Network Management and Control Using Collaborative On-line

Simulation

Tao Ye!, Shivkumar Kalyanaraman', David Harrison?, Biplab Sikdar', Bin Mo?,
Hema Tahilramani Kaur', Ken Vastola! and Boleslaw Szymanski?
'"Department of Electrial, Computer and System Engineering
2Department of Computer Science
Rensselaer Polytechnic Institute
Troy, New York 12180
{yet3, shivkuma, bsikdar, hema, vastola}@networks.ecse.rpi.edu
{harrisod, mob, szymansk } @cs.rpi.edu

Abstract

The complex and dynamic feature of the Internet
requires a scalable and effective network control.
In this paper, a collaborative on-line simulation
scheme is proposed to provide the automated
and pro-active control functions for the network-
s. This scheme introduces autonomous on-line
simulators into local networks, which continuous-
ly monitor the surrounding network condition-
s, collect the relevant information, communicate
with other simulators and execute collaborative
on-line simulation. Based on the simulation re-
sults, the on-line simulators keep tuning up the
network parameters to the better operation point
to fit the current network situation. In this pa-
per, we describe the basic concept of this scheme,
investigate the solutions to the challenges, faced
in the realization of this scheme, in areas such
as network modeling, on-line simulation and pa-
rameter search. We also discuss the applicability
of this scheme, and present the simulation results
under ns and the test results of a preliminary im-
plementation in the real network. These results
are very promising and encouraging for realizing
an automated and effective network control.

1 Introduction

With the Internet expanding at an explosive speed, there
is an urgent need for the scalable and reliable network
management and control. Current network management
mostly relies on ad-hoc methods, experience of the net-
work manager and partial evaluation of a few scenarios
by simulation. This will critically limit the reliability and
performance of large-scale networks, especially in face
of rapid changes resulting from the deployment of new
resources, reassignment of human resources geographi-
cally, natural disasters, etc. We propose in this paper

a collaborative on-line simulation scheme to achieve the
scalable, reliable and automated network managemen-
t. The basical idea of this scheme is to use a series of
online simulations explore the feasible solution space to
select and tune a set of network parameters optimiz-
ing network performance. The reasoning behind this is
based on the fact that the current ever large network
is too complex to be analyzed with a pure analytical
theory and the network modeling and simulation are in-
creasingly used to understand complex behavior of large
networks. Therefore, it is possible to use the results of
these simulation to evaluate the goodness of the network
parameters and search for the better operation points in
the state space. This scheme continuously monitors the
network situation and collects the relevant information.
Based on these updated information, a series of simula-
tion are executed on-line and a search algorithms is used
to evaluate the results of the simulations and search for
better network parameters. By continuously tuning the
network parameters to fit the most current network in-
formation, a dynamical and second-order control over
the network can be realized. By second-order control,
we mean that on-line simulation merely prescribes pa-
rameters required for the operation of network protocols
and does not interfere with their normal operation in any
other way.

To realize this on-line simulation scheme, some prob-
lems have to be addressed first. First of all, the accurate
traffic modeling methods are required to reconstruct the
network conditions in the simulation. A presumption
of our work is that since we do not understand how to
build stationary models of Internet traffic patterns, a
reasonable approximation of “current” traffic behavior
could be characterized by quasi-stationary models, and
such models can be constructed on-line. As the nature of
these quasi-stationary traffic models changes over time,
the algorithm performance could be improved by an al-
ternative choice of algorithm parameters. The purpose
of on-line simulation is therefore to derive the appro-

Network Management and Control Using Collaborative On-line Simulation

Tao Ye

priate quasi-stationary traffic model, and given an ap-
proximation of the underlying topology and algorithm
implementations, search the parameter space to deter-
mine “good” parameter settings which suit the current
conditions.

