
LARGE-SCALE NETWORK PARAMETER
CONFIGURATION USING ON-LINE SIMULATION

FRAMEWORK

By

Tao Ye

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Electrical Engineering

Approved by the
Examining Committee:

Shivkumar Kalyanaraman, Thesis Adviser

Biplab Sikdar, Member

Christopher D. Carothers, Member

Aparna Gupta, Member

Rensselaer Polytechnic Institute
Troy, New York

March 2003

LARGE-SCALE NETWORK PARAMETER
CONFIGURATION USING ON-LINE SIMULATION

FRAMEWORK

By

Tao Ye

An Abstract of a Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Electrical Engineering

The original of the complete thesis is on file
in the Rensselaer Polytechnic Institute Library

Examining Committee:

Shivkumar Kalyanaraman, Thesis Adviser

Biplab Sikdar, Member

Christopher D. Carothers, Member

Aparna Gupta, Member

Rensselaer Polytechnic Institute
Troy, New York

March 2003

c© Copyright

by

Tao Ye

All Rights Reserved

ii

CONTENTS

ABSTRACT . vi

1. Introduction . 1

1.1 Network Performance Management 1

1.2 Black-box Optimization . 2

1.3 Overview . 4

2. Network Management . 8

2.1 Network Management Model . 8

2.1.1 Organization Model . 9

2.1.2 SNMP-based Network Management 10

2.1.3 Functional Model . 12

2.2 Automatic Network Performance Management 13

2.2.1 Optimization-based Performance Management 13

2.2.2 On-line Simulation Scheme . 14

3. Search Algorithm Review . 16

3.1 Structure of Stochastic Search Algorithms 17

3.1.1 Exploration Methods . 18

3.1.1.1 Random Sampling 18

3.1.1.2 Random Walk . 19

3.1.1.3 Model Fitting . 19

3.1.2 Exploitation Methods . 20

3.1.2.1 Downhill Simplex Methods 21

3.1.2.2 Hillclimbing . 22

3.1.2.3 Pattern Search . 22

3.2 Stochastic Search Algorithms . 24

3.2.1 Multi-start Algorithms . 24

3.2.2 Controlled Random Search . 26

3.2.3 Genetic Algorithm . 27

3.2.4 Simulated Annealing . 28

3.2.5 Tabu Search . 29

3.3 No Free Lunch Theorem . 30

iii

4. Design Issues of Efficient Search Algorithm 33

4.1 Design Requirements for Network Optimization 33

4.2 Distribution Function of Objective Function 34

4.3 Efficiency of Search Algorithms . 35

4.3.1 Efficiency Measures of Optimization Algorithms 36

4.3.2 Goodness Metric of Optimization Results 39

4.3.3 Comparison of Some Algorithms with Mφ 41

4.4 Large-scale Optimization Problems 43

5. Recursive Random Search Algorithm . 48

5.1 Design Ideas of Recursive Random Search 48

5.1.1 Efficiency of Random Sampling 48

5.1.2 Balance between Exploration and Exploitation 50

5.2 Algorithm Details . 51

5.2.1 Exploration . 51

5.2.2 Exploitation . 53

5.2.3 Remarks on the RRS Algorithm 55

5.2.4 Efficiency of the RRS Algorithm 56

5.3 Test Results . 58

5.3.1 Benchmark Functions . 59

5.3.2 Tests on Efficiency of RRS . 63

5.3.3 Tests on Noise-Resistance of RRS 66

5.3.4 Tests on Objective Functions with Negligible Parameters . . . 66

6. Unified Search Framework . 68

6.1 The Unified Search Framework . 69

6.1.1 Sampler . 70

6.1.2 Memory . 73

6.1.3 Computing Resource Model and Management Mechanism . . . 74

6.1.4 Parallel Optimization Strategy 77

6.2 Test Results . 78

6.2.1 Effect of Memory Types . 78

6.2.2 Effect of Resource Allocation Strategy 79

6.2.3 Scalability of Parallel Optimization 80

6.3 Conclusion . 82

iv

7. Application to Network Optimization . 83

7.1 Optimize RED for Network Congestion Control 83

7.1.1 Formulation of RED Optimization Problem 84

7.1.1.1 Parameter Sensitivity of RED 84

7.1.1.2 Optimization Objective 86

7.1.2 Simulation Results . 88

7.1.2.1 Simulation for Optimization of Single RED 88

7.1.2.2 Real Network Experiment for Optimization of Mul-
tiple RED Queues 90

7.1.3 Conclusion . 92

7.2 Optimize OSPF for Traffic Engineering 92

7.2.1 The Objective Function . 94

7.2.1.1 Link Drop Probability 95

7.2.1.2 The Optimal General Routing 98

7.2.2 Optimization of OSPF Weights Using On-line Simulation . . . 99

7.2.3 Simulation Results . 100

7.2.3.1 Comparison of Search Schemes 102

7.2.3.2 Heuristic Piecewise Linear Metric 103

7.2.3.3 Packet Drop Rate Metric 103

7.2.3.4 Optimizing OSPF for Improving Packet Drop Rate . 104

7.2.4 Conclusions . 106

7.3 Optimize BGP Routing Algorithm 106

7.3.1 Traffic Demands . 108

7.3.2 Optimal Routing Calculation for Load Balancing 109

7.3.3 The BGP Optimization Scheme 111

7.3.4 Simulation Results . 112

7.3.4.1 Optimizing for Load Balancing 112

7.3.4.2 Minimizing Packet Loss 113

8. Conclusion and Future Research Direction 115

8.1 Conclusion . 115

8.2 Future Research Direction . 117

LITERATURE CITED . 119

v

ABSTRACT

Today’s Internet relies on a variety of important network protocols. The current

parameter configuration process of these protocols is mainly manual and widely

considered a black art. This thesis tackles this parameter setting problem by formu-

lating it as a “black-box” optimization problem. In this approach, we use an on-line

simulation system to monitor and simulate the network, and then use a black-box

optimization algorithm to optimize the parameters of the concerned network proto-

col. This black-box approach allows flexibility in terms of objectives and metrics of

the desired optimization and can be applied to a wide range of network protocols.

We first investigate the properties of the network protocol optimization prob-

lems and examine the applicability of various optimization techniques. For the

concerned problems, the desired optimization algorithm is required to be highly ef-

ficient, scalable to high dimensions and robust to noisy objective functions. Based

on these requirements, we propose a Recursive Random Search (RRS) algorithm

whose major feature is its basis on random sampling. We empirically validate the

advantages of RRS with extensive tests on a suite of benchmark functions and ap-

plication in some real network optimization problems. To provide a more generally

applicable solution for practical optimization problems, we also propose a Unified

Search Framework (USF), which includes a variety of search techniques as building

blocks. This framework can be used as the platform to build tailored optimization

strategies by combining a selection of building blocks according to the features of

the underlying problem. Furthermore, USF includes the mechanisms to parallelize

search techniques and allocate available computing resources among them such that

the resources are optimally utilized.

Finally, we investigate the configuration problems of several network protocols,

such as, Random Early Drop (RED), Open Shortest Path First (OSPF) and Border

Gateway Protocol (BGP). We formulate these problems into black-box optimization

problems, some of which have thousands of parameters. We then apply the opti-

mization techniques developed in this thesis to them. Simulations and experiments

vi

have demonstrated the effectiveness and efficiency of the on-line simulation system

and the proposed optimization techniques.

vii

CHAPTER 1

Introduction

1.1 Network Performance Management

Internet is a global network whose operation relies on a variety of network

protocols. Today’s network protocols like BGP and OSPF were designed for one

primary service: “best effort reachability.” But now network operators want to

deploy Virtual Private Networks(VPN), manage traffic within ASes to meet Service

Level Agreements(SLA), and between ASes (at peering points) to optimize complex

peering agreements. The designers of such protocols included “parametric hooks” to

allow operators to “tweak” the protocols and achieve such traffic management goals.

However, the parameter setting process today is manual and is widely considered a

black art. The configuration of many protocols, such as BGP, is tough, error prone

and is likely to get harder as the protocol is overloaded to serve more functions[1].

The objective of network performance management is to automate network protocol

configuration by introducing monitors and intelligence into the network. Though

some network management tools are emerging to aid operators, a lot more needs to

be done.

