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ABSTRACT
The capacity of ad hoc wireless networks is constrained
by the interference between concurrent transmissions from
neighboring nodes. Gupta and Kumar have shown that the
capacity of an ad hoc network does not scale well with the
increasing number of nodes in the system when using om-
nidirectional antennas [6]. We investigate the capacity of
ad hoc wireless networks using directional antennas. In this
work, we consider arbitrary networks and random networks
where nodes are assumed to be static.

In arbitrary networks, due to the reduction of the interfer-

ence area, the capacity gain is proven to be
√

2π
α

when using

directional transmission and omni reception. Because of the
reduced probability of two neighbors pointing to each other,

the capacity gain is
√

2π
β

when omni transmission and direc-

tional reception are used. Although these two expressions
look similar, the proof technique is different. By taking ad-
vantage of the above two approaches, the capacity gain is
2π√
αβ

when both transmission and reception are directional.

For random networks, interfering neighbors are reduced
due to the decrease of interference area when directional
antennas are used for transmission and/or reception. The

throughput improvement factor is 2π
α

, 2π
β

and 4π2

αβ
for direc-

tional transmission/omni reception, omni transmission/direc-
tional reception, and directional transmission/directional re-
ception, respectively.

We have also analyzed hybrid beamform patterns that are
a mix of omnidirectional/directional and a better model of
real directional antennas.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Miscella-
neous
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1. INTRODUCTION
Ad hoc wireless networks are wireless networks without

fixed base stations or any wireline backbone infrastructure.
The nodes use peer-to-peer packet transmissions and mul-
tihop routes to communicate with each other. Throughput
capacity is a key characteristic of ad hoc networks. Con-
sider an ad hoc network with n nodes randomly located in
a domain of area one square meter. It was shown by Gupta
and Kumar in [6] that under a Protocol Model of interfer-
ence, such a network could provide a per node throughput
of Θ( 1√

nlogn
) bits/sec. It was also shown there that even

under the best possible placement of nodes, such a net-
work could not provide a per-node throughput of more than
O( 1√

n
) bits/sec. In this case, the total end-to-end capacity

is roughly O( n√
n
), which is O(

√
n).

The key reasons why the overall capacity is reduced are:
a) interference in a zone around the receiver prevents any

other node in the zone from receiving data from any trans-
mitter.

b) as the number of hops increases, the “forwarding bur-
den” of nodes increases; i.e., they spend a fraction of their
capacity relaying other nodes’ traffic rather than their own.
Even if the interference zone around receivers is of area 0,
due to range limits of any one-hop, the multi-hops necessary
for a large network may in general grow as

√
n.

Several works study how these reasons affect the capacity
of the network and try to find ways to complement these
effects. Li et al.[9] examine interactions of the 802.11 MAC
and ad hoc forwarding and the effect on capacity for sev-
eral simple configurations and traffic patterns. It is shown
that for total capacity to scale up with network size the av-
erage distance between source and destination nodes must
remain small as the network grows. In [5], Grossglauser and
Tse propose a scheme that takes advantage of the mobil-
ity of the nodes. By exploiting node mobility as a type of
multiuser diversity, they show that the throughput can in-
crease dramatically when nodes are mobile rather than fixed.
Gastpar and Vetterli [4] study the capacity under a different



traffic pattern. There is only one active source and desti-
nation pair, while all other nodes serve as relay, assisting
the transmission between this source-destination pair. The
capacity is shown to scale as O(log n). Liu et al. [10] study
the throughput capacity of hybrid wireless networks formed
by placing base stations in a ad hoc network. This is not a
pure wireless ad hoc network since these base stations are
connected by a high-bandwidth wired network. They show
if the number of base stations m grows faster than

√
n, the

throughput capacity increases linearly with the number of
base stations.

Such research on the capacity of wireless ad hoc networks
and the popular IEEE 802.11 protocol typically assume the
use of omnidirectional antennas at all nodes. An outcome of
this assumption is that all nodes lying in the vicinity of a pair
of communicating nodes are required to stay silent. How-
ever, with directional antennas, more than one pair of nodes
located in each other’s vicinity may potentially communicate
simultaneously, depending on the directions of transmission.
This can increase spatial reuse of the wireless channel.

Nasipuri et al. [11] propose a MAC protocol for an ad
hoc network of mobile wireless nodes that are equipped with
multiple directional antennas. Their protocol uses a varia-
tion of the RTS/CTS exchange to let both source and desti-
nation nodes determine each other’s directions. Simulation
experiments indicate that by using four directional antennas
in each node, the average throughput in the network can be
improved 2∼3 times over that obtained by using CSMA/CA
with omnidirectional antennas.