Secondly, since the network simulation is the basis of
this scheme, a reliable network simulator must be used to
generate the accurate and dependable performance eval-
uation. In addition, since the network conditions keeps
changing all the time, the on-line simulation scheme also
requires the fast network simulator and the fast parame-
ter space search method to quickly finish the simulation
experiments and find the “good” network parameters be-
fore the underlying network information become dated.
We have chosen the network simulator ns [1] developed
by UCB/LBNL and the VINT project as our simulation
platform. It is a reliable and widely used network simula-
tion tool. However, its simulation speed is a far cry from
our on-line simulation requirement. To achieve the fast
simulation speed, we use a carefully designed coopera-
tive, parallel method in our scheme. To achieve the fast
search, we adopt a best-effort search strategy, whose em-
phasis is not on “full” optimization, but on continuously
and increasingly moving the system towards a “better”
operating point. In other words, one of the major bene-
fits of on-line simulation would be to continuously tune
underlying operation (albeit at a larger time-scale than
their normal operation). And in this sense, on-line sim-
ulation equips the network management infrastructure
with “pro-active” management capabilities. Each simu-
lator is simple because it represents a local, parameter-
ized view of the network, and hence can execute quickly.
And these simulators exchange information and cooper-
ate with each other to optimize the network usage from
a broader point of view.

In the following, we will discuss these challenge faced
in this scheme and investigate the applicability of the
on-line simulation scheme. n section 2, we describe the
overall architecture of collaborative on-line simulation
scheme. Section 3 introduces our work in traffic gen-
eration of on-line modeling. Section 4 describes our
approach to the efficient parameter search. Section 5
discusses two ways to speed up the process of the net-
work simulation. In particular, our approach for topol-
ogy decomposition shows a high speed-up in large-scale
simulations. Section 6 and section 7 present the sim-
ulation results under ns and the validation experiment
results under Linux. Section 8 discusses the applicabil-
ity of on-line simulation to routing algorithms. Section
9 concludes this paper and points out areas for further
research.

2 Infrastructure of Collaborative
On-line Simulation

In the collaborative on-line simulation scheme, each local
network domain is introduced with a on-line simulator
module. The simulator is composed of such function
units: monitor and modeling, experiment design, man-
agement interface and experiment execution. Figure 1
shows the structure of an on-line simulator.

Monitor and Modeling unit continually collects al-
1 kinds of information about the local network, such
as network topology, traffic conditions, and tries to
build the most updated network model for use by
on-line simulation.

Management Interface unit is the control center of
the on-line simulator. It controls and synchronizes
the operation of all the other units. Meanwhile, it is
also the interface of the on-line simulator with the
outside world.

Experiment Design unit is responsible for setting
up simulation experiments with appropriate search
techniques, and analyzes these results to perform
further searches and try to find “good” parameter
settings.

Experiment Execution unit executes the experi-
ments received from experiment design unit and re-
turn the results to the experiment designer.

Besides interacting with the local network, the on-line
simulator also communicates with other simulators and
exchanges the relevant network information, such as net-
work traffic models, good network parameters. Thus,
a collaborative, scalable on-line simulation network is
formed. Through this, the local simulator acquires a
global view of the network and perform a better network
simulation. In addition, the collaborative network con-
trol can be easily applied with this scheme and greatly
improve the effectiveness of the network management.

3 On-line Modeling: Workload

Generation

On-line modeling is greatly complicated by the complexi-
ty and heterogeneity of the Internet. At this time, we are
mainly concerned about the proof of the on-line simula-
tion concept. To avoid overly complicating the problem,
our current effort in this area focuses on generating the
workload consistent with the nowadays study on Internet
traffic.

The first issue we are going to address is maintaining
the proper traffic composition in the simulation, which
is essential to capturing the behavior of wide area net-
works. For the Internet, the dominating applications are
WWW, Telnet, FTP, SMTP, and NNTP and we use the

Network Management and Control Using Collaborative On-line Simulation

Tao Ye

Figure 1: Structure of on-line simulator

empirical distributions in [7] to characterize the underly-
ing protocols for these applications. We implement these
application-specific traffic generator under ns and de-
ploy some measures to maintain the proportion of these
traffics according to the empirical distribution [6] in the
simulation.