The on-line simulation system proposed in[2] is one such contribution to this

important space. This system can be used as a “recommendation service” to sug-

gest a variety of “good” parameter settings and illustrate resulting flow patterns

so that operators are better informed than their current manual procedures. As

illustrated in Fig 1.1, the basic idea of this system is to formulate network proto-

col configuration as a black-box optimization problem. With the network protocol

considered as a black-box, network simulation can be used to evaluate its perfor-

mance for various parameter settings. Based on this, an optimization algorithm can

then be employed to find “good” protocol configurations for the current network

conditions. The “black-box” approach allows flexibility in terms of objectives and

metrics of the desired optimization, and hence can be applied to a variety of con-

figuration problems. This approach can be used to manage any network protocol

1

2

Network

Network

Model
Optimization

Black−box

Algorithm

Experiment

Parameters

Performance

Metric

Network

Information

Recomended

Parameters

Optional Direct

Parameter Setting

Human

Operator

Monitor

On−line Simulation System

Network

Simulator

Figure 1.1: On-line simulation system for adaptive configuration of net-
work protocols

as long as the protocol has tunable parameters whose setting has a substantial ef-

fect on network performance. An efficient optimization algorithm is essential to the

on-line simulation system since network is a dynamic system and the optimization

of network configuration should be quickly completed before significant changes in

network conditions happen. The objective of this dissertation is to investigate the

problem of network parameter optimization and design the efficient optimization

strategies for this problem.

1.2 Black-box Optimization

In view of the complexity of network performance analysis, a variety of network

simulation software, such as ns[3], SSFnet[4] and GloMoSim[5], have been devel-

oped to help understand behaviors of these protocols empirically. These simulation

software enable us to evaluate the network performance for a certain parameter

setting of a network protocol. As a result, an empirical mapping can be estab-

lished between network performance and protocol parameter setting as shown in

Figure 1.2. With this mapping, the optimal configuration of a network protocol

can be formulate as a black-box optimization problem, where the network is consid-

ered as a black box and its performance is evaluated with network simulation. An

optimization algorithm is then used to search the parameter space of the network

protocol for the setting which delivers the optimal or near-optimal performance.

A general unconstrained optimization problem can be formulated as follows

(assume minimization): given a real-valued objective function f : Rn → R which

3

Network Simulator

Parameters
Protocol Performance

Metric

Figure 1.2: Empirical mapping between protocol parameters and network
performance

maps a parameter setting to a performance metric, find a global minimum,

x∗ = arg min
x∈D

f(x) (1.1)

where D is called parameter space, usually a compact set in Rn which contains

the global minimum as an interior point. In many practical optimization problems,

the objective function f(x) is analytically unknown and can be considered as a

black-box, such as the one illustrated in Figure 1.2, and the information about this

back-box can only be obtained by function evaluation with computer simulation or

other indirect ways. Such class of problems are so-called black-box optimization.

Since usually little a priori knowledge is known about the underlying “black-box”,

and these optimization problems are very hard to solve. Additionally the objective

functions of these problems are often non-linear and multi-modal, which makes the

problems even harder. This type of optimization is also called global optimization

as opposed to local optimization where there is only one single extreme in f(x) and

are much easier to solve.

The optimization problem described above arises in many scientific and en-

gineering areas. A large number of optimization algorithms have been proposed

and successfully applied in practice, such as, multi-start hill-climbing[6], genetic

algorithm[7] and simulated annealing[8]. In the vast amount of optimization ap-

plication literature, few analytical efficiency results have been reported due to the

complexity of optimization problems. The comparison of optimization algorithms

is mainly accomplished in an empirical way by experimenting on a somewhat arbi-

trary selection of benchmark objective functions [9, 10]. So far, there has been no

4

consistent report on efficiencies of different algorithms. Furthermore, even choosing

appropriate efficiency measures still remains a major research problem.

In fact, the No Free Lunch theorem[11, 12] has demonstrated that no matter

what performance metric is used, the average performance of any optimization al-

gorithm is the same. In other words, there is no generally efficient algorithm and

no single algorithm can consistently perform better in every class of problems than

the others. For one specific optimization problem, the most efficient algorithms are

those which best exploit the available information of the objective function. There-

fore, to design an efficient optimization algorithm, the properties of the underlying

problem have to be first carefully examined. In addition, there is a tradeoff between

efficiency and applicability. A desired optimization algorithm should strike an ap-

propriate balance between these two aspects. The objective of this dissertation is to

bridge the gap between black-box optimization and network configuration problems,

find appropriate search techniques and strategies for the efficient optimization, and

apply these techniques to solving real network configuration problems. Due to the

intractable difficulty in the analytical examination of optimization algorithms, this

dissertation also uses the qualitative empirical comparison approach as in most of

optimization literature. The quantitative comparison is still an open question.

1.3 Overview

Many practical problems, such as, circuit design[13], job scheduling[14], molec-

ular conformation[15, 16], have been solved successfully with optimization tech-

niques. However, in the area of network performance management, optimization

has not been used regularly. One important purpose of this dissertation is to bridge

the gap between these two fields. We first examine the issues present in network

optimization problems, then investigates the applicability of various search tech-

niques. Among these issues, the most important ones are efficiency, scalability to

high-dimensional problems and robustness to noisy objective function. Noting that

random sampling is very efficient in initial steps and also very robust to noises, this

dissertation designs the Recursive Random Search(RRS) algorithm which takes ad-

vantage of these features of random sampling to perform the efficient optimization

5

for network configuration problems.

RRS is designed to be a general optimization algorithm for network opti-

mization problems which will deliver high efficiency in most cases. However, as

stated in No Free Lunch theorem[12], there is no optimization algorithm which can

consistently outperform the others in every class of problems. RRS may be outper-

formed in some cases by an optimization algorithm which aggressively exploiting the

problem-specific properties. In fact, the design objective of RRS is to strike an ap-

propriate balance between efficiency and applicability. To provide a general solution

for practical optimization problems, this dissertation also proposes a Unified Search

Framework(USF), which includes a variety of search techniques as building blocks

and combine a selection of them based on the features of the underlying problem.

Therefore, this framework can be used as the platform to build tailored optimization

strategies for various optimization problems. Furthermore, USF includes a resource

management mechanism which attempts to fully exploit the available computing

resources and appropriately allocate them among parallel executed search methods.

In practice, an optimization problem is often present with a certain amount of com-

puting resources available for use by optimization. The objective of optimization can

be considered as: given a certain amount of computing resources, achieve the opti-

mization objective with the highest efficiency. USF includes a resource management

and allocation mechanism to fulfill this objective.

Applying the on-line simulation scheme to real network performance manage-

ment problems is another area investigated in this dissertation. When formulating

the optimization problem for a network protocol, it is important to design an opti-

mization metric to achieve the desired performance management objective. Many

performance metrics exist, such as, network throughput, queueing delay and packet

loss rate. Each of them measures one aspect of network performance. Sometimes,

multiple metrics has to be considered in the optimization. For such occasion, appro-

priate multi-criteria optimization techniques should be used. In this dissertation, the

on-line tuning problems of three important network protocols, i.e., RED queueing

management, OSPF routing protocol and BGP routing protocol, are investigated

and successfully solved with the on-line simulation scheme.

6

The rest of this dissertation is organized as follows:

Chapter 2 reviews general models of network management and important tech-

niques in this area. Then we describe the on-line simulation scheme as the solution

to automatic network performance management.

Chapter 3 reviews stochastic search algorithms for black-box optimization.

An stochastic search algorithm normally comprise two elements: exploration and

exploitation. We first reviews some important exploration and exploitation tech-

niques which are appropriate for use in black-box optimization. Then we describe

some popular stochastic search algorithms based on their exploration and exploita-

tion techniques, and discuss their suitable problem class. Finally we describe the

No Free Lunch Theorem.

Chapter 4 examines the issues in the design of an efficient algorithm for net-

work optimization. To design an optimization algorithm, the properties of the un-

derlying problems have to be first examined. In this chapter, we study the properties

of network optimization problems. To compare the efficiency of different optimiza-

tion algorithms, an appropriate performance measure should be used. This chapter

also investigates different measures used in optimization literature and presents the

correct methodology to compare algorithm efficiency.

Chapter 5 presents the design ideas and details of the Recursive Random

Search algorithm. The efficiency of the RRS algorithm is validated empirically with

benchmark tests and real applications. The test results on a set of standard bench-

mark function are presented. These tests are designed to examine the performance

of RRS on efficiency, scalability, robustness to noises and handling negligible param-

eters.

Chapter 6 describes the Unified Search Framework (USF) which is designed

to be a general solution for large-scale black-box optimization problems. We also

discuss how to use USF as a flexible platform to integrate various techniques and

allocate available computing resources among these techniques.

Chapter 7 presents the application of on-line simulation scheme to real net-

work optimization problems. The optimization problems are formulated for three

important network protocols, i.e., RED buffer management, OSPF routing protocol

7

and BGP routing protocol. Simulation results have demonstrated the effectiveness

of the on-line simulation scheme on improving network performance.

Chapter 8 concludes the thesis and describes future research directions.

CHAPTER 2

Network Management

A network usually comprises a large number of network devices, network protocols

and services. The normal operation of the network replies on the proper configura-

tion of all these entities. Any failure or misconfiguration may result in performance

degradation or service discontinuity of the network. Therefore, these network entities

have to be carefully managed to maintain their working order. Network manage-

ment means monitoring and controlling the network from a central location with the

assistance of a variety of tools and devices. In the original phase of network manage-

ment, network administrators have to remotely log on network devices to perform

management tasks. As the sizes of networks grow rapidly in recent decades, there

is an increasing need for the automatic network management architecture which is

able to manage large-scale, heterogeneous networks. Various techniques have been

proposed to achieve this objective. In this chapter, we will review the development

in this area.