Ko et al. [7] present a DMAC protocol that exploits the
characteristics of both directional and omnidirectional an-
tennas to allow simultaneous transmissions that are not al-
lowed in the 802.11 protocol. Choudhury et al. [3] designs
another MMAC protocol which uses multi hop RTS’s to es-
tablish links between distant nodes, and then transmit CTS,
DATA and ACK over a single hop. Simulation results show
that MMAC outperforms DMAC as well as 802.11 on most
of the topology configurations and the traffic patterns.

Ramanathan [12] raises several interesting issues resulted
from spatial reuse and larger transmission range of switched
or steered beamforming antenna. He evaluates the effective-
ness of a number of enhancements, including channel access
approaches, link power control, and directional neighbor dis-
covery. Simulation results show that beamforming can yield
a 28% to 118% improvement in throughput and up to a
factor-of-28 reduction in delay.

Bao and Garcia-Luna-Aceves [1] propose ROMA (Receiver-
Oriented Multiple Access), a distributed channel access sche-
duling protocol for ad hoc networks with directional anten-
nas that are capable of forming multiple beams to carry out
several simultaneous data communication sessions. Unlike
random access schemes that use on-demand handshakes or
signal scanning to resolve communication targets, ROMA
determines a number of links for activation in every time
slot using only two-hop topology information.

Most of these works focus on designing MAC protocols
to take advantage of the use of directional antennas and
thus improve the performance of wireless ad hoc networks.
Consequently, there is still a need to provide a theoretical
framework to understand how much capacity improvement
can be achieved.

We introduce an interference model for antennas to ana-
lyze the capacity improvement on using directional anten-

nas. We consider two types of networks, Arbitrary Networks,
where the node locations, destinations of sources, and traf-
fic demands, are all arbitrary, and Random Networks, where
the nodes and their destinations are randomly chosen. Basi-
cally random implies a statistical distribution and arbitrary
means the distribution could be arranged to achieve best
result in terms of capacity.

First we give a brief description of the antennna back-
ground in order to introduce our antenna model.

2. ANTENNA MODEL
The antenna family has more than twenty types of anten-

nas which can be grouped in variable ways [8]. In the study
of wireless networks, the antenna model is often grouped
under omnidirectional and directional. Omnidirectional an-
tennas, also known as isotropic antennas, radiate and receive
equally well in all directions. This unfocused approach scat-
ters signals, reaching desired users with only a small per-
centage of the overall energy sent out into the environment.

Given the limitation of omnidirectional antennas, direc-
tional antennas are used to overcome this inadequacy. Fig.1
shows a common directional pattern in two-dimension [2].
The main lobe is the direction of maximum radiation or
reception. In addition to the main lobe, there are also side-
lobes and backlobes. These lobes represent lost energy so
good antenna designs attempt to minimize them. We al-
ways want the main lobe to extend toward a user with a
null directed toward a co-channel interferer. In this paper,
the beamwidth refers to HPBW (Half-Power Beamwidth),
measured between the -3 dB points, i.e. the points on the
main lobe where the signal strength drops off -3 dB (one-
half) from the maximum signal point.

Figure 1: Radiation Pattern for Directional Anten-
nas

In physical layer, the parameter to measure the antenna is
the gain in each directional. Antenna gain is given in units
of dBi (dB gain with respect to an isotropic source) or dBd
(dB gain with respect to a half-wave dipole). In medium
access technology, the transmission or receiving range is al-
ways used to describe the distance the antenna can reach.
From two-ray pass loss model [13], it is easy to get that the
distance is an inversely proportional function of the antenna
gain, with the exponent factor 4. In our model, we use a
circle to model the omnidirectional antenna, with the only
parameter - radius r indicating the transmission or receiving
range.

We approximate the directional antenna pattern as a cir-
cular sector with radius r and angle α or β depending on the
mode of the antenna (α for transmitter and β for receiver).
We use different parameters for antenna beamwidths of trans-
mitters and receivers because we use a new conditional prob-
ability argument to handle the case of directional recep-



tion. Radius r represents the transmission range or receiv-
ing range according to the antenna mode. The angle of the
sector approximates the beamwidth of the antenna pattern.
The reasons we simplify the antenna model are as follows.
It’s difficult to model a real antenna with precise values from
main lobes, sidelobes, and backlobes. As we will show in the
following sections, the only thing that matters is the inter-
ference area of the nodes. Simplifying the shape of antenna
pattern will not change this property and using a complex
model will not result a fundamental change in our work on
capacity analysis.

