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Abstract

The optimization of network protocol parameters based on network simulation can be considered a
“black-box” optimization problem with unknown, multi-modal and noisy objective functions. In this
paper, an adaptive random search algorithm is proposed to perform efficient and robust optimization for
the concerned problems. Specifically, the algorithm is designed for use by the on-line simulation scheme
which attempts to automate network management with protocol parameter tuning. The new algorithm
takes advantage of the favorable statistical properties of pure random search and achieves high efficiency
without imposing extra restriction, e.g., differentiability, on the objective function. It is also robust to
noises in the evaluation of objective function since no traditional local search technique is involved. The
proposed algorithm is tested on some classical benchmark functions and its performance compared with
some other stochastic algorithms. Finally, a real case test is presented, in which the parameters of some
RED queues are optimized with our algorithm.

1 Introduction

Optimization problems arise in many engineering areas and can be formulated as (assume minimization):
given a real-valued objective functionf : Rn → R, find a global minimum,

x∗ = arg min
x∈D

f(x) (1)

whereD is a compact set inRn and called parameter space. In these problems, the objective functions
f(x) are usually analytically unknown and the function evaluation can only be achieved through computer
simulation or other indirect ways. Hence, these problems are called “black-box” optimization. Since their
objective functions are often non-linear and multi-modal, they are also termed global optimization in contrast
with local optimization where there is only one single extreme inf(x). These optimization problems are
considered very hard to solve.

An on-line simulation scheme has been proposed in [1], which attempts to accomplish automatic and
adaptive network management with an approach based on “black-box” parameter optimization. The basic
idea of this scheme is illustrated in Fig 1. In this scheme, autonomous on-line simulators in each network
domain continuously collect real-time data on network conditions, run network simulations and use some
optimization algorithm to come up with better parameters for network protocols or algorithms, such as RED,
OSPF. A good optimization algorithm, which can quickly find appropriate protocol parameters, is essential
to the success of this scheme. Besides the difficulties common in all “black-box” optimization problems,
some specific properties in network optimization need to be considered in designing a suitable algorithm.
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Figure 1: On-line simulation scheme for automatic network management

First, since network conditions keep changing all the time, a very efficient algorithm is required, which is
able to quickly find better network parameters before significant changes happen to network conditions on
which network simulation is based. Accordingly, the emphasis of the algorithm should not be on seeking
the optimum setting, but finding a better operating point within the limited time frame. The high efficiency
requirement is also due to the fact that the simulation of a complex network is often very time-consuming and
it is necessary to reduce the number of function evaluations as much as possible. Secondly, since a network
often has tens or hundreds of protocol parameters to be tuned, the desired algorithm should also be capable
of handling a very large parameter space. Thirdly, network simulation only provides us with approximate
estimation of network performance, which means the objective functions in our problems are superimposed
with small random noises due to inaccuracy in network modeling, simulation, etc. In addition, since a
network normally has both discrete and continuous parameters, we should also design the search algorithm
to handle this situation.

In recent years, much effort has been contributed to the area of “black-box” optimization, and many
algorithms have been proposed. Among them, stochastic algorithms have achieved wide popularity with
successful application in many areas. These algorithms introduce stochastic elements into the search pro-
cess and hence can only guarantee a probabilistic convergence to the global optimum. Their success is
mostly due to the fact that they assume little knowledge on the objective functions and are often simple and
easy to implement. As a result, they can be adapted to handle large-scale and complex problems without
much difficulty. Pure random search is the simplest stochastic algorithm, which performs uniform sampling
in the parameter space. Although it is not widely used for its obviously poor efficiency, random search
has become the basis of many algorithms to guarantee the probabilistic convergence to the global opti-
mum. Controlled random search[2] and its variants[3, 4, 5] replace random sample with simplex sampling
technique. The basic idea is to first uniformly sample the parameter space and then increasingly bias the
sampling towards the good regions found in the previous search. Multistart hillclimbing tries to improve
the efficiency of random search by starting a hillclimbing search from each random sample until reaching
a local optimum. However, it may waste a lot of time on re-climbing the hills already visited. Clustering
method[6] attempts to avoid the revisit of the hills by identifying the random samples close to each other as
a cluster and only starting one hillclimbing process from each cluster in the hope that a cluster only includes
one local optimum. However, accurately identifying these clusters is difficult, especially in high dimension
problems[6]. Simulated annealing[7] and Genetic algorithm[8] are two widely used techniques inspired by
natural phenomenon, i.e., physical annealing process and natural evolution process. Although they have
been demonstrated to be effective in many practical problems, their efficiencies are usually low and the
algorithms often take a long time to converge. Many variants have been tried to combine them with some
local search methods to improve their efficiencies.[9]