2.1 Network Management Model

In the 1980s, International Standardization Organization (ISO) completed the

standardization of network management model with a serial of ISO standards[17].

According to the OSI/ISO standards, a network management architecture model

comprises four models: organization model, information model, communication

model and functional model.

Organization Model describes the components in a network management system

and their relationships.

Information Mode defines the structure and storage of management information,

and is usually divides into two parts, i.e., Structure of Management Informa-

tion (SMI) and Management Information Base (MIB). MIB defines the vari-

ables residing in a managed device. These variables store the management

8

9

information and are used for information exchange between network manage-

ment entities. SMI describes the syntax and semantics of the definitions in

MIB and is defined by Abstract Syntax Notation One(ASN.1)[18], a formal

language developed by CCITT and ISO to specify data types and structures

for storage of information. The data definition with ASN.1 makes it indepen-

dent of the lower-layer protocols in compunction model.

Communication Model handles how the management information is exchanged

between network management entities.

Functional Model defines management functions to be implemented for various

management objectives.

2.1.1 Organization Model

Figure 2.1 illustrates a general network management organization model. In

Network

Network Management System

Agent Agent Agent

Managed Device Managed Device Managed Device

Management Database

Manager

Management Database Management Database

Network Management Protocol

Management Database Interface

MDB

Figure 2.1: ISO network management organization model

this model, network manager is the control center of the network management sys-

tem, which collects and analyze management information from various devices in

the network to establishes an overall view of the network and perform the network

management functions. Network manager also provides an interface for the network

administrator to monitor and manually control the network. managed devices means

the network devices controlled by network manager, which can be of any type, such

as, routers, hubs and repeaters. On each of these devices, a software model called

10

management agent is run to collects and reports the management information of

the managed device to network manager. Meanwhile, it also receives control signals

from network manager and reacts on it correspondingly. The information exchange

between management agents and network manager is performed through a certain

network management protocol, such as, SNMP[19], CMIP[18].

The model shown in Figure 2.1 is essentially a two-tier centralized management

system. For a very large network, centralized network management may introduce

heavy extra traffic into networks and is not very reliable and efficient. Furthermore,

the manager is the single failure point and may become the bottleneck of the whole

system, hence the centralized scheme is lacking in scalability. With the rapid increase

of network size and complexity, the decentralized management becomes necessary.

In the hierarchical scheme, many local network managers used to manage local

networks, and they are all managed by a super manager, i.e., Manager of Manager

(MoM). In the distributed scheme, even the need for MoM is eliminated. Local

network managers are no longer controlled by a single MoM, instead, they cooperate

with each other to perform the management of the whole network.

2.1.2 SNMP-based Network Management

The network management protocol is the base of a network management sys-

tem. A network management protocol usually covers both information model and

communication model, i.e., it not only defines the communication protocol between

management entities, but also defines SMI and MIB of the management system. Two

most common network management protocols are: Simple Network Management

Protocol(SNMP)[19] and Common Management Information Protocol(CMIP)[18].

CMIP is a comprehensive object-oriented standard proposed by ISO. It is highly

complex and requires high consumption of system resources. A normal workstation

may not afford enough resource to load a complete CMIP stack. These drawbacks

make it not widely applicable and is mainly used in the complex and large-scale

telecommunication systems, such as the Telecommunications Management Network

(TMN)[20] of International Telecommunication Union (ITU).

Simple Network Management Protocol(SNMP)[19] is a much simpler protocol

11

compared with CMIP. The philosophy behind SNMP is to minimize the impact

caused by adding the management function to a managed device. It is this simplicity

philosophy that makes SNMP a great success in practice. In current Internet, SNMP

has become the de facto standard for TCP/IP network management. SNMP is

originally proposed in the 1970s as an interim solution to network management

with the long-term objective of migrating to OSI standard CMIP, however, due

to its enormous success, it seems that the long-term objective will never happen.

Enhancement has been constantly added to make it independent of OSI standard.

SNMPv2[21] adds some significant improvement to overcome the shortcoming of

SNMP, such as, the efficient transferring of bulk data. It also allows the information

exchange between managers, and hence make possible the distributed management

architecture. Since no agreement can be reached in SNMPv2, one of the intended

major enhancement, security consideration, is postponed to SNMPv3[22], which is

basically a SNMPv2 with additional security and administration capabilities.

SNMP is essentially a request/response polling protocol with only five protocol

messages. Normally an SNMP network manager issues queries to gather network

management information from various SNMP agents. An SNMP agent can also

send unsolicited information to the manager with a trap message when a predefined

event occurs. The SNMP manager can configure the managed devices by setting

their MIB variables. In addition to device-oriented management, Remote Network

Monitoring (RMON)[23] is used to monitor the status of the network by inspecting

network traffic of local network segments. In RMON, probes are introduced into

local network segments which monitor and analyze network traffic statistics and

send relevant information to network manager. Since probes monitor local network

activities, it is more reliable and efficient than monitoring these devices remotely

from the manager. Meanwhile, collected data is first processed locally and only

relevant information is sent to the manager, as a result, the traffic incurred by

network management can be reduced significantly. RMON is original designed to

monitor link-layer data. And due its enormous success, RMON2[24] has extend its

monitoring capability to higher layers, from the network layer to the application

layer. This allows network manager to analyze traffic by protocols.

12

2.1.3 Functional Model

No matter what network management system is used, the essential purpose is

to perform certain management functions. Functional model defines the functions

provided by a network management system. Five functional areas are defined in

ISO network management standard:

Performance Management monitors various performance measures of the net-

work and controls the network so that the requirements for these performance

measures are satisfied. Some common measures include, network throughput,

link utilization, queueing delay, packets arrival jitter, etc.

Configuration Management collects information related to network configura-

tion, such as network topology and software configuration, and control the

initialization and modification of network configuration.

Accounting Management measures network utilization and use this information

for billing purpose or access control to provide fair and optimal resources

utilization among users.

Fault Management detects and logs the faults occurring on network devices, such

as, device shut-down, link break-off. It also tries to fix these faults.

Security Management controls the access to various network resources and pre-

vents the breach of security rules. Security management establishes the map-

ping between network resources and users, and restricts the access of users

to appropriate resources according to this mapping. Security management

comprises authentication and authorization.

Among these functional areas, performance management is very important for op-

timal utilization of network resources but may be the least implemented in current

network management applications for its complexity. This dissertation will only

consider the problems in network performance management.

13

2.2 Automatic Network Performance Management

In performance management, network performance metrics are monitored.

Whenever a performance metric drops below a certain threshold, the alarm is sent to

network manager and appropriate measures are taken to reconfigured the network

and bring the network performance to normal. The essential task of performance

management is to establish the correlation among network scenarios, configuration

and performance metric, i.e., the relationship described by the following equation:

C = f(N , p) (2.1)

where N denotes network scenario, p objective performance metric and C network

configuration, for example, the parameters of a certain network protocol. Equa-

tion 2.1 basically derives the configuration C which is required to achieve the per-

formance objective p in the scenario N . Due to the complexity of the Internet,

the analytical derivation of Equation 2.1 is usually not realistic. This is mainly

performed through experiences of network administrators with specialized training.

And performance management basically remains a monitoring and manual configu-

ration system.

2.2.1 Optimization-based Performance Management

Automatic performance management requires the derivation of the correlation

represented Equation 2.1. Some network management application packages have

attempted to build an expert system which basically codes human experience into

programs. However, this approach is not scalable because of the ever increasing

network complexity and constantly addition of new network techniques. With the

development of network modeling and simulation, it becomes possible to empiri-

cally examine network performance with network simulation software, such as ns [3],

SSFNET [4]. In other words, we can obtain through network simulation the following

empirical equation:

p = f−1(N , C) (2.2)

14

With Equation 2.2, given a certain objective performance metric p0 and network

scenario N0, it is possible to employ an optimization algorithm to search the param-

eter space of C for a certain C0 which satisfies p0 = f−1
empirical(N0, C0). In this way,

we can establish the automatic mapping between C and N , p as described in Equa-

tion 2.1. Essentially, this approach formulates the optimal network configuration as

an “black-box” optimization problem for the lack of analytical f−1(N , C) formula,

and network simulation is used to empirically evaluate the network performance

metric, i.e. the value of f−1(N , C). Since network simulation can easily establish

the empirical formula of f−1(N , C) for any performance metric and any network sce-

nario, the optimization-based performance management approach is very flexible.

It can be used to optimize network configuration for any performance metric in any

network scenario.

2.2.2 On-line Simulation Scheme

Despite the general applicability of the optimization-based approach, the previ-

ous efforts in this area mainly focus on the traditional areas of optimization applica-

tions, such as network topology design, routing and bandwidth allocation[25, 26, 27].