3. THE TRANSPORT CAPACITY FOR AR-
BITRARY NETWORKS

3.1 Interference Model
We build the sender-based interference model as follows:

the interference zone is defined as the area that a transmis-
sion can cover. That is to say, this transmission will interfere
with all the nodes except the intended receiver. The reason
that we use the sender-based interference model instead of
the receiver-based model in [6] is that this model can result in
the same scaling law yet is easier to be extended to analyze
directional antennas.

We assume the senders should be set apart in order to
avoid collision in the intersection of the transmission zones.
This is a conservative assumption of the real case, since
things may be better in practice. All the bounds derived
from this model hold for this assumption. Also the capac-
ity improvement achieved by using directional antennas is
feasible.

First let’s consider the simplest case whose transmission
and reception are both omnidirectional. Suppose node Tx1

and node Tx2 are transmitting over the mth subchannel,
where their transmission ranges are r1 and r2, respectively.
Then these two transmitters should be at least at a distance
(1+∆)(r1 + r2) to avoid collision from each other, which is:

|Tx1 − Tx2| ≥ (1 + ∆)(r1 + r2) (1)

The quantity ∆ > 0 models situations where a guard zone
is specified by the protocol to prevent a neighboring node
from transmitting on the same subchannel at the same time.
We require the guard zone ∆ > 0.

The Interference Model is illustrated in Fig.2, which, for
simplicity, uses the same transmission range for each node.

Figure 2: Sender-based Interference Model

We consider the setting on a planar disk of unit area. Con-
sider the following assumptions:
(A1) There are n nodes arbitrarily located in a disk of unit
area on the plane. These nodes are immobile.
(A2) The network transports λnT bits over T seconds.

(A3) The average distance between the source and destina-
tion of a bit is L̄. So together with (A2), this implies that a
transport capacity of λnL̄ bit-meters per second is achieved.
(A4) Each node can transmit over any subset of M subchan-
nels with capacities Wm bits per second, 1 ≤ m ≤ M , where∑M

m=1 Wm = W .
(A5) Transmissions are slotted into synchronized slots of
length τ seconds.

3.2 Omnidirectional Antennas
Now we get to the proof part for the upper bound on trans-

port capacity using omnidirectional antennas. We adopt the
reasoning introduced in [6] to get the upper bound for trans-
port capacity of the network.

Consider bit b, where 1 ≤ b ≤ λnT . Let us suppose that it
moves from its origin to its destination in a sequence of h(b)
hops, where the hth hop traverses a distance of rh

b . Then
from (A3)

λnT∑
b=1

h(b)∑
h=1

rh
b ≥ λnT L̄ (2)

Note now in any slot at most n/2 nodes can transmit.
Hence for any subchannel m and any slot s

λnT∑
b=1

h(b)∑
h=1

1(The hth hop of bit b is over

subchannel m in slot s) ≤ Wmτn

2
(3)

Summing over the subchannels and the slots, and noting
that there can be no more than T

τ
slots in T seconds, yields

H :=
λnT∑
b=1

h(b) ≤ WTn

2
(4)

From the Interference Model introduced above, disks of
radius (1 + ∆) times the lengths of hops centered at the
transmitters over the same subchannel in the same slot are
essentially disjoint. Ignoring edge effects, all these disks
are within the domain. Since at most Wmτ bits can be
carried in slot s from a receiver to a transmitter over the
mth subchannel, we have

λnT∑
b=1

h(b)∑
h=1

1(The hth hop of bit b is over

subchannel m in slot s)π(1 + ∆)2(rh
b )2 ≤ Wmτ · 1 (5)

Here the unit in each side is bit-meter2. Summing over the
subchannels and the slots gives

λnT∑
b=1

h(b)∑
h=1

π(1 + ∆)2(rh
b )2 ≤ WT (6)

This can be rewritten as

λnT∑
b=1

h(b)∑
h=1

1

H
(rh

b )2 ≤ WT

π(1 + ∆)2H
(7)

Note now that the quadratic function is convex. Hence

(
λnT∑
b=1

h(b)∑
h=1

1

H
rh

b )2 ≤
λnT∑
b=1

h(b)∑
h=1

1

H
(rh

b )2 (8)



Combining (7) and (8) yields

λnT∑
b=1

h(b)∑
h=1

rh
b ≤

√
WTH

π(1 + ∆)2
(9)

Now substituting (2) in (9) gives

λnT L̄ ≤
√

WTH

π(1 + ∆)2
(10)

Substituting (4) in (10) yields the result:

λnL̄ ≤ 1√
2π

1

(1 + ∆)
W

√
n bit-meters per second. (11)

Note that L̄ is the average distance between the source
and the destination in a unit area domain. It can be seen
as a constant. So the throughput capacity is always propor-
tional to the transport capacity. Also, it is more meaning-
ful to compare the per-node throughput than the aggregate
throughput. For this reason, throughput capacity is always
used to refer per-node throughput in the later part of this
paper.