No Free Lunch theorem[10] has demonstrated that no single algorithm can consistently perform better
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in all classes of problems than the other algorithms. That is, for one class of problems where an algorithm
can do better than other algorithms, there is always another class where it will do worse. For one specific
optimization problem, the most efficient algorithms are those which best exploit the available information
of the objective function. This paper examines the properties of network optimization problems and pro-
poses an adaptive random search algorithm which is geared to the requirements and restrictions of network
optimization problems and attempts to achieve high efficiency with littlea priori knowledge assumed.

The rest of this paper is organized as follows: in Section 2, we discuss design ideas of the search algo-
rithm in the context of network optimization and investigate the applicability of various search techniques.
In Section 3, we present the new algorithm which is designed on the basis of discussions in previous sec-
tions. In Section 4, the proposed algorithm is tested on some benchmark functions, and its performance
compared with some other stochastic algorithms. We also apply the algorithm to the real network optimiza-
tion experiment and show how the performance of network can tuned by our search algorithm. Finally, we
conclude this paper in Section 5 and discuss further research directions.

2 Design Ideas of Search Algorithm for Network Optimization

A stochastic search algorithm consists of two procedures:explorationandexploitation, which are also re-
ferred to asglobal phaseand local phasein some literature[11, 6]. Exploration encourages the search
process to examine unknown regions, while exploitation attempts to converge to a local optimum in the
vicinity of a chosen region. They can be executed alternately or be interwoven together during the search.
The balance between these two procedures is maintained by abalance strategywhich can be either proba-
bilistic or deterministic. For example, multistart hillclimbing uses random sampling for exploration, a local
search technique for exploitation and a deterministic balance strategy to execute the two procedures alter-
nately. Since no existent algorithm can be directly used to achieve high efficiency without exploiting any
problem-specific information, our approach is to investigate the applicability of various search techniques,
choose those which best fit our problem, and then use an appropriate balance strategy to combine these
methods and achieve high efficiency.

Exploration methods are usually required to provide a guarantee of a probabilistic convergence to the
global optimum. Not many techniques are available in this category. Some of the examples are deterministic
enumeration, random sampling, random walk, etc. Among them, random sampling may be the simplest and
most widely used technique, which takes random samples from a uniform distribution over the parameter
space. This technique provides a strong probabilistic convergence guarantee and is more efficient than
deterministic methods, especially for high-dimension problems[6]. Therefore, we have adopted random
sampling for exploration in our algorithm. Although it is generally considered to lack in efficiency, random
sampling is in fact very efficient in identifying a good point close to promising areas in its initial steps. To
illustrate this, we first define a measure:

φD(yr) =
m({x ∈ D | f(x) ≤ yr })

m(D)
(2)

wherem(·) is Lebesgue measure. Then we can define ar-percentileregion in the parameter spaceD:

AD(r) = {x ∈ D | f(x) ≤ yr } (3)

where
φD(yr) = r, r ∈ [0, 1]

yr is calledr-percentileof the objective function value. Note thatAD(1) is just the whole parameter space
D andlimε→0 AD(ε) will converge to the global optimum. Suppose the sample sequence generated byn
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steps of random sampling isxi, i = 1 . . . n andxn
(1) = arg min1≤i≤n f(xi), then the probability ofxn

(1) in
AD(r) is:

P (xn
(1) ∈ AD(r)) = 1− (1− r)n (4)

We can have ther value of ther-percentileregion thatxn
(1) will reach with probabilityp is:

r = 1− (1− p)1/n (5)