Only a few of them attempt to deal with the optimal configuration of network

protocols[28]. Furthermore, these efforts only consider the optimization in the phase

of network design, i.e, N is stationary, and is not aimed at performance management

in varying network conditions. To address these problems, a general optimization-

based performance management framework, the on-line simulation scheme, has been

proposed[2], which can be easily adapted to the optimization of any network entity.

As shown in Figure 2.2, the on-line simulator continuously monitor the managed

network and control the configuration of a certain network protocol with SNMP.

A typical on-line simulator comprises the following function units: monitor and

modeling, optimization algorithm and network simulation, as shown in Figure 1.1 of

the previous chapter. Whenever network conditions change, the optimization of the

controlled network protocol is executed to maintain the network performance above

the expected level. Thus, the on-line simulation scheme equips the network with

pro-active, dynamic and automated management capabilities.

15

Data Plane

(Network Protocols)

Control Plane

Simulator

On−line

Advised

Parameters

Network

Information

Network NodeSNMP

Figure 2.2: On-line simulation scheme

In the previous efforts which only consider the phase of network design, the

optimization is executed off-line, and consequently the efficiency of the optimization

algorithm is not a important factor as long as its effectiveness is guaranteed. In

other words, as long as the optimization algorithm can finally find the optimal

solution, the time consumption of the optimization is not important. In these cases,

any general optimization algorithms, such as multi-start hill-climbing and genetic

algorithms, can be used to perform the desired optimization. However, in the on-

line simulation scheme, an efficient and reliable search scheme is essential to the

success of on-line tuning since the underlying assumption is that network conditions

are quasi-stationary and the optimization should be completed before significant

changes happen. The objective of this dissertation is to examine the problems in

designing an efficient optimization algorithm for such a system and provide the

solutions to these problem.

CHAPTER 3

Search Algorithm Review

Given an objective function f(x), its optimization is just a continuous sampling

process from its parameter space D until the optimization objective is reached. A

search algorithm d is just a mapping strategy which decides a new sample point

xn+1 from previous samples and their function values {xi, f(xi)}, i = 1 . . . n:

xn+1 = d({x1, f(x1)}, {x2, f(x2)}, . . . , {xn, f(xn)}) (3.1)

The search algorithms can be divided into two basic classes: deterministic

algorithms and stochastic algorithms. Deterministic algorithms, such as, exhaus-

tive enumeration and branch-and-bound[29], use deterministic mapping strategies

in Equation 3.1, and usually provide an absolute guarantee of solution. However,

these algorithms impose strict restrictions on the applicable problems, such as, re-

quirements for Lipschitz constant, differentiability, and hence their application is

very limited. On the other hand, stochastic algorithms, such as, controlled ran-

dom search[30], genetic algorithm[31], simulated annealing[13], introduce stochastic

methods into mapping strategies, as a result, can at most provide a probabilistic

guarantee of convergence to the global optimum, i.e., when the search proceeds

long enough, the probability of finding the global optimum tends to 1. Many of

stochastic algorithms are pure heuristic and lacking in the support of theoretical

analysis. In spite of these disadvantages, stochastic algorithms are very popular in

practical optimization application since they impose much less restrictions and are

much more widely applicable. Empirically, they have been demonstrated to be very

successful in a wide range of scientific and engineering areas. This dissertation will

only consider stochastic search algorithms.

16

17

3.1 Structure of Stochastic Search Algorithms

A stochastic search algorithm usually consists of two conflicting elements: ex-

ploration and exploitation. Exploration encourages the search process to examine

unknown regions, while exploitation attempts to take advantage of structures of the

objective function to find better solutions quickly. These two elements are combined

in one search algorithm and the balance between them is maintained by a balance

strategy. Figure 3.1 illustrates the relationship of these three elements in a search

algorithm.

Balance Strategy

Explore Exploit

Figure 3.1: Exploration, exploitation and balance strategy

Exploration is also known as global phase in some literature[6, 32] and its objective

is to provide a probabilistic guarantee of convergence to the global optimum for

the search algorithm. That is, exploration mainly targets for the effectiveness

of a search algorithm. For an exploration technique, the following theorem

holds[6]: Let the parameter space D be compact, then a sampling process con-

verges to the global minimum of any continuous function ⇐⇒ the sequence

of sample points is everywhere dense in A. In other words, the exploration

should cover the whole parameter space when the search process continues

for long enough time. An ideal exploration method would also identify the

promising areas and visit these areas first. However, in practice, it is very

difficult to achieve this objective.

Exploitation tries to exploit structural properties of the objective function to find

better solutions quickly. Its objective is to improve the efficiency of the algo-

rithm. Local search methods are the most widely used exploitation techniques,

therefore, exploitation is often called local phase as well[6, 32]

18

Balance Strategy decides how the above two elements are correlated to each other

in a search algorithm and coordinates their execution. The balance strategy

can be either probabilistic or deterministic. For example, multi-start hill-

climbing uses random sampling for exploration, a local search technique for

exploitation and a deterministic balance strategy to execute the two proce-

dures alternately.

Despite the vast number of search algorithms, the basic exploitation and ex-

ploration techniques used in these algorithms are not many. The rest of this chapter

will first review the search techniques for exploration and exploitation, then describe

some popular optimization algorithms in terms of their exploration, exploitation and

balance strategies, and then discuss their applicability to optimization problems.

3.1.1 Exploration Methods

Basically, there are two kinds of exploration: biased and unbiased. Unbiased

exploration doesn’t differentiate regions in the parameter space while biased explo-

ration tries to identify promising areas and sample them with higher probabilities.

Although biased methods seems more desirable for efficiently exploring the param-

eter space, practically, it is hard to decide the correct bias, i.e., correctly identify

promising areas.

3.1.1.1 Random Sampling

Random sampling is the simplest and most widely used exploration technique.

All multi-start type of algorithms use this exploration method. Random sampling

takes random samples according to a uniform distribution over the parameter space

and hence is an unbiased method. The following convergence property can be

proved[33]:

Let y
(1)
n be the smallest function value found in n random samples, If f(x) is contin-

uous, then y
(1)
n converges to the global minimum value y∗ with probability 1 (almost

surely) with increasing n, i.e.,

P [lim
n→∞

y(1)
n = y∗] = 1. (3.2)

19

In spite of its simplicity, random sampling has surprisingly proved to be more

efficient than deterministic exploration methods, such as, grid covering, in terms of

some probabilistic criteria and it is especially so for high-dimensional problems[32].

3.1.1.2 Random Walk

Random walk is an exploration method originated from local search methods.

Suppose a neighborhood can be defined for each point in the parameter space,

random walk explore the parameter space by randomly choosing a point from the

neighborhood of the current point, moving to the new point and repeating the

process. Depending on the structure of neighborhood, this method may have a

strong bias towards local areas. The convergence property of this method is also

dependent on the definition of the neighborhood.

3.1.1.3 Model Fitting

As mentioned before, an ideal exploration method should identify the promis-

ing areas and and sample these areas with higher probability. In practice, it is hard

to decide which areas are more promising than other. Model fitting[6] is a biased

exploration method which use a predefined model to decide which areas are more

promising based on previous samples. The basic procedure can be described as

follows:

1. choose an appropriate model according to a priori knowledge on the objective

function.

2. fit the model, i.e., adjust the parameters of the model, to previous samples.

3. find the optimum point in the model and the area around this point is the

promising area to be further exploited.

Here the optimum point in the model can be found analytically if the model is simple

enough, otherwise, an optimization process has to be performed for the model.

The rationale behind this is that the model is much more simple or cheaper to

evaluate than the original objective function and hence it is much easier to optimize.

20

Otherwise, the burden of auxiliary optimization will become as heavy as the direct

optimization on the original objective function.

Model fitting is usually considered as the most efficient techniques in terms

of the number of function evaluations required for optimization since all previous

samples are used to decide the next sample point. However,in practice, it is usu-

ally very difficult and require enough a priori knowledge to choose an appropriate

model which is essential to the success of this method. On one hand, the model

should be accurate enough to approximate macroscopic features of the objective

function. On the other hand, it should also not be too complicated to make the

computation intractable. Deterministic models, such as polynomial regression[34],

are relatively simple and good for computational purpose. Statistical models[35, 36],

such as Weiner process, seem more appropriate for complicated and highly oscillat-

ing objective functions. However, the computation cost involved is often very high,

and its application is limited to low-dimensional problems with expensive objective

functions, i.e., the function evaluation is a costly computation task. .