3.3 Directional Transmission and Omnidirec-
tional Reception

If we let the sender be directional, the transmission pat-
tern is no longer a circle with uniform directivity in every
direction. The transmission pattern for a directional an-
tenna has a main lobe pointing to the receiver, as well as
several side lobes which have much less power in those di-
rections. In this paper, as mentioned before, we think of the
directional antenna model as a sector characterized by (a)
the transmission/reception range r and (b) the beamwidth
α for transmission or β for reception mode.

Figure 3: Sender-based Interference Model for Di-
rectional Transmission

For the sender-based interference zone defined in previous
section, the zone becomes a sector with radius r and angle
α, shown in Fig.3. Thus, the disks in the unit area domain
become sectors with radius (1 + ∆) (considering the guard
zone) times the lengths of hops centered at the transmitters
and the beamwidth α (assume all the transmitters have the
same beamwidth). These sectors centered at the transmit-
ters over the same subchannel in the same slot are essen-
tially disjoint. Similar to the omnidirectional antenna case
(except that α is introduced), the interference zone area is
calculated as α

2π
π(1+ ∆)2r2. Following the same procedure

above ((2) to (11)), we change only (5) such that:

λnT∑
b=1

h(b)∑
h=1

1(The hth hop of bit b is over

subchannel m in slot s)
α

2π
π(1 + ∆)2(rh

b )2 ≤ Wmτ (12)

So the transport capacity becomes:

λnL̄ ≤ 1√
α

1

(1 + ∆)
W

√
n bit-meters per second. (13)

Compared the result in the previous section (11), the di-

rectional transmission scales the capacity by
√

2π
α

.

3.4 Directional Transmission and Directional
Reception

What will happen if the receiver antennas are also direc-
tional? Intuitively, the result should be more optimistic and
the following analysis confirms that it is. Let’s consider the
sender-based interference zone. Unlike the omnidirectional
reception, not all the receivers in this zone will be interfered
with. Therefore the transmission zones (interference zone)
are not necessarily disjoint. We propose the following mod-
ification to the interference zone concept. We introduce a
new conditional probability argument for this case. This
conditional probability is defined to be the probability that
a specific receiver will expierence interference given it is in
the transmission zone. Assume all the receivers have the
same antenna characteristics and can point in any direction
with equal probability. The probability that the antenna
pattern of a receiver will cover the transmitter is β

2π
. So the

conditional probability of interference for a receiver within
the transmission zone is β

2π
, demonstrated in Fig.4.

(a) Interference (b) No Interference

Figure 4: Interference Model for Directional Anten-
nas

On average, there are β
2π

proportion of the number of re-
ceivers inside the transmission zone will get interfered with.
Thus the conditional interference zone area is:

β

2π
[π(1 + ∆)2(rh

b )2
α

2π
] =

αβ(1 + ∆)2(rh
b )2

4π
(14)

In the left side of the equation, β
2π

is the conditional prob-
ability. The part inside the square brackets is the area of
the sector (transmission area). Changing the inequality (5)



with this conditional interference zone area we get:

λnT∑
b=1

h(b)∑
h=1

1(The hth hop of bit b is over

subchannel m in slot s)
αβ(1 + ∆)2(rh

b )2

4π
≤ Wmτ (15)

Following the steps from (6) to (11), we get the transport
capacity using directional antennas at both transmitter and
receiver’s sides:

λnL̄ ≤
√

2π

αβ

1

(1 + ∆)
W

√
n bit-meters per second. (16)

Compare this capacity with what we get for the omnidirec-
tional case in (11), the capacity gain is 2π√

αβ
, which is more

than the gain using directional antennas only as transmit-
ters.

We have skipped the omnidirectional transmission and di-
rectional reception case before this subsection, because the
derivation of case directional transmission and reception has
already included that of this case. The sender-based inter-
ference zone is a circle and the receivers are considered as
sectors. The conditional interference area is β

2π
times the

area of the disk, so the capacity gain is
√

2π
β

.