Another important issue with traffic generation is self-
similarity in wide area and Ethernet traffic[7]. Genera-
tion of aggregate traffic which is self-similar in nature
is of utmost importance in simulation scenarios as Pois-
son models grossly underestimate the queuing delays and
overflow probabilities. We have implemented in ns two
self-similar traffic sources: Application/Traffic/SupFRP
and Application/Traffic/SS, respectively based on the
algorithms proposed in [8] and [9].

All the protocol specific, application specific and self-
similar traffic generators described above have been val-
idated through extensive simulation and experimenta-
tion. The detailed results and analyses are presented in
another paper[10].

4 Experiment Design

The goal of the experiment design is to use as few exper-
iments as possible to find as good a setting as possible.
Note that here the emphasis is not on seeking the opti-
mum setting; instead a best-effort strategy is adopted to
find a better point within the limited time frame. Based
on this principle, it would be desirable for the experi-
ment design to deploy an iterative method, which lead
the search to the optimum point with an increasingly
improved manner. With this method, the search can be
interrupted at any time and still produce a result better
than the starting point. This provides us the possibili-
ty to make a compromise between the goodness of the
result and the search time.

The basic procedure of our approach is first probing
the search space roughly and trying to find the important
parameters which have greater effects on the network
performance. After pruning part of the search space,
we will explore the search space in more detail. In this

step, we have designed a new hybrid search algorithm
to perform the fast and efficient search in the concerned
parameter space.

4.1 Roughly Probing of Search Space

As described above, we start our search process with the
rough probing of the search space. For this purpose, sim-
ulations will be conducted in portions of the parameter
space, specifically the boundaries of the space. These
simulations will be based upon 2* full factorial experi-
ment design ideas that are well known in performance
analysis[11].

2% full factorial design tries all possible combination-
s of the parameter boundaries and fits the results in-
to a linear regression model to analyze the importance
of different parameters. It is not a iterative method,
which contradict our search strategy. To achieve the
increasingly-improving goal, we carefully order the ex-
periments to form a series of subsets and the first subset
is generated by applying 2*~P fractional factorial design
on the parameter space. Here, p is the minimum integer
satisfying 2¥=P > k, which is required by the regression
analysis[11]. 2F~P fractional factorial design is a tech-
nique which just execute part of the experiments in 2*
full factorial design. By carefully selecting the exper-
iments, the analysis of the parameter importance can
still be executed at the expense of some accuracy. After
finishing this subset of experiments and analyzing the
simulation results, we then step into the next larger sub-
set which is obtained by using 2*~P*+!fractional factorial
design, and so on until all 2* experiments are finished.
During this process, if the search is interrupted, the anal-
ysis result based on the last subset of experiments is re-
turned as the “best so far” result.

4.2 Hybrid Search Algorithm

Once the high level pruning is complete, the next task
is to search the remaining parameter subspace in detail
with state space search techniques. Basically, the state
space search algorithms known in the literature include

Network Management and Control Using Collaborative On-line Simulation

Tao Ye

two important components, exploration and exploitation,
and a balance strategy between these two components.
Exzxploration encourages the search process to examine
unknown regions. In comparison, exploitation attempts
to converge to a maximum or minimum in the vicinity
of a chosen region.

The “No Free Lunch” theorem[15] cautions us that
there is no general most efficient algorithm as measured
by both exploration, exploitation and balance. In oth-
er words, the best search algorithms would aggressively
incorporate the maximum domain-specific and surface-
specific features into the search strategy at all times.
This necessitates that the search algorithm be extreme-
ly flexible and adaptive to different kinds of specialized
information.

Our hybrid search algorithm is based on the hillclimb-
ing technique[12] with TABU technique[14] included to
avoid revisiting the previous region and speed up the ex-
ploration process. In comparison with the others, the
hybrid method maintains a dynamic balance between
exploration and exploitation by accepting the bad move
with a probability of exp(-current gradient feature / av-
erage gradient feature). The idea here is that in the
promising areas whose gradient is much steeper than the
average gradient, the algorithm mostly performs ezplo-
ration: random walk, and otherwise, exploitation: hill-
climbing to quickly converge to the local optimum.