For any probabilityp < 1, r will tend to 0 with increasingn. This is just the global convergence guarantee of
random sampling. From Equation 5, we can also see that random sampling is highly efficient at initial steps
sincer decreases exponentially with increasingn, and its inefficiency is from later samples. For example,
Fig 2 shows the convergence curve of random sampling with a probability of0.99. We can see that it takes
only 44 samples to reach a point inAD(0.1) area and this is achieved without using any special information
of the objective function, whereas all samples after the first 44 can only improver value ofxn

(1) at most by
0.1.
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Figure 2: Convergence curve of random sampling with probability 0.99

Exploitation methods are required to quickly converge to the local optimum in a certain region. The
derivative-based methods, such as quasi-Newton method and deepest descent, are not adopted in our algo-
rithm though they are very efficient for differentiable objective functions. The reason is that the objective
function in our problem may be superimposed with noises and hence the accurate derivative estimation
cannot be obtained. Direct search methods, which do not use any derivative information of objective func-
tions, are widely used in practice and often recommended for optimization in the presence of noise[5, 12].
However, like other local search algorithms, the performance of traditional direct search methods, such as
Nelder-Mead simplex method[13] and pattern search[14], are still susceptive to the effect of noises and may
be degraded in higher dimension problems[15, 6]. Therefore, we have used a new direct search approach
in our algorithm which is based on the high efficiency of random sampling at initial steps. This approach
starts a random sampling in the prospective region with a relatively large sample space, then shrinks and
re-aligns the sample space based on previous samples until it finally converges to the local optimum. The
details of this approach are described in the next section. Since only random sampling is used, our method
is more robust to noises in function evaluations and more scalable. These advantages are achieved without
sacrificing the efficiency since the method takes advantage of the initial high-efficiency property of random
sampling.

The balance strategy is essential to the efficiency of an algorithm. Usually it should only execute the
exploitation procedure in prospective areas. However, it is difficult to judge which areas are more promising
and should be exploited. Some algorithms, such as multistart type algorithms, do not differentiate areas
and hence lack in efficiency. Our approach is to identify a certainr-percentileregionAD(γ) and only start
exploitation from the points in this region. The size ofAD(γ) region should be small enough so that most of
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unpromising areas are filtered out, and on the other hand, it should be within the reach of initial high efficient
steps of random sampling so that identifying a point in it will not take too long and thus lower the overall
efficiency. Fig 3 illustrates an example of this strategy. The left plot shows a contour plot of a 2-dimension
multi-modal objective function and the right plot shows the region ofAD(0.05). We can see the function
has many local optima; however, only 3 discrete areas remain inAD(0.05) (shaded areas in the right plot).
Each of these areas encloses a local optimum and the one with the biggest size has the global optimum. This
is also true for most optimization problems since the region of attraction for the global optimum is usually
the largest[11]. If we do random sampling on the whole parameter space, those samples falling inAD(γ)
are also uniformly distributed onAD(γ). As a result, if we start exploitation from these points, the search
will arrive at a global optimum with a larger probability than other non-global optima.
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Figure 3: Contour plot of an objective function(left) and its region ofAD(0.05)(right)

As we mentioned before, our algorithm needs to be able to handle the objective functions with a mixture
of continuous and discrete parameters. Since most discrete parameters in network protocols, such as queue
size limit, have a natural continuous analog, we have used two methods introduced in [16] for these parame-
ters. The first method expands a discrete parameter space to a continuous one by making the function value
of a non-discrete point equal to that of its nearest discrete neighbor. The second method modifies the search
algorithm so that the algorithm can only generate discrete points, and one way to do this is rounding each
non-discrete point generated by the algorithm to its nearest discrete neighbor

3 The Algorithm

Based on the analysis in the previous section, we have designed an adaptive random search algorithm for
network optimization problems. The basic idea of the algorithm is: use random sampling to explore the
whole parameter space and only start exploitation for those points which fall in a certainAD(γ) region. To
identify anAD(γ) area, we should first decide the threshold function valueyγ , and any point with a smaller
function value thanyγ belongs toAD(γ). Our algorithm uses the following strategy to decide the value of
yγ : first we choose a relatively small valuer ∈ [0, 1], and a confidence probabilityp, then we taken random

samples wheren is the smallest integer satisfyingn ≥ ln(1−p)
ln(1−r) so that the probability ofxn