Also, when the angles α and β both become smaller, the
transport capacity will increase. The network transport ca-

pacity is O(W
√

n
αβ

). Then each node will obtain a through-

put capacity of O( W√
nαβ

) bit-meters per second. When the

beamwidth approaches 0, the wireless networks can be seen
as the wired links.

From the view of scalability of networks, if the product
of beamwidths αβ decreases asymptotically as fast as 1

n
,

the per node capacity will be unrelated with the number
of nodes in the domain; thus, the maximum throughput
capacity can scale and becomes a constant which is no longer
O( 1√

n
).

In the argument of the directional reception case, we use
conditional probability to model the direction of the receiv-
ing antennas to evaluate the average capacity of the net-
works based on the placement of nodes optimized by omnidi-
rectional antennas. The results show a further improvement
in capacity of ad hoc wireless networks using directional an-
tennas. The results should not be considered as an upper
bounds on capacity, but rather as lower bounds on the po-
tential capacity improvement by using directional antennas.

3.5 Achievability of the Capacity Improvement
A question may arise when we look at the result of the

capacity of the directional antennas, for example, capacity
improvement indicated in (16). What will happen when the
beamwidth α or β approaches to zero? Will the capacity
grow arbitrarily high? The answer is no.

When the antenna beamwidth reaches a specific threshold,
such that the transmission range conducted by all the trans-
mitters just cover the whole domain, the per-node through-
put will achieve a constant number related to W . This con-
stant should be less or equal to W/2, because the wireless
network link is half-duplex. When the angles of antenna
beam get even smaller, the capacity will not increase any
more. When we go through the inequalities from (2) to
(11), equality can be achieved under some conditions for

each inequality. (For example, for inequality (2), the equal-
ity can be achieved if and only if the routes for each source-
destination pair are along a straight line.) So the capacity
improvement for directional antennas is feasible. Now look
at (12) and (15) where antenna angles are involved. When
the angle α or β is too small, the aggregate transmission
range conducted by all the transmitters will not cover the
whole domain. Thus equality cannot hold due to the small
area of the interference zone. That is to say, the interference
has been fully reduced and we cannot get any improvement
by narrowing the beam of the antennas.

Fig.5 presents a numerical example to illustrate the scal-
ing law of the network capacity (disregarding the constant
factor) when the antenna beamwidth is in different orders of
the number of nodes n in network. Assuming α = β, when
α decreases slower than 1√

n
, the scaling law in (16) holds.

The faster α decreases, the slower the per-node throughput
decreases with the increase of the number of nodes in the
domain. When α decreases as fast as 1√

n
, the throughput

will be O(W ). That is the best result we can get with direc-
tional antennas; there is no change even if α decreases faster
than 1√

n
. In this case, (16) no longer holds.
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4. THE THROUGHPUT CAPACITY FOR
RANDOM NETWORKS

4.1 Throughput Capacity
Though the setting of the problem of random networks is

very different from that of arbitrary networks, the analysis
of capacity improvement by using directional antennas is
very similar.

We use the important concept of Voronoi tessellation whose
definition is: the partitioning of a plane with n points into
n convex polygons such that each polygon contains exactly
one point and every point in a given polygon is closer to its
central point than to any central point of other polygons.
An example of Voronoi tessellation is shown in Fig.6.

We briefly repeat the steps in [6] for completeness and
omit the proof for most of the lemmas.

Definition: Adjacent Cells: Two cells are called adjacent,
if they share a common point.



Figure 6: Voronoi Tessellation

Lemma 1: We can construct a Voronoi tessellation Vn in
relation to the number of nodes n and the locations of nodes.
In this tessellation:

(V1) Every Voronoi cell contains a disk of area 100 log n/n.
Let

ρ(n) := radius of a disk of area
100 log n

n
(17)

(V2) Every Voronoi cell is contained in a disk of radius
2ρ(n).

(V3) Each Voronoi cell contains at least one node.
(V4) We can choose the range r(n) of each transmission

such that

r(n) = 8ρ(n)

This range allows direct communication within a cell and
between adjacent cells. Every node in a cell is within this
distance r(n) from every other node in its own cell or adja-
cent cell.

We assume that power control is not used and the beam
of each directional antenna can be steered to it’s intended
sender or receiver. So the transmission range needed for
connectivity is the same as that of omnidirectional antennas.
Thus the Voronoi tessellation Vn in Lemma 1 is also usable
for directional antennas.

Definition: Interfering Neighbors: Two cells are said to
be interfering neighbors if there is a point in one cell which
is within a distance 2(1 + ∆)r(n) of some point in the other
cell.

