drop probability becomes 0.5 as compared to 1
in RED. This is a sufficiently high drop rate to force TCP
sources to reduce their transmission rates but without induc-
ing a lot of timeouts.

The difference in the packet drop rates from a RED and
our modified RED queue is shown in Figure 2. The results
are for a buffer size of K � �, minth � ��, maxth � 
,
maxp � ��� and wq � �����. Note that when the average
queue size becomes greater than maxth, the packet loss rate
for the modified RED queue is only 0.5 as compared to 1
for RED. Figure 3 gives a feel of the difference in the time-
out probabilities in taildrop and RED queues where we plot
the probability that a loss in a TCP flow with a congestion
window of 5 leads to a timeout in the case of correlated and
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Fig. 4. Topology of the network for the validation tests.

independent losses. We see that with correlated losses, the
probability of timeouts are much higher for the same loss
rates. Also, since the packet drop probabilities for the mod-
ified RED queue are smaller that those for a RED queue
with the same parameters for a given value of the average
queue length, the corresponding probability of timeouts in
the modified RED queue would also be smaller.

IV. RESULTS

We now compare the self-similarity of the traffic with the
three buffer management policies. These results were gen-
erated by simulations using the simulator ns. While the tail-
drop and RED queues are already available in the ns pack-
age, we implemented the modified RED algorithm in ns.
The topology used for the simulations is shown in Figure
4. The simulations for each queueing policy is again bro-
ken in two parts: the presence or absence of web traffic. The
web traffic is introduced as background traffic for more real-
istic wide area networking scenarios and to get a feel of the
effectiveness of the buffer management techniques in reduc-
ing the self-similarity introduced by application level and
human causes [1].

In the simulations with absence of web traffic, all the
sources correspond to very long TCP Reno sources which
are active for the entire duration of the simulation. In the
simulations with web traffic, a subset of the sources and des-
tinations act as web traffic clients and servers. The column
“Configuration” in Tables I and II enumerates the number
of log flows and web sessions in each simulation. The web
traffic was generated according to the methodology and pa-
rameter settings described in [5].

For the simulations, the buffer size of the taildrop as well
as the RED and modified RED queues was kept at 100 pack-
ets. For the RED and modified RED queues, the other pa-
rameters were minth � 	�, maxth � ��, maxp � ��� and
wq � �����. All the simulations were conducted for a ”sim-
ulated” time of 3600.0 seconds. The self-similarity results
corresponds to the aggregated traffic trace at the bottleneck
while the throughput corresponds to the statistics of the long
TCP flows. For estimating the Hurst parameters, we used
three of the widely used methods [16]: the absolute value
method, R/S statistics method and the periodogram method.
The values of H obtained from each of the three methods
are very close and lie within 
���	 of each other.

In Tables I and II we compare the values of H for the
three queueing disciplines considered, for simulations with
and without web traffic respectively. For the case without
web traffic (Table I), we note that as expected, the taildrop
queue always performs worse that the other two disciplines
in terms of the degree of self-similarity. Also, the modified
RED queue performs better than the other two queueing dis-
ciplines. We note that for the case with 60 flows the RED
and the modified queue perform almost the same. The rea-
son behind this is that with such a large number of flows,
the average queue length is approximately maxth. This
leads to consistent multiple drops from the same window
and thus the flows go into timeouts approximately equally
often. However, this particular case corresponds to the situ-
ation where the RED and the modified RED queue param-
eters are not properly tuned. In cases where the average
queue length stays between maxth and minth (30, 40 and
50 flows) we see that modified RED performs better than
simple RED.

For the results in the simulations with web traffic (Table
II) we see a slightly different trend in the results. We see that
for lower loads the Hurst parameters corresponding to the
taildrop queue are higher than both the RED and the modi-
fied RED algorithms. As the load on the network increases,
the Hurst parameter of the traffic in the RED queue becomes
more than the other two scheduling disciplines. However,
we note that for all cases, the modified RED algorithm per-
forms better than the others or equals the best performance.
The difference in the trend in the traffic self-similarities in
this case is due to the introduction of heavy tails through the
web traffic.

In Tables I and II we also compare the throughputs of
the long TCP flows in the simulation scenarios. The im-
provement in the throughput with RED queues over taildrop
queues is around 1-3% for the cases without web traffic and
5-11% in the presence of web traffic. In the absence of web
traffic, the throughput of the RED and modified RED are al-
most identical. However in the presence of web traffic, the
throughput of the modified RED generally increases and the
increase is around 5%.

V. SUMMARY

In this paper we explored the effect of buffer management
policies on the self-similarity of TCP traffic. Researchers
have shown that the timeouts and exponential backoffs in
TCP flows in the presence of losses can contribute to the
self-similarity of network traffic. We investigated the im-
pact of taildrop and RED queues on the number of time-
outs and degree of self-similarity of TCP flows. We ob-
served that for moderate and low loads, both the incidence of
timeouts and Hurst parameter are lower with RED queues.
However, this is no longer true when the network load in-
creases where RED’s performance resembles that of tail-
drop queues. To address this issue, we proposed a modifi-
cation to RED which ensures that no two consecutive pack-



Configuration Taildrop RED Modified RED
Throughput H Throughput H Throughput H

30 Long 34738.67 0.61 35105.33 0.50 34952.59 0.50
40 Long 26514.67 0.75 26780.50 0.50 26750.33 0.50
50 Long 21545.11 0.80 22086.89 0.55 21819.80 0.50
60 Long 18253.89 0.82 18877.33 0.69 18824.07 0.70

TABLE I

QUEUES WITHOUT WEB TRAFFIC: THROUGHPUT (IN BITS/SEC) AND HURST PARAMETERS FOR THE THREE BUFFER MANAGEMENT POLICIES.

Configuration Taildrop RED Modified RED
Throughput H Throughput H Throughput H

10 Long, 5 web 63988.44 0.58 72982.00 0.50 63055.77 0.50
15 Long, 5 web 42099.70 0.67 44785.19 0.60 47422.37 0.57

10 Long, 10 web 33005.78 0.74 37165.11 0.76 34517.33 0.75
15 Long, 10 web 22318.52 0.77 23449.48 0.84 25204.88 0.77
20 Long, 10 web 17508.89 0.80 19952.00 0.91 21275.88 0.80

TABLE II

QUEUES WITH WEB TRAFFIC: THROUGHPUT (IN BITS/SEC) AND HURST PARAMETERS FOR THE THREE BUFFER MANAGEMENT POLICIES.

ets are dropped thereby reducing correlated losses and time-
outs. Our results show that while the RED queue leads to
lower degrees of self-similarity when only long TCP flows
are present, in the presence of web-traffic, taildrop queues
can lead to lower degrees of self-similarity at high loads.
However, the modified RED queue consistently gives the
lowest degree of self-similarity for all these scenarios. Also,
the modified RED algorithm is able to eliminate the self-
similarity of traffic at low and moderate loads for the topol-
ogy and traffic sources considered and only at high loads
does the traffic become self-similar.

While we considered only the causes of self-similarity
from the TCP point of view, our solutions are also effective
against other causes of self-similarity like session interar-
rival times and heavy tailed distributions in the file sizes, as
long as the traffic is carried using TCP. We carried out sim-
ulations where background web traffic generated according
to empirical distributions was also present and showed that
the modified RED algorithm can reduce the degree of self-
similarity in those cases also.
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