3.1.2 Exploitation Methods

Exploitation methods try to improve the efficiency of the search algorithm by

taking advantage of structural properties of the objective function. Although it have

been realized that complex practical problems can only be solved by exploiting their

structures, not much advance has been made in this area for the complexity of the

problems. And local search methods remain the most prevalent exploitation method

in practice, which exploits the local correlativity in objective functions, i.e., points

in a local area tend to have similar function values. Basically, a local search method

searches for a better point in the neighborhood of the current point and repeat the

process at the new point until a local optimum is reached. Based on the informa-

tion used to search for better points in a neighborhood, local search methods can be

classified as methods using high order derivative information, such as gradient f ′(x)

or Hessian f ′′(x), and methods using only function evaluation (zero-order derivative

information), i.e., f(x), which is called direct search methods. Higher order lo-

cal search methods, such as Newton’s methods[37], steepest decent[37], are usually

21

more powerful and are highly efficient when applicable. However, they require the

knowledge of f ′(x) or/and f ′′(x), which is often not available in black-box optimiza-

tion. Therefore, alternative methods, such as quasi-Newton method[38], have been

proposed which estimate derivative information by finite-differencing. However, in

many practical problems, there often exist random noises in the objective functions,

as a result, the estimated derivative information would easily be corrupted and thus

misleading to the search. In addition, in some cases, the objective functions may

even be non-differentiable. For these problems, direct search methods are often

recommended and more widely used in practical black-box optimization. These

methods directly compare the rank of function values and hence are less affected

by noises[39, 40, 41]. In the following, we will review some important direct search

methods.

3.1.2.1 Downhill Simplex Methods

Simplex is a geometric figure composed of n+1 point in a n dimensional space.

Downhill simplex method is a direct search method first proposed by Spendly, Hext

and Himswork[42]. Their observation was that it should take no more than n + 1

points to decide a downhill move since n + 1 values of f(x) would be needed to

estimate δf(x) via finite-difference. The simplex method first takes an initial non-

degenerate simplex from the parameter space, then move this simplex towards the

local optimum by continuously reflecting the worst point in the centroid of the

remaining points as illustrated in Figure 3.2. A non-degenerate simplex is one for

reflection point

A

A’C

B
worst point

Figure 3.2: Reflection of simplex in 2-dimensional space

which the set of edges adjacent to any vertex in the simplex forms a basis for the

space. This requirement is to make sure that any point in the parameter space can be

constructed by taking linear combinations of the edges adjacent to any given vertex.

22

Nelder and Mead[43] improved the performance of the simplex method by adding

two operations into the moves: expansion and contraction. The basic idea here is

that when the search is moving down long inclined plane, the simplex is expanded to

accelerate the move, while when the search comes close to the the neighborhood of a

local optimum the simplex is contracted. Nelder-Mead simplex method has become

the most popular method used for black-box local optimization problems[44, 45] and

has been found very effective in many practical problems. However, Nelder-Mead

simplex method is a pure heuristic method and its robust remains problematic. In

fact, occasional convergence to a non-stationary point has been reported[46].

3.1.2.2 Hillclimbing

Hillclimbing is the most simple and straightforward local search technique.

Suppose a neighborhood structure is defined in the parameter space, hillcimbing

can be described as follows:

1. Take a sample x0 from the parameter space D

2. Generate another sample x′ from the neighborhood N of x0, if f(x′) < f(x0),

replace x0 with x′.

3. If a consecution of m samples have failed to generate a better point in the

neighborhood of x0, then terminate the process. Otherwise, repeat 2.

A good neighborhood structure and neighbor generation method are essential to the

efficiency of this method.

3.1.2.3 Pattern Search

The original pattern search algorithm is first proposed by Hooke and Jeeves[47].

Torczon[48] presents a general pattern search model which also covers the class of

similar algorithms such as coordinate search with fixed step sizes, evolutionary op-

eration using factorial designs[49] and the multi-directional search algorithm[46].

According to Torczon’s definition, pattern search methods proceed by conducting a

series of exploratory moves about the current iterate and updating the associated

information(pattern) which is used in future move to speed up the convergence to

23

the local optimum. These moves can be viewed as sampling the function about

the current iterate in a well-defined deterministic fashion in search of a new iterate.

The individual pattern search methods are distinguished, in part, by the manner

in which these exploratory moves are conducted. By enforcing some limits on the

pattern structure and search outcome, it has been proved that the pattern search is

guaranteed to converge to a stationary point[48].

Figure 3.3 shows an example for the coordinate pattern search in a 2-dimensional

space. In the figure, a black dot means a successful move, i.e., the new point is bet-

1

B2

B3

B

Figure 3.3: A pattern search example

ter than the old one while a empty dot means a unsuccessful attempt. Suppose the

search starts with B1, the pattern search will proceed as follows:

1. change x by one step size (increase or decrease), move to it if the new point is

better.

2. change y by one step size, move to it if the new point is better.

3. project a new point according to the direction and the distance from B1 to

B2, and move to it if the new point is better.

4. repeat 1, 2 and then project a new point according to the direction and the

distance from B2 to B3.

5. Repeat the above procedure until no improvement can be achieved by ex-

ploratory moves and projected moves.

24

3.2 Stochastic Search Algorithms

With the few exploration and exploitation methods, a large number of search

algorithms have been proposed by combining these methods with various balance

strategies. This section will describe some most popular stochastic algorithms in

practice and examine what exploration and exploitation methods have been used

and how they are combined.

3.2.1 Multi-start Algorithms

Multi-start algorithms are based on local search methods. To avoid getting

trapped in a local optimum, multi-start algorithms start a new search from another

point whenever it reaches a local optimum. Usually random sampling is used to

generate new starting points, i.e., exploration. However, model fitting techniques

can also be used to generate starting points which more likely result in global optima.

Such search algorithms are termed as adaptive multi-start algorithms[50, 34]. When

the objective function does follow the conjectured model, model fitting can greatly

improve the optimization efficiency. However, it is normally very difficult to find a

proper model for a given problem.

Local search methods are used in multi-start algorithms for exploitation, such

as, steepest ascent, pattern search, downhill simplex. The balance strategy of multi-

start algorithm is a deterministic one which executes exploration and exploitation

alternately. Since one run of exploitation will take much more time than one explo-

ration, this balance strategy actually gives a very strong preference to the exploita-

tion process.

Multi-start algorithms have been used widely for its simplicity and effective-

ness. In practice these algorithms have produced excellent solutions in many prac-

tical problems, such as computer vision tasks[51]. It outperformed simulated an-

nealing on the traveling salesman problem (TSP)[52], and outperformed genetic

algorithms and genetic programming on several large-scale testbeds[53]. Multi-start

algorithms are also attractive for their trivial parallelizability on the distributed

computing architecture. One major disadvantage of multi-start algorithms is that

it may waste a lot of time in examining unpromising areas when there are a large

25

number of local optima. This is due to its strong preference to exploitation. Nor-

mally a search algorithm should maintain a good balance between exploration and

exploitation. One reason that genetic algorithm performs well in practice is its well-

maintained balance[54] between exploration and exploitation. Furthermore, since

local search methods base their search strategies on the information of a certain

local structure, it may perform very badly when this information cannot be ac-

curately estimated, for example, in the situation where the objective function is

affected by noise. This is especially unfavorable for practical optimization problems

where the objective function is evaluated with simulation. Since simulation often

includes many approximations and inaccuracies, the accurate evaluation of the ob-

jective function is normally unavailable. In such situations, the objective function

can be considered to be affected by noise and the performance of multi-start local

search algorithms will suffer.

The term region of attraction(RoA) is used in optimization literature to denote

a maximum set of points in the parameter space, any of which, when applied with

the local search method, will lead to the same local optimum. A problem in multi-

start algorithms is they may revisit the regions of attraction already examined! The

efficiency will be greatly lowered if there are many revisit occurrences. Clustering

methods[32, 55] are proposed to address this problem. The basic idea is to first

take a number of random samples from the parameter space and then group these

samples into a few clusters using a certain clustering analysis technique. Only one

local search is executed for each cluster. It is hoped that each cluster belongs to

only one region of attraction so that revisits can be avoided. However, it turns

out to be very difficult to accurately form the clusters from random samples[55],

especially for high-dimensional problems. One cluster may include multiple regions

of attraction or samples from one region of attraction may be divided into multiple

clusters. For the objective function with many local optima, the performance of

clustering methods is similar to multi-start algorithms since the chances of revisits

diminish.

26

3.2.2 Controlled Random Search

Controlled random search(CRS) is a population-based search algorithm. It is

first proposed by Price[56] and also called Price’s algorithm. CRS first randomly

generates a population of samples from the parameter space, and then uses downhill

simplex method to move the population towards the global optima. Suppose a n-

dimensional objective function is to be optimized, the basic CRS algorithm can be

described as follows:

1. Randomly generate a population of m points from the parameter space.

2. Randomly select n+1 points from the population and make a downhill simplex

move.

3. If the new sample is better than the worst member in the population, then

the worst member is replaced with this new sample.