(1) ∈ AD(r) is
larger thanp. We usef(xn

(1)) as the initial value ofyγ . In the future exploration, we obtain a newxn
(1) every

n samples and updateyγ with the average function value of these points. In this method, the confidence
probability p should assume a value close to 1, for example, 0.99. The value ofr decides the value ofγ
(γ is smaller thanr) and hence the size ofAD(γ). It should be chosen carefully to balance efficiency and
effectivity as discussed before. We have usedr = 0.1 in our current algorithm, and in this case it only takes
44 samples to find a point which falls withinAD(0.1) with a probability larger than 0.99.
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Now we will describe our exploitation technique which is also based on random sampling. We start an
exploitation process for the points with a function value smaller thanyγ . According to previous discussions,
the starting pointx0 is close to a certain local optimum. Suppose we have a neighborhoodN(x0) of this
point which also includes the local optimum, ifφN(x0)(f(x0)) is large, many points inN(x0) are better than
x0. Therefore, if we do random sampling inN(x0), it will very probably find a point better thanx0 with a
small number of samples. AssumingφN(x0)(f(x0)) = υ, with a confidence probabilityq, random sampling

should find a better point inN(x0) with l = ln(1−q)
ln(1−υ) samples. If a better point is found inl samples, we

replacex0 with this point, move the sample space to the newN(x0) and keep its size unchanged. In this
way, even ifN(x0) may miss the local optimum, the consecutive descent moves will still lead the search to
converge to the local optimum in a way similar to the local search. If the above method fails to find a better
point in l samples, that suggestsφN(x0)(f(x0)) is small. In this case, we contractN(x0) by a certain ratio
c ∈ [0, 1], i.e., generate a new neighborhoodN ′(x0) whose size isc · m(N(x0)). With this method, the
search will soon converge to the local optimum, or to an appropriate neighborhood whereφN(x0)(f(x0))
is υ, then moves to the local optimum. The exploitation process continues untilm(N(x0)) is less than
a certain threshold, whose value is dependent on the resolution requirement of the optimization problem.
In our current implementation, the initial size ofN(x0) is taken asr · m(D), whereD is the original
parameter space andr the parameter in exploration process. Since our exploration guarantees that with a
high probabilityx0 belongs to a certainA(γ) with a size smaller thanr ·m(D), the above initial size will
ensureN(x0) covers a local optimum in most cases. A simple method is currently used to constructN(x0):
assuming an-dimension parameter spaceS defined withli ≤ xi ≤ ui, i = 1 . . . n, the neighborhood ofx0
with a size ofr ·m(S) is: NS,r(x) = {z ∈ S | |zi − xi| < r1/n · (ui − li)}.

The detail of the algorithm is illustrated by the following pseudo-codes:
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Algorithm 1 Adaptive Random Search Algorithm
Initialize exploration parametersp, r, n ← ln(1− p)/ ln(1− r)
Initialize exploitation parametersq, υ, c, st, l ← ln(1− q)/ ln(1− υ)
Taken random samples from parameter spaceD
x0 ← arg min1≤i≤n(f(xi)), fγ ← f(x0), addf(x0) to F,
i ← 0, flag ← 1, xopt ← x0
while stopping criterion is not satisfied

if flag = 1
j ← 0, fl ← f(x0), xl ← x0, ρ ← r
while ρ > st

Take a random samplex′ from NS,ρ(xl),
if f(x′) < fl

xl ← x′, fl ← f(x′),
j ← 0

else
j ← j + 1

end
if j = l

ρ ← c · ρ, j ← 0
end

end
flag ← 0, updatexopt if f(xl) < f(xopt)

end
Take a random samplex0 from S,
if f(x0) < fγ

flag ← 1
end
if i = n

Add min1≤i≤n(f(xi)) to F
fγ ← mean(F), i ← 0

end
i ← i + 1

end

4 Test Results

We test the performance of our search algorithm on two benchmark functions, which are shown in Fig 4.
The first one is a modified version of 2-dimension Rastrigin function defined onx, y ∈ [−10, 10], which has
a global minimum at[2.5, 2.5] with a function value of 0. This function has a large number of local optima
and is considered very difficult to optimize. From its surface plot, we can see this function is similar to a
sphere with small noises superimposed. The second one is Schwefel function defined onx, y ∈ [−150, 100]
and has a global minimum at[−125,−125] with a value of 592. This function also has quite a few local
minima, especially two near global optima far from the real one.