The hybrid algorithm also automatically adjusts its
step size to suit the current gradient features. When the
current gradient is large relative to the average, the step
size is reduced so as to explore this promising area care-
fully. Otherwise, the step size is increased to quickly get
through this area. Additionally, with the increase of the
step size, the rugged microscopic features of search space
are smoothed out and the major features are exhibited.
These macroscopic features can be used to speed up the
search process.

The hybrid algorithm is very efficient for the search
space with relatively regular gradient structure. It com-
bines the advantages of various search techniques, and
attempts to apply a dynamic balance strategy in the
search. Note that this balance strategy is different from
that of Simulated Annealing[13]. We do not apply any
concepts of statistical mechanics, such as heat equilib-
rium, and cooling scheme, in our method; whereas in
SA, temperature decreases gradually according to a cer-
tain cooling scheme, and for each temperature level, the
search is repeated for a number of times to achieve heat
equilibrium. As a result, SA will take a long time to
converge.

5 Speeding Up On-line Simulator
Since in the on-line simulation scheme, the execution of

the experiments is the most time-consuming task, we
have designed a few methods to speed up this process.

5.1 Farmer-Worker Infrastructure

The first method to achieve the speedup is to parallel
the execution of the experiments. We have developed a
farmer-worker infrastructure to distribute many single-
machine experiments across a bunch of workstations. In
fact, this scheme can be used not only in our on-line
simulation, but also in any other research areas which
require executing a lot of simulation experiments. The
infrastructure is shown in Figure 2.

[|

~
N

I i)

Figure 2: Farmer-Worker structure

The dispatcher is the interface between this distribut-
ed simulation performer and the outside simulation de-
signer. All the experiments have to go through this inter-
face to be distributed among the workers. The farmer is
the center of this infrastructure, which controls and syn-
chronizes the operations of dispatchers and workers. The
workers are the actual experiment executers. We can use
multiple workers for the same experiment designer so as
to speed up the simulation process. All the communica-
tion in this scheme is through TCP connections. There-
fore, the dispatchers, farmer and workers can be located
anywhere in the network. That means that we can even
distribute the experiments over the whole network and
maximize the utilization of the computing resources.

5.2 Topology Decomposition

The farmer-worker method is effective only when the ex-
periment designer sends out a batch of experiments every
time and then wait for the results. Its speedup level is
dependent on the size of each batch. However, for the
iterative experiment design method, the size of a batch is
usually small, therefore, the effectiveness of the farmer-
worker method is limited.

Topology decomposing method is used to expedite
the execution speed of a single simulation experiment.
Through experiments, we have found that the running-
time of a simulation is not linearly proportional to the
simulated network size. Figure 3 shows the simulation
results on a network with a simple star topology. Using
the least squared method to fit the experiment results of
execution time and network size, we can get the following
approximate formula:

T(n) = 3.49 + 0.8174 x n + 0.0046 x n?

Network Management and Control Using Collaborative On-line Simulation

Tao Ye

Figure 3: Execution time vs. simulation size

Here T is the execution time of the simulation, and n is
the number of nodes in the simulation. The approximate
formula estimation is also shown in Figure 3.

From the above, we can see that the execution time
of a network simulation holds a quadratic relationship
with the network size. We can thus presume that it is
possible to speed up the network simulation more than
linearly by splitting up the simulation into smaller pieces
and paralleling the execution of these pieces.

Traditional decomposition only splits up the network
topology, but the simulation is still executed as a w-
hole. Therefore, the decomposed parts have to exchange
a lot of information to keep them synchronized with each
other. Our approach is to first execute these split sim-
ulations independently, next repeat each of these with
the output of the other parts as the input, and then
repeat again and again until there is no significance d-
ifference between the results of two sequential iteration.
Decomposed simulation greatly simplifies synchroniza-
tions between parallel parts, and can significantly speed
up the simulation of large networks. Some simulations
have been done and the results show a very fast conver-
gence.