4. Repeat the above process until a certain stopping criterion is satisfied.

In CRS, random sampling is used for exploration and downhill simplex for

exploitation. Its balance strategy first executes exploration and then switches com-

pletely to exploitation. Since exploration is only performed in the beginning of the

search, the convergence to the global optima is not guaranteed. The problem of

getting trapped in a local extreme can be alleviated by using a large population

or introducing new members into the population with random sampling during the

search[40]. Despite of this disadvantage, CRS has proved to be very effective in

practice and is widely used[40, 57, 9, 58]. In addition, since there is no local search

method involved, CRS is more robust to noise in the objective function. Besides

its failing to provide the convergence guarantee, another disadvantage is its low effi-

ciency. Especially in the beginning, the population is composed of random samples

and CRS essentially performs like a pure random sampling. Therefore, for many

situations in practice where it is desired to obtain a good solution quickly, CRS may

not be able to fulfill the objective.

27

3.2.3 Genetic Algorithm

Genetic algorithm(GA)[31, 7, 54] is another population-based search algo-

rithm. It is inspired by the natural evolution process where the fitter members of

a population survive. There are three important processes in GA: selection, muta-

tion and crossover, which work together to accomplish exploration and exploitation.

This algorithm maintains a certain number of sample points as a base population

in each iteration. Then through selection, those high-quality members get survived

to next step with higher probability. After selection, new members are introduced

by alternating the survived members with unary operator mutation and binary op-

erator crossover. Mutation randomly changes some of parameters for one member

according to a mutation rate. Crossover combines parts from two different members

to construct a new member.

The rationale behind GA is so-called “Building Block Hypothesis”[31, 7], i.e.,

the optimization problem can be broken down to many subproblems in lower di-

mension and the solution of the original problem can be obtained by combining the

solutions (building blocks) of these subproblems. It should be noticed that this is

rather different than most of other search algorithms which normally exploit the lo-

cal correlativity of the objective function. Instead GA tries to exploit the parameter

separability of the objective function. Basically, mutation is an exploration process

which explores the parameter space for new building blocks and crossover is an

exploitation process which combines available building blocks for better solutions.

The balance strategy in GA doesn’t have strong bias towards either exploration or

exploitation. This may contribute to its success in many application[54].

Genetic algorithm has been successfully applied to many areas. It maintains

a good balance between exploration and exploitation, and hence is able to achieve

good performance in practice. The success of GA is also dependent on “Building

Block Hypothesis”, which can also be explained by parameter separability, i.e., the

objective function can be decomposed into many functions in lower dimensions.

Exploiting the parameter separability will substantially improve the optimization

efficiency when handling high-dimensional problems with such a property. There-

fore, GA is especially advantageous for such high-dimensional problems. In practice,

28

these problems may very possibly appear since a large complex system is often com-

posed of many small subsystem with little correlation. This intuitively explains the

success of GA.

One major problem of genetic algorithm is that it is very difficult to perform

the automatic identification and recombination of building blocks. In GA, mutation

is used to find new building blocks. The mutation process is basically like a random

sampling, but in the building block space and is very inefficient. And crossover is

used to combine building blocks. However, it often either breaks existing build-

ing blocks or cannot combine them effectively[59]. In addition, its efficiency may

also be reduced by hitchhiking effect[60], i.e, once a high-quality building block is

found, it may quickly spread all over the population and suppress the finding of

new building blocks. Mitchell[60] has found that even for a simple “Royal Road”

function[61] specifically designed to suit the exploitation techniques of GA, simple

multi-start hillclimbing can outperform genetic algorithm because of the reasons

described above. Therefore, for the problems where mutation and crossover cannot

effectively find and combine building blocks or the problems where “building block

hypothesis” does not hold, GA will not perform as desired.

3.2.4 Simulated Annealing

Simulated annealing(SA)[13, 62, 8] is an optimization algorithm which mimics

the physical annealing process, where a solid material is first melt by heating to

a very high temperature and then cooled down at a very slow speed, the final

product will settle in a highly ordered, crystalline state with the lowest energy. The

basic search process of simulated annealing is similar to hillclimbing, however, it

introduces an acceptance probability p for bad moves to avoid getting trapped in

local optima. In each iteration, the search will select one point from the current

neighborhood, if it is not as good as the current point, instead of refusing the new

point like in hillclimbing, the search will accept it with a certain probability:

p = e|∆y|/T (3.3)

29

where T is termed as temperature, a parameter of SA algorithm, and ∆y is the

function value difference between the two points. Therefore, the acceptance proba-

bility is small for low temperature and very bad moves. In SA, the temperature T

usually starts with a very high value, and the search will basically accept all moves

and explore the parameter space with a way of random walk. With the search pro-

ceeding, the temperature is gradually lowered according to a cooling scheme and

consequently the acceptance probability of bad moves is decreased. At each level of

temperature, the algorithm executes a number of iteration until a certain equilib-

rium condition is satisfied. Finally when the temperature tends to zero, the search

will only accept good moves and act basically like a hillclimbing procedure.

The exploration process of simulated annealing is random walk, and its ex-

ploitation process is hillclimbing. Different from the other algorithms, SA keeps

adjusting the balance between exploration and exploitation during the search. The

adjustment strategy is decided by the cooling scheme. In the beginning, temperature

is high, it is more possible for random walk, that is, exploration is preferred than the

exploitation. With temperature “cooling” down, random walk become less possible,

that is, exploitation becomes increasingly preferred.

Simulated annealing has been used in various combinatorial optimization prob-

lems and is particularly successful in circuit design problems. It has been demonstrated[8]

that with a high enough temperature, simulate annealing can converge in probabil-

ity to the optimal solution. However, it should be noted that this is accomplished,

at expense of efficiency, through extensive exploration at high temperatures and

achieving equilibrium at each temperature level. The convergence speed of the al-

gorithm is heavily dependent on the cooling scheme, and various types of cooling

schemes have been proposed for speeding up convergence[63, 64]. Basically, SA is

an algorithm more suitable for full optimization problems.

3.2.5 Tabu Search

Basic tabu search[65, 66, 67] is just a local search with memory. Memory is

the most important concept in tabu search. Different types of memory-constructing

schemes have lead to many variants of tabu search[68]. Compared with tabu search,

30

the other algorithms can be called memoryless methods. The basic idea of tabu

search is to memorize the regions already visited in a tabu list, and prevent the

search from revisiting these regions. when hitting a local optimum, tabu technique

forces the search to accept bad moves. In this way, tabu search can escape the

visited region of attraction and explore other parts of parameter space.

The exploitation in tabu search is hillclimbing, however, the exploration is

much different from all other stochastic search algorithms since it actually explores

the search space in a somewhat systematic way. Like multi-start algorithms, basic

tabu search also emphasizes exploitation over exploration and is also based local

search methods. Therefore, it has similar advantages and disadvantages to multi-

start algorithms.

Tabu technique can be used with any other search algorithm to enhance its

efficiency, in this sense, it is actually a meta-heuristic algorithm. Note that the

speedup introduced by tabu technique is at the cost of more memory and higher

complexity. Therefore, there exists a compromise between efficiency and memory.

3.3 No Free Lunch Theorem

Based on the investigation presented previously, we can summarize the fea-

tures of various stochastic optimization algorithms in Table 3.1. As shown in the

table, every stochastic has its advantages and disadvantages. With so many search

algorithms, a question naturally arises: does there exist any all-purpose algorithm

which can consistently outperform the other algorithms for every class optimization

problems? Intuitively, advanced search algorithms, such as, GA or SA, should al-

ways perform better than random sampling. However, surprisingly, this intuition is

wrong. It has been demonstrated in No Free Lunch Theorem[12, 11] that, no matter

what performance metric is used, the average performance of any search algorithm

is the same over all possible problems. In other words, no single algorithm can con-

sistently perform efficiently in every class of problems. It might look discouraging

that GA or SA is only as good as random sampling. However, it should be noted

that NFL theorem holds only for the average performance over all possible problems

which also include intractable problems, such as pure random objective functions.

31

A
lg

or
it

h
m

N
am

es
M

u
lt

i-
st

ar
t

C
on

tr
ol

le
d

R
an

-
d
om

S
ea

rc
h

G
en

et
ic

A
lg

or
it

h
m

S
im

u
la

te
d

A
n
n
ea

li
n
g

T
ab

u
S
ea

rc
h

E
x
p
lo

ra
ti

on
R

an
d
om

S
am

p
li
n
g

R
an

d
om

S
am

p
li
n
g

M
u
ta

ti
on

R
an

d
om

W
al

k
T
ab

u
-b

as
ed

h
il
l-

cl
im

b
in

g
E

x
p
lo

it
at

io
n

L
o
ca

l
S
ea

rc
h

D
ow

n
h
il
l

S
im

p
le

x
C

ro
ss

ov
er

H
il
lc

ll
im

b
in

g
H

il
lc

li
m

b
in

g

B
al

an
ce

S
tr

at
eg

y
A

lt
er

n
at

e
ex

-
p
lo

ra
ti

on
an

d
ex

p
lo

it
at

io
n

an
d

st
ro

n
g

p
re

fe
re

n
ce

to
w

ar
d
s

ex
-

p
lo

it
at

io
n
.

S
ta

rt
w

it
h

ex
p
lo

ra
ti

on
,

th
en

sw
it

ch
to

ex
p
lo

it
at

io
n

on
ly

.