We apply our search algorithm to these two functions, repeat each test with randomly selected starting
points for 50 times and take the average of the results from these tests. Based on these results, we plot
the convergence curve to study the convergence speed of the algorithm. We also apply two other search
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Figure 4: Rastrigin and Schwefel functions

algorithms to the test functions and compare their performance with that of our algorithm. One is a multistart
hillclimbing algorithm using a version of pattern search as its exploitation technique. The other is a version
of improved multistart hillclimbing[17] which starts the exploitation process only after finding a point better
than the best one found so far and thus avoids the revisit problem of regular multistart algorithms. These
two algorithms are easy to implement and widely used, and they are also more scalable to high-dimension
problems than those more sophisticated algorithms such as clustering method. In the tests, we have used
in our algorithm the following parameters:p = 0.99, r = 0.1, c = 0.5, q = 0.99, st = 0.01. The test
results are displayed in Fig 5. We can see that our algorithm converges to the global optimum rapidly and
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Figure 5: Test results of search algorithms

its efficiency is much better than two other algorithms under test. For Rastrigin function where the global
optimum is hidden in a large number of neighboring local optima (noises), our algorithm can still find the
points very close to the global optimum which the other two algorithms can not reach. This demonstrates
that our algorithm is robust to the effect of noises.

We also test our algorithm on real network optimization problems. We build a Linux-based testbed
with the topology shown in Fig 6. There are 4 routers with a Random Early Drop (RED) queue on each
of them and each RED queue has 4 parameter to tune:min threshold, max threshold, max drop probability
andexponential weighted moving average coefficient. Thus we have a total of 16 parameters to tune in this
experiment. We generate some TCP flows from one side to the other and use as the performance metric the
coefficient of variation (standard deviation over mean) of goodputs for these TCP flows, which measures
the variability of the goodputs. An on-line simulator is applied in the network to tune the parameters of
these RED queues. This on-line simulator usesns[18] to simulate this network and our algorithm to search
for better RED parameter settings. If a parameter setting is found with a performance metric better than
the current one by a certain margin, it is applied back into the network. The COV of goodputs during the
experiment is plotted in Fig 7. In the beginning, the parameters of these RED queue are purposedly set to
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some bad values, which would result in a great unfairness of goodputs between TCP flows. We can see a
high average COV value and big oscillations. Then the on-line simulator is started. Appropriate parameter
settings are quickly found by our search algorithm and the previously mis-configured parameters corrected,
which results in an immediate performance improvement: the average COV drops to a very low value and
the COV curve becomes very stable over time.
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5 Conclusion

In this paper, we investigate the optimization problem of network protocol parameters, which can be consid-
ered a simulation-based “black-box” optimization problem with noisy, multi-modal objective functions. The
search algorithm is required to be very efficient, robust to noises and scalable to high dimension problems.
Classical optimization algorithms, such as controlled random sampling, clustering method and simulated
annealing, do not fit well in our problem with all these restrictions. An adaptive random search algorithm
is proposed, which is mainly based on random sampling and hence robust to noises and scalable to high-
dimension problems. High efficiency is also achieved by exploiting the advantageous statistical property
of random sampling. The algorithm is tested on some benchmark functions and real network optimization
problems and the test results have indicated that our algorithm performs very efficiently and is robust to
noises.

Currently the tests are performed on relatively small-scale problems. Future work should study the
scalability of our algorithm and test it on large-scale problems, such as BGP routing algorithm which may
have hundreds of parameters. Besides, the algorithm can be further enhanced to achieve higher efficiency.
For example, tabu technique can be included to reduce the probability of revisits. The parallelization of the
algorithm is another research direction to handle large-scale optimization problems.
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