6 An Experiment with the On-
line Collaborative Simulator

To test the validity of our on-line collaborative simula-
tion model, we first implement a simple on-line simulator
under ns. We use it to control some network algorithm
and observe how this can affect the performance of the
network. We have chosen Random Early Drop(RED)
queueing management algorithm as the underlying net-
work algorithm to be adjusted because of its sensitivity
to the parameter setting. And it has also been indicated
that deciding the parameter setting of RED for differ-
ent network conditions is not a trivial task[2], and the
automation of its parameter adjustment is very mean-
ingful. A simple network topology with one bottleneck
link has been used for the purpose of proof-of-confcept,
which is shown as Figure 4. The router on the source side
is equipped with a RED queue, and an on-line simulator
is used here to control the RED queue. The simulation
varies the traffic conditions on the bottleneck link: 4 FT-

Figure 4: Test network topology

P traffics in the first 4 second period, 8 FTP traffics in
the second one, 4 FTP traffics in the third one, and 16
FTP traffics in the last one. Our optimization objective
is to achieve the best throughput. The simulation re-
sults are shown in Figure 5(without on-line simulation)
and Figure 6(with on-line simulation). We can see from
these figures that on-line simulation tunes up the set-
ting of RED queue so that there is less oscillation in the
queue size and a more stable queueing status is obtained.
As a result, the utilization is better than the experiment
without on-line control, in which we can find that when
the traffic conditions change, the utilization drops dra-
matically for a while.

7 A Simple Implementation of
On-line Simulator for Improv-
ing RED Performance in Real
World

To verify the simulation results of our scheme under real
network, we have built a Linux testbed with 20+ ma-
chines and 3 subnets. The network topology is basical-
ly like the one shown in Figure 4. We adopted Linux
as our test platform because of its open source policy
and great popularity. Furthermore, a variety of traffic
management algorithms have already been implement-
ed in Linux kernel, such as RED, CBQ, etc. Although
these traffic control elements are still in the experimen-
tal stage, we found it quite stable in our experiments.
In addition, a software package iproute2 is provided in
Linux to operate on these components with a great ease.
We ported our on-line simulator into Linux platform and
created an interface so that the simulator can interact
with the traffic management algorithm in Linux kernel
and adjust the algorithm parameters automatically. All
the configuration and assumption are almost the same
as those in last section. We have used netperf[17] traffic
generators to generate massive TCP traffic from one side
of the bottleneck link to the other side and observe the
performance of RED on the bottleneck when the on-line
simulator has been applied for dynamic control. For the
testing purpose, we assume the simulator already has all
the information about the network conditions. The sim-

Network Management and Control Using Collaborative On-line Simulation

Tao Ye

100 1.2
T 80 1
g
é max thresh 0.8
£ 60r s
@ =
3 H Sos
S 40 5
E} m 0.4
3 .
[a]
s I 'WL” [7 0.2t

in thresh
% 2 8 2 16 % 8 16
Time (in seconds) Time (in seconds)
Figure 5: Simulation results without on-line simulation control

100 1.2
@ sor 1
£ max thresh
g2 0.8
£ 60y S
Q =
& :‘_E,“o.e
3 a0 =
& 0.4
[=) H V L
IEIICJ 20 ' J min thresh 0.2

% 4 8 12 16 % 4 8 12 16

Time (in seconds)

Time (in seconds)

Figure 6: Simulation results with on-line simulation control

ulator is also equiped with our carefully designed traffic
generator to reproduce the realistic traffic under ns and
the previously decribed speedup measures are also used
to boost up the speed of the simulations. The simulation
results are shown in Figure 7.