One important property of the constructed Voronoi tes-
sellation is that the number of interfering neighbors of a cell
is uniformly bounded. This property is the key factor for
analyzing the capacity gain of using directional antennas.

Lemma 2: For the case that all the antennas are omnidi-
rectional, every cell in Vn has no more than c1 interfering
neighbors. c1 depends only on ∆ and grows no faster than
linearly in (1 + ∆)2.

Proof: Let V be a Voronoi cell. If V ′ is an interfering
neighboring Voronoi cell, there must be two points, one in
V and the other in V ′, which are no more than 2(1+∆)r(n)
units apart. From (V2), the diameter of a cell is bounded by
4ρ(n). Hence V ′, and similarly every other interfering neigh-
bor in the Interference Model, must be contained within a
common large disk D of radius 6ρ + 2(1 + ∆)r(n).

Such a disk D cannot contain more than c2 = (6ρ+2(1+∆)r(n))2

ρ2(n)

= (22+16∆)2 ∼ O((1+∆)2) disks of radius ρ(n). By (V2),

there can therefore be no more than c1 = c2 − 1 cells within
D. This therefore is an upper bound on the number of in-
terfering neighbors of the cell V .

How can we extend this lemma to the case that anten-
nas are directional? Considering the interference zone intro-
duced in section 3, the same concept can be utilized here.
First we must consider how to assess the number of inter-
fering neighbors when the transmission antennas are direc-
tional. Whatever shape the transmission pattern is, from
the perspective of interference and spatial reuse, the aspect
that matters is the area of the interference zone. The nodes
are randomly, i.e., independently and uniformly, located in
the domain. So the number of interference neighbors is pro-
portional to the area of the interference zone.

Like the antenna model we used to analyze arbitrary net-
works, we also assume the antennas are sectorized with the
same parameters used in Section 3. So the area of interfer-
ence zone for directional transmission is α

2π
πr2(n). So, vir-

tually the interfering neighbors should not exceed c3 = α
2π

c1.
Similarly, when directional transmission and omnidirec-

tional reception are used, the area of conditional interference
zone derived using probability becomes β

2π
πr2(n). Corre-

spondingly the number of interfering neighbors is bounded
by c4 = β

2π
c1. Again, when antenna transmission and recep-

tion are both directional, the area of conditional interference
zone is α

2π
β
2π

πr2(n) and the number of interfering neighbors

is no more than c5 = αβ
4π2 c1.

Lemma 3: Let c6 be the number of interfering neighbors
for each cell in tessellation Vn. There is a schedule for trans-
mitting packets such that in every (1+ c6) slots, each cell in
the Vn gets one slot in which to transmit, and such that all
transmissions are successfully received within the transmis-
sion and reception coverage.

Each node wishes to communicate with the node near-
est to a randomly chosen location. Routing strategy is to
choose the routes of packets to approximate the straight-
line which is connecting the source and destination. So the
routes actually are the cells the straight-line intersects.

Lemma 4: There is a δ′(n) → 0 such that

Prob( sup
V ∈Vn

(number of lines Li intersection V )

≤ c7

√
n log n) ≥ 1 − δ′(n)

Note the final destination forwarding inside a cell is at
most one hop away. The traffic is relayed by the cells inter-
sected by the routing straight-line. Hence the traffic han-
dled by a cell is proportional to the number of lines passing
through it. Since each line carries traffic of rate λ(n) bits
pe second, the following bound can be obtained.

Lemma 5: There is a δ′(n) → 0 such that

Prob( sup
V ∈Vn

(Traffic needing to be carried by cell V )

≤ c7λ(n)
√

n log n) ≥ 1 − δ′(n)

From Lemma 3 we know that there exists a schedule for
transmitting packets such that in every (1 + c6) slots, each
cell in tessellation Vn gets one slot to transmit. Thus the
rate at which each cell gets to transmit is W/(1 + c6) bits
per second.

On the other hand, the rate at which each cell needs to



transmit is less than c7λ(n)
√

n log n with high probability.
This rate can be accommodated by all cells if it is less than
the rate available, i.e., if

c7λ(n)
√

n log n ≤ W

1 + c6
(18)

So we have proved the following theorem, noting the linear
growth of c1 in (1 + ∆)2 in Lemma 2.