A
lt

er
n
at

el
y

p
er

fo
rm

ex
p
lo

it
at

io
n

an
d

ex
p
lo

ra
ti

on
,

w
el

l-
m

ai
n
ta

in
ed

b
al

an
ce

.

S
to

ch
as

ti
ca

ll
y

se
le

ct
ex

p
lo

ra
ti

on
or

ex
p
lo

it
a-

ti
on

to
ex

ec
u
te

,
an

d
th

e
b
al

an
ce

is
co

n
tr

ol
le

d
b
y

th
e

co
ol

in
g

sc
h
em

e.
S
ta

rt
w

it
h

ex
p
lo

ra
ti

on
,

th
en

in
cr

ea
si

n
gl

y
sh

if
t

th
e

p
re

fe
re

n
ce

to
ex

p
lo

it
at

io
n

d
u
ri

n
g

th
e

se
ar

ch
.

A
lt

er
n
at

e
ex

-
p
lo

ra
ti

on
an

d
ex

p
lo

it
at

io
n
,

st
ro

n
g

p
re

fe
r-

en
ce

to
ex

p
lo

it
a-

ti
on

.

A
d
va

n
ta

ge
s

S
im

p
le

an
d

eff
ec

ti
ve

in
m

an
y

ap
p
li
ca

-
ti

on
s.

S
im

p
le

an
d

d
em

on
st

ra
te

d
to

b
e

eff
ec

ti
ve

in
p
ra

ct
ic

e.

B
as

ed
on

“B
u
il
d
in

g
B

lo
ck

H
y
p
ot

h
es

is
”,

an
d

su
it

ab
le

fo
r

th
e

ob
je

ct
iv

e
fu

n
ct

io
n
s

w
it

h
th

e
se

p
ar

ab
le

p
ar

am
et

er
st

ru
ct

u
re

.

D
em

on
st

ra
te

d
to

b
e

eff
ec

-
ti

ve
fo

r
m

an
y

co
m

b
in

a-
to

ri
al

op
ti

m
iz

at
io

n
p
ro

b
-

le
m

s,
su

it
ab

le
fo

r
fu

ll
op

-
ti

m
iz

at
io

n

T
ab

u
te

ch
-

n
iq

u
es

ca
n

b
e

u
se

d
w

it
h

an
y

al
go

ri
th

m
to

im
-

p
ro

ve
effi

ci
en

cy
b
y

av
oi

d
in

g
re

v
is

it
s.

D
is

ad
va

n
ta

ge
s

L
o
ca

l
se

ar
ch

is
se

n
si

ti
ve

to
th

e
eff

ec
t

of
n
oi

se
s.

M
u
lt

i-
st

ar
t

st
ra

te
gy

m
ay

w
as

te
m

u
ch

ti
m

e
on

tr
iv

ia
l
h
il
ls

.

C
on

ve
rg

en
ce

ca
n
n
ot

b
e

gu
ar

an
te

ed
.

P
er

fo
rm

li
ke

lo
w

-e
ffi

ci
en

cy
ra

n
d
om

sa
m

-
p
li
n
g

in
th

e
b
eg

in
n
in

g
st

ag
e.

D
iffi

cu
lt

to
id

en
ti

fy
an

d
co

m
b
in

e
“b

u
il
d
-

in
g

b
lo

ck
s”

.
O

f-
te

n
n
ee

d
lo

ca
l

se
ar

ch
m

et
h
o
d
s

to
im

p
ro

ve
effi

ci
en

cy
,

w
h
ic

h
is

se
n
si

ti
ve

to
n
oi

se
.

S
lo

w
co

n
ve

rg
en

ce
an

d
lo

w
effi

ci
en

cy
.

O
n
ly

su
it

ab
le

fo
r

fu
ll

op
ti

m
iz

at
io

n
.

H
il
lc

li
m

b
in

g
is

se
n
si

ti
ve

to
n
oi

se
.

T
ab

u
-

b
as

ed
h
il
lc

li
m

b
-

in
g

is
n
ot

effi
-

ci
en

t
to

ex
p
lo

re
th

e
p
ar

am
et

er
sp

ac
e.

T
a
b
le

3
.1

:
C

o
m

p
a
ri

so
n

o
f
S
to

ch
a
st

ic
O

p
ti

m
iz

a
ti

o
n

A
lg

o
ri

th
m

s

32

For one specific class of problems a search algorithm can perform more efficiently

than the others. Therefore, the significance of NFL lies in that there is no general

efficient search algorithm and a search algorithm has to take advantage of as much

problem-specific knowledge as possible to achieve high efficiency in the given prob-

lem. However, such an algorithm may not perform well in other class of problems.

Therefore, these exists a tradeoff between applicability and efficiency. In practice, a

good search algorithm should find an appropriate balance between them.

CHAPTER 4

Design Issues of Efficient Search Algorithm

Solving an optimization problem always start with understanding the properties and

requirements of the problem. This chapter will examine the main issues present in

network optimization.

4.1 Design Requirements for Network Optimization

The main requirements for the desired search algorithm in network optimiza-

tion are high efficiency, scalability to high-dimensional problem and robustness to

noises in objective functions.

Efficiency is the most important factor which needs to be considered in the algo-

rithm. Since network conditions keep changing all the time, a very efficient

algorithm is required to quickly find better network configurations before sig-

nificant changes happen to current network conditions. Accordingly, the em-

phasis of the algorithm should not be on seeking the optimum setting, but

finding a better operating point within the limited time frame. This makes

our desired algorithm different from traditional ones, such as genetic algorithm

and simulated annealing, whose major objective is to find the global optimum.

The high efficiency requirement is also due to the fact that the simulation of

a complex network is often very time-consuming and it is necessary to reduce

the number of function evaluations as much as possible.

Scalability to high-dimensional problems is another requirement for the de-

sired search algorithm. Since a network often has hundreds of protocol pa-

rameters to be tuned, the desired algorithm should be able to handle a very

large parameter space. For example, if a network comprises 100 nodes and

each node is installed with at least one RED queue, which has four tunable

parameters. If we want to optimize the parameter setting of all RED queues

in this network, we will have an optimization problem with more than 400

33

34

parameters. Due to “curse of dimensionality”, high-dimensional problems are

usually much more difficult to solve than low-dimensional ones[6].

Robustness to noises in the objective function is another aspect needed to be

considered because network simulation only provides us with approximate es-

timation of network performance, which means the objective functions in our

problems are superimposed with small random noises due to inaccuracy in

network modeling, simulation, etc.

In fact, the issues described above are also present in many practical problems[40,

69], therefore, the solutions to these issues are of more general significance. The

following sections will investigate these issues in detail.

4.2 Distribution Function of Objective Function

For a black-box optimization problem, the features of its objective function is

hard to characterized. One possible way is to use the distribution function of the

objective function. This section will introduce its concept and major properties. The

concept will be used in latter sections to investigate the properties of the objective

function.

Given a measurable objective function f : Rn → R and a parameter space D,

the distribution function of objective function value y = f(x) is defined as:

φD(y) =
m({x ∈ D | f(x) ≤ y })

m(D)
, (4.1)

where m(·) is Lebesgue measure, a measure of the size of a set. For example, Lebesgue

measure is just area on a R2 space, and volume on a R3 space, and so on. When

given a specific y, this equation represents the ratio of the size of the set of points

whose function values are below y to the whole parameter space. For example, in

the objective function shown in Figure 4.1, the set of points below y consists of two

separate regions A1 and A2. φD(y) is equal to the ratio of the size of A1 and A2 to

the parameter space D.

The distribution function can also be understood from another point of view:

if x is a random variable uniformly distributed on the parameter space D, then

35

A 2A

y

D
1

Figure 4.1: Illustration of obtaining φD(y)

y = f(x) will also be a random variable, whose distribution follows the one defined

by Equation 4.1. According to this understanding, when f(x) is not too complex,

we can mathematically obtain its distribution function if we know the analytical

expression of f(x). Otherwise, we can only obtain the empirical distribution function

of f(x) by randomly sampling the parameter space. Since mathematically, φD(y)

can be derived from f(x), studying φD(y) can help us understand the properties

of the objective function. In addition, random sampling is used in many stochastic

search algorithms and may be the only choice for exploration when little a priori

knowledge is available for the underlying problem. Therefore, it is also important to

study the properties of the objective function under random sampling, i.e., φD(y).

Given a measurable function f(x) and its value range [ymin, ymax], its φD(y)

is a monotonously increasing function of y in [ymin, ymax], its maximum value is 1

when y = ymax and its minimum value is m(x∗)/m(S) where x∗ is the set of global

optima. Without loss of generality, we assume that f(x) is a continuous function

and m(z ∈ S|f(z) = y) = 0,∀y ∈ [ymin, ymax], then φ(y) will be a monotonously

increasing continuous function with a range of [0, 1]. An example of distribution

function is shown in Figure 4.2.