We can see in the figures that there is a large oscilla-
tion in the average queue length of RED since we have
chosen its parameter at some random in the beginning.
Then in the middle of the simulation, we started our on-
line simulator to search for the settings with low average
queue length. Very quickly, the simulator found a much
better setting and applied back to RED queue. This re-
sults in a dramatic reduction of the average queue length,
and at the same time, the oscillation looks much smaller
than before and the link utilization is not affected.

8 Online Simulation for Improv-
ing Routing Stability

As described in section 7, the on-line simulation has
been demonstrated to improve the performance of the
network management algorithm RED. The results show
that the average queue lengths and hence the end-to-end
delay can be significantly reduced by tuning parameter-
s of RED using on-line simulation. A similar approach
can be applied to routing, and an improvement in the
end-to-end performance can be achieved by tuning the

parameters of routing algorithm [16].

Adaptive routing is known to improve the network
performance by increasing throughput and lowering the
end-to-end packet delay. But it has been largely aban-
doned in the Internet due to the problems associated
with routing oscillations. We have identified various pa-
rameters of an adaptive routing scheme which affect its
performance and stability. The simulation based study
indicates that these parameters may be tuned using on-
line simulation to achieve a stable routing with improved
performance. Moreover, the adaptive routing scheme
may be deployed in the existing routers using OSPF. The
parameters in this algorithm which we consider for tun-
ing are uFactor and bFactor, which represent the weights
associated with the link utilization and buffer utilization
when the link cost is given by

linkCost = defaultCost x (1 + uFactor x Util.)

where, Util_ may be the exponentially averaged link or
buffer utilization. These parameters are representative
of the adaptiveness of the routing to the congestion. An-
other parameter that we considered is Threshold which
reflects the minimum change in the cost to trigger a Link
State Advertisement with updated metric value. Also,
Interval between the routing updates is another parame-
ter that we consider as it represents the tradeoff between
the responsiveness of the routing algorithm and the max-
imum computational and bandwidth overheads associat-

Network Management and Control Using Collaborative On-line Simulation

Tao Ye

x 10

w
&)

w

N
4]

[
4]

Average Queue Length (in bytes)
N

[N

o
)

60 80 100 120
Time (in seconds)

40

20

o

140

Utilizaion

0.8f

o
o

o
IS
:

0.2f

40 100 120 140

0 80
Time (in seconds)

Figure 7: Simulation results

ed with frequent route changes. We have demonstrated
tunability of the parameters uFactor and bFactor to
achieve significantly better end-to-end throughput and
delay performance. The tuning of parameter interval
was found to increase the throughput at the same time
when it minimizes the number of route changes. Howev-
er, the parameter threshold does not affect the network
throughput or the end-to-end delay, but may be tuned
to minimize the route changes. This will achieve a TCP-
friendly routing as frequent route changes may lead to
out-of-order packets, timeouts and result in a poor per-
formance due to the flow control mechanism of TCP.
However, testing on experimental testbed network with
on-line simulation to tune the routing parameters is a
goal for future work.

9 Conclusion

In this paper, we have proposed a collaborative on-line
simulation scheme to perform the dynamic, scalable, and
effective network control and management. To realize
this scheme, the problems faced in network modeling,
fast simulation method and fast search algorithm have
been addressed and some solution have been present-
ed. For traffic modeling, we implemented in ns vari-
ous protocol-specific, application-specific and self-similar
traffic generators and designed some methods to main-
tain the appropriate mix of traffic composition, the pur-
pose is to generate more realistic traffic. To speed up the
execution of the simulation, we have designed the farmer-
worker scheme, which distributes multiple experiments
and parellel their execution on multiple computing re-
sources. Furthermore, we also use topology decomposi-
tion method to obtain higher speed-up by splitting up a
large simulation into smaller pieces. A best-effort strat-
egy has been used for searching for the good parameter
setting within the limited time frame. To make high-
ly efficient search in the parameter space, we combine
multiple search techniques to perform an increasingly-
improving search process. We also propose a new hybrid
search algorithm, which, distinguished from the others,
maintains a dynamic balance between ezploration and

exploitation and aggressively utilize the domain-specific
information of the concerned parameter space.