Theorem 1: For random networks, there is a deterministic
constant c > 0 not depending on n, ∆, or W , such that

λ(n) =




cW
(1+∆)2

√
n log n

, Omni Tx Omni Rv,
2π
α

cW
(1+∆)2

√
n log n

, Dir Tx Omni Rv,
2π
β

cW
(1+∆)2

√
n log n

, Omni Tx Dir Rv,
4π2

αβ
cW

(1+∆)2
√

n log n
, Dir Tx Dir Rv.

bit per second is feasible with high probability. Here we
use the easy-to-read abbreviation: Omni = omnidirectional;
Dir = directional; Tx = transmission mode; Rv = reception
mode.

Comparing the different results among each antenna mode,
we can clearly see the throughput gain factor when direc-
tional antennas are used. We get an ideal throughput gain

of 4π2

αβ
using directional transmission and reception.

For random networks, unlike arbitrary networks, the per-
node throughput will not be a constant with the increasing
of the network size if equal power levels are chosen for each
directional antenna. The multi-hop burden still exists in
that the source and the destination may be far away from
each other. In general directional antennas have the po-
tential to reduce the multi-hop problem by per-node power
control. Ideally the transmission range may be far enough to
reach any node the sender wants to communicate with. So
only when the antenna beamwidths are small enough and
the transmission range is far enough, can the throughput
capacity be a constant not exceeding W/2.

Note even the gain factor of capacity by using directional
antennas is larger for random networks than for arbitrary
networks, the scaling term determines the absolute capacity
of arbitrary networks and random networks.

4.2 Hybrid Antenna Model
To achieve a better model of real directional antennas,

now we use an antenna model whose beamforming patterns
are a mix of omnidirectional and directional antenna models.
We define hybrid antenna model as an antenna model whose
main lobe is characterized as a sector and whose sidelobes
and backlobe together form a circle. Shown in Fig. 7, the
antenna pattern has a gain value gm for the main lobe of
beamwidth α. It also has a sidelobe of gain gs of beamwidth
(2π−α). (Use β if it is a receiver). In the 3-dimension space,
the radiation pattern is like a conical main lobe plus a bulb-
shaped sidelobe at the base of the cone.

In our work, the transmission range and the beamwidth
are determined by the network. So gm is also determined
since it is dependent on the transmission range and vice
versa. To estimate what is the radius of the sidelobe given
the gain and the beamwidth of the main lobe, first we use
the result from [12]. Given gm and α, we have

gs =
ηD − gm

D − 1
(19)

Figure 7: Radiation Pattern of Hybrid Antenna
Model

where D = 4
tan2 α

2
is an often used quantity called the direc-

tivity of the antenna, and η is the efficiency of the antenna
which accounts for losses.

The radius (transmission range) of the sidelobe can be
calculated using the path loss equation [13]:

PRV (dB) = PTX (dB) + K + GRV + GTX − 10γ log d (20)

Where GRV and GTX are the receiver and transmitter an-
tenna gains in dB. PRV and PTX are the received and trans-
mit power respectively in dBm. K is a constant dependent
on the environment and wavelength and γ is the path loss
exponent. The path loss exponent is dependent on the envi-
ronment. For free space, γ is 2 and for mobile environment
γ is usually 4.

From the path loss equation, we can also estimate the
ratio of the radius of the sidelobe to that of the main lobe.
For example, if gs/gm = x, GTX becomes GTX +10 log x. To

maintain equality, d changes to dx
1
γ = d 4

√
x. So we can get

the transmission range of the sidelobe given the transmission
and the beamwidth of the main lobe. Let’s further define
the radius of the sidelobe of the transmitter as sα ·r and the
radius of the sidelobe of the receiver as sβ · r.

Now we come to the calculation of the area of the inter-
ference zone for each combination of antenna modes. Define
the interference zone area of the omnidirectional antennas
as AOO = πr2.

For directional transmission and omnidirectional recep-
tion, the interference zone area is the area of the hybrid
antenna radiation pattern, which is calculated as:

ADO =
α

2
r2 +

2π − α

2
s2

αr2

= AOO
α + (2π − α)s2

α

2π
(21)

For omnidirectional transmission and directional recep-
tion, the conditional interference area is the transmission
area multiplied by the probability that the nodes inside the
transmission range will experience interference. This condi-
tonal interference area is calculated as:

AOD = AOO(Pr{|Tx − Rv| ≤ sβr}
+Pr{|Tx − Rv| > sβr} ·
Pr{main lobe of Rv pointing to Tx})

= AOO(s2
β + (1 − s2

β)
β

2π
) (22)

For directional transmission and directional reception, the
case is more complicated. We divide the transmission area
into two parts: one is a small circle with radius sαr, and the
other is an annulus sector with radii sαr and r. Since r is



fixed, for the same total energy of the directional antenna,
the larger the beamwidth, the smaller the gain of the side-
lobe. So first consider α > β, then sα < sβ . The conditional
interference area is:

ADD =πs2
αr2 +

α

2
(1 − s2

α)r2(Pr{|Tx − Rv| ≤

sβr|“C1”} + Pr{|Tx − Rv| > sβr|“C1”} β

2π
)

=πs2
αr2 +

α

2
(1 − s2

α)r2(
s2

β − s2
α

1 − s2
α

+
1 − s2

β

1 − s2
α

· β

2π
)

=AOO(s2
α +

α

2π
(s2

β − s2
α) +

αβ

4π2
(1 − s2

β)) (23)

where “C1” is the condition statement “Rv is inside the
annulus sector”. Note α

2
(1−s2

α)r2 is the area of the annulus
sector.

Then consider α < β, i.e. sα > sβ. The conditional
interference area is:

ADD = πs2
αr2(Pr{|Tx − Rv| ≤ sβr|“C2”} + Pr

{|Tx − Rv| > sβr|“C2”} β

2π
) +

α

2
(1 − s2

α)r2 β

2π

= πs2
αr2(

s2
β

s2
α

+ (1 − s2
β

s2
α

)
β

2π
) +

α

2
(1 − s2

α)r2 β

2π

= AOO(s2
β +

β

2π
(s2

α − s2
β) +

αβ

4π2
(1 − s2

α)) (24)

where “C2” is the condition statement “Rv is inside the
small circle”.

For easy reference, we combine results (23) and (24) into
one:

ADD =AOO(min(s2
α, s2

β) +
max(α, β)

2π
|s2

α − s2
β |

+
αβ

4π2
(1 − max(s2

α, s2
β))) (25)

The special case where α = β lets the conditional inter-

ference area become ADD = AOO(s2
α + α2

4π2 (1 − s2
α)).

Using the concept of interfering neighbors, Theorem 1 may
be extended to Theorem 2 representing the hybrid antenna
model.

Theorem 2: For random networks, there is a deterministic
constant c > 0 not depending on n, ∆, or W , such that

λ(n) =




cW
(1+∆)2

√
n log n

, Omni Tx Omni Rv,
AOO
ADO

cW
(1+∆)2

√
n log n

, Dir Tx Omni Rv,
AOO
AOD

cW
(1+∆)2

√
n log n

, Omni Tx Dir Rv,
AOO
ADD

cW
(1+∆)2

√
n log n

, Dir Tx Dir Rv.

bit per second is feasible with high probability. Here the gain
factor for each case can be derived from (21), (22), and (25).
This result is based on the hybrid antenna model, which
considers the effects of sidelobes and backlobes of directional
antenna.

Note that ADO, AOD, and ADD are all monotone increas-
ing functions of sα and sβ. This shows that smaller antennna
sidelobes result in higher throughput gain.

5. CONCLUSIONS
Use of directional antenna in the context of ad hoc wire-

less networks can largely reduce radio interference, thereby
improving the utilization of wireless medium. We study the

throughput capacity for different combination of antenna
modes. The approach to get the throughput capacity is
mainly based on [6], but the interference model used is dif-
ferent.

Our work is focused on discovering the lower bounds in
capacity improvement that directional antennas can provide
relative to the traditional omnidirectional antennas. The
conditions that the ad hoc network can scale well were dis-
cussed for both arbitrary networks and random networks.
For instance, in arbitrary networks, with the reduction of the
transmission area and the reduced probability of two neigh-
bors pointing to each other, the capacity of networks using
directional antennas will be improved by a factor of 2π√

αβ
.

Here α and β are the beamwidths of transmission and receiv-
ing directional antennas, respectively. If the beamwidths of
transmission and receiving antennas are decreased asymp-
totically as fast as 1√

n
, the throughput capacity will keep

constant with the increase of number of nodes in the net-
work.

For random network, due to the reduction of interfering
neighbors, the throughput capacity with the use of direc-

tional antennas can achieve a gain as large as 4π2

αβ
. The

use of directional antennas can take advantage of decreasing
both interference (local) and multi-hop relay burden (global)
through the coordination of the transmission power and an-
tenna directivity.

To model the sidelobes and backlobes of real directional
antennas, a hybrid antenna model is used. By calculating
the area of the interference zone, we get the capacity im-
provement gain factors for different transmission/reception
cases.

The results for the capacity are based on a conservative
model, so better bounds may exist, which need different ap-
proaches. Our future work includes finding a new approach
to solve this problem. Also some new protocols may be pro-
posed to accommodate the theoretical analysis.
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