Various software components have been developed in
ns and Unix/Linux. Preliminary experimentation and
simulation have been executed on traffic managemen-
t algorithms for the demonstration of our collaborative
on-line simulation concept. These tests produce very
promising and encouraging results. These softwares and
results are available on line.[18] In addition to traffic
management, we also investigated the feasibility of ap-
plying the on-line simulation into other areas, such as
routing algorithms. The experiments on this aspect is
under way.

Our current work is limited to proof-of-concept stage.
There is still a lot of work to be done for realizing the
realistic, scalable and effective on-line control. Further
work needs to address the problem of how to collect data
from the network and build a good model from the data.
Further study should also consider the scalability and
cooperativity of the on-line simulation. How to make
our simulator work with thousands of flows is still an
open question.

References

[1] (1997) NS(network simulator).
mash.cs.berkeley.edu/ns.

http://www-

[2] S. Floyd, V. Jacobson, “Random Early Detection
Gateways for Congestion Avoidance,” IEEE/ACM
Transaction on Networking, vol. 1, pp. 397-413, Au-

gust 1993

S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal,
and B. Vandalore, “The ERICA Switch Algorith-
m for ABR Traffic Management in ATM Network-
s,” IEEE/ACM Transactions on Networking, To ap-
pear, February 2000. Available

S. Floyd, V. Jacobson, “Link-sharing and Re-
source Management Models for Packet Networks,”
IEEE/ACM Transaction on Networking, vol. 3 No.
4, pp. 365-386, August 1995.

Network Management and Control Using Collaborative On-line Simulation

Tao Ye

[5]

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

IETF, Differentiated Services(diffserv) working
group. http://www .ietf.org/html.charters/diffserv-
charter.html

J. Apisdorf, K. Claffy, K. Thompson, and R. Wilder,
“Oc3mon: Flexible, affordable, high performance
statistics collection”, Proceedings of INET 97, June
1997.

V. Paxson, and S. Floyd, “Wide area traffic: The
failure of poisson modeling,” IEEE/ACM Transac-
tions on Networking’, 3 (3), 226-244, June 1995.

B. Ryu, “Fractal network traffic: From understand-
ing to implications,” Ph. D. thesis, Columbia Uni-
versity, New York City, 1996.

A. Andersen, and B. Nielsen, “A markovian ap-
proach for modeling packet traffic with long-range
dependence,” IEEE Journal on Selected Areas in
Communications, 16 (5), 719-732, June 1998.

M. Yuksel, B. Sikdar, K. S. Vastola and B. Szy-
manski, ”Workload generation for ns Simulations
of Wide Area Networks and the Internet,” Proc. of
Communication Networks and Distributed Systems
Modeling and Simulation Conference, pp 93-98, San
Diego, CA, USA, 2000.

R. Jain, The Art of Computer Systems Performance
Analysis, John Wiley & Sons, 1991.

H.-P. Schwefel, FEvolution and Optimum Seeking,
New York: Wiley, 1995.

S. Kirkpatrick, D.C. Gelatt and M.P. Vechhi, “Opti-
mization by simulated annealing,” Science, vol. 220,
pp.671-680, 1983.

F.Glover, “Tabu Search I,” ORSA J. Comput., vol.
1, pp. 190-206, 1989.

D. H. Wolpert and W. G. Macready, “No free lunch
theorems for optimization”, IEEE Trans. On. Evo-
lutionary Comput., vol. 1, pp. 67-82, April 1997.

H. T. Kaur and K. Vastola, “ The Tunability of Net-
work Routing using Online Simulation,” Proceed-
ings of the Symposium on Performance Evaluation

of Computer and Telecommunication Systems, July
16-20, 2000 Vancouver B.C. Canada.

netperf traffic generator, http://www.netperf.org.

“Network Management and Control Using
Collaborative ~ On-line Simulation” website,
http:/ /networks.ecse.rpi.edu/ olsim.