4.3 Efficiency of Search Algorithms

There are two aspects for the performance of a search algorithm: effectiveness

and efficiency. Effectiveness of a search algorithm means that the search algorithm

should converge to the global optimum when it proceeds long enough. Efficiency

36

0

0.5

1

ymin ymax

Figure 4.2: An example distribution function

means that the search algorithm should find the global optimum within the shortest

time. Usually the efficiency is the most concerned perform metric for a search

algorithm since the effectiveness is easy to achieve: simple random sampling can

find the global optimum as long as enough time is given. This is especially true

for on-line network optimization, where the efficiency is of utmost importance to its

success.

4.3.1 Efficiency Measures of Optimization Algorithms

Although the efficiency of search algorithms is one of the most important con-

cerns in optimization research, there has been no standard metric to directly measure

the efficiency of a search algorithm. This is partly due to the lack of analytical un-

derstanding for search algorithms. This is also because that the performance of

a search algorithm may vary with different classes of problems. In other words,

the performance is dependent on the problem class. It is hard to find a general

performance formula which count for all problem classes.

Since there is no absolute efficiency metric, two algorithms cannot be compared

directly. In practice, search algorithms are empirically compared with experiment-

ing on a certain benchmark objective function. Assume that the goodness of the

optimization result can be measured by a metric M , the following two metrics are

often used to assess the efficiency of a search algorithm:

• Given a certain goodness objective M0 for the optimization result, the time T

needed to obtain such a solution

37

• Given a certain time objective T0, the goodness M of the optimization result

obtained after a search process of time T0

Since the time consumption of a search algorithm is greatly dependent on its specific

implementation and the speed of the hardware on which tests are executed, it is

hard to compare the performances of search algorithm by measuring their time

consumption. Usually the evaluation of the objective function is considered the

major task which takes up most of the computation time in an optimization process,

therefore, the number of function evaluations is often used in place of the time

consumption in performance comparison.

The relationship between the above two efficiency metrics can be illustrated in

figure 4.3, where the optimization results of two algorithms are drawn as a function of

the number of function evaluations. This type of function is called convergence curve,

which better describes the performance of a search algorithm in a certain problem

than a single number. The analytical expression of the convergence curve is usually

very difficult to calculate. In practice, the curve can be empirically obtained with

the average results of the tests on the underlying problems. From the convergence

Mo

No

M
et

ric

Number of Function Evaluations

Algorithm A
Algorithm B

Figure 4.3: Relation between two performance metrics

curves shown in the figure, we can see that there is no essential difference between

two metric. If algorithm A is better than B in terms of one metric, the same

conclusion can be made by using the other metric. Which metric to choose is

dependent on the objective of optimization. That is, whether the global optimal

solution is desired or an approximate solution within a certain time limit can do.

38

Figure 4.3 shows an example where algorithm A is always more efficient than

B. However, it is usually not the case in reality. The two performance metrics are

both defined with a certain optimization objective, either in terms of the goodness

of the solution or the time limit. The definition of the optimization objective may

greatly affect the comparison of algorithm efficiency. Figure 4.4 shows such an

example. If the second type of metric is used, i.e., the time limit is specified,

M
et

ric

Number of Function Evaluations
Region 1 Region 2 Region 3

Algorithm A
Algorithm B

Figure 4.4: Inconsistency in efficiency comparison of search algorithms

the performance comparison shown in the figure can be divided into three regions

with different time limit definitions. In the region 1, algorithm B performs better

than A. However, when the objective is changed to region 2, algorithm A becomes

better. In region 3, algorithm B outperform A again! In addition, for different

optimization problem, the convergence curves of a search algorithm may change

completely. Therefore, the efficiency comparison of search algorithms is dependent

on two factors:

• the optimization objective

• the underlying problem (objective function)

From the above discussion, we can see that the efficiency comparison of search

algorithm is a somewhat subjective measurement. It is greatly dependent on the

optimization objective as well as the underlying problem and may vary with different

objectives even in the same problem. This is why there is no consistent reports on

the efficiency of search algorithms. Therefore, for a practical problem, the selection

39

of the appropriate search algorithm should take into account both the optimization

objective and the properties of the problem.

4.3.2 Goodness Metric of Optimization Results

As mentioned in the previous section, a certain goodness metric of the op-

timization result has to be defined to compare the efficiency of search algorithms.

Without loss of generality, assume that there exists a single optimum point x∗ in

the parameter space of the objective function. Let x denote a sample point in the

parameter space, the following three metrics can be used to measure the goodness

of x:

• The metric measuring the distance of a sample to the global optimum is defined

as:

Mx(x) = ‖x− x∗‖ (4.2)

This metric seems reasonable and has been used in many optimization liter-

ature. However, there exists a serious problem for this metric. Search algo-

rithms decide the goodness of a sample by its function value and return the

sample with the best function value as the optimization result. However, Mx

judges the result in a different way than search algorithms, i.e., by the distance

to x∗. This inconsistent may lead to a wrong determination on the efficiency of

search algorithms. For example, for the objective function shown Figure 4.5,

the second-best optimum x′ is far away from the global optimum x∗. Suppose

a certain goodness objective Mx is defined and some points satisfying Mx has

worse function values than x′. If an algorithm is very quick to find x′, then

even if it can later reach some points in Mx, it will still keep x′ as its opti-

mization result until a point in Mx which is better than x′ is found. Thus,

the efficiency of this algorithm may be mistakenly measured if considering the

time needed to obtain a solution satisfying Mx. To use Mx as the goodness

metric, the search algorithm is required to use the same decision rule for the

sample goodness, i.e, the distance to the global optimum. Unfortunately, this

is not feasible since in practice the location of the global optimum is not known

and is just what an optimization algorithm tries to find out.

40

x’

M x

*x

Figure 4.5: An example of Mx metric inconsistence

• The metric measuring the function value difference of a sample to the global

optimum is defined as:

Mf (x) = f(x)− f(x∗) (4.3)

This metric is consistent with the goodness decision rule of search algorithms

and makes more sense in practice since most of time all we care about is the

function value of the optimization result. Even if a point is far apart from the

global optimum, we usually accept it as a near-optimal as long as its function

value is good enough. In practice, since we don’t know the value of f(x∗), we

cannot compute the above metric. However, the relative metric of two samples

can be computed by: Ml(x1) −Ml(x2) = f(x1) − f(x2). Consequently, this

metric can be used to compare the efficiency of search algorithms for a certain

objective function without knowing its global optimum.

• The third metric is defined as:

Mφ(x) = φ(f(x)) (4.4)

where φ(y) is the distribution function of f(x) as defined in Equation 4.1.

Note that for any measurable function, φ(y) is a monotonous increasing func-

tion of y, its maximum value is 1 when y = ymax and its minimum value

is achieved at the optimal function value. Therefore, it actually reflects the

same performance measurement as Mf . Mf and Mφ can be related through

the distribution function of the objective function as shown in Figure 4.6. This

41

0

Mφ

0.5

1

ymin Mf+ymin ymax

Figure 4.6: An example distribution function showing the correlation be-
tween Mf and Mφ

metric can not be used for the empirical efficiency study of search algorithm

since it requires the computation of m(z ∈ D|f(z) ≤ y), which is usually in-

tractable. However, in many cases, it is possible to analytically compute the

value of φ(y), thereby, Mφ(x), with help of some statistical techniques with-

out the need for any knowledge of f(x), For example, we can easily calculate

that the average Mφ metric of a random sampling after n iterations will be

1
n+1

[70, p.14]. Therefore, with metric, it is possible to analytically compare

the performances of some algorithms.

Mx or Mf are the goodness measures of absolute type, for which the same

value may means totally different in different problems. On the contrary, Mφ is a

relative measure, for which the same value usually has the same meaning for different

problems. Therefore, when comparing the performance of a search algorithm in

different problems, Mφ is more appropriate.

4.3.3 Comparison of Some Algorithms with Mφ

Based on the metric Mφ, this section compares the performance of random

sampling and multi-start algorithms.

Random sampling returns the lower extreme of random samples as the opti-

mization result. According to order statistic theory, the average result metric of

random sampling after n random samples can be obtained as[70, p.14]:

Cr(n) =
1

n + 1
(4.5)

42

Multi-start algorithms use random sampling for exploration and local search

methods for exploitation. For a multi-start algorithm, the efficiency is achieved with

its local search method, which basically changes the distribution function of the

underlying objective function to a simpler one. To illustrate this point, Figure 4.7

shows an example objective function f(x). After applying a local search for each

random sample, the objective function will looks like g(x) for the exploration part,

i.e., random sampling, of the multi-start algorithm. And Figure 4.8 shows the

distribution functions df (y) and dg(y) for f(x) and g(x), respectively. Note that

df (y) < dg(y) always holds. This is because g(x) < f(x), therefore, the set {z ∈
D|g(z) ≤ y} is always larger than {z ∈ D|f(z) ≤ y}.

-5

15

y

x

f(x)
g(x)

Figure 4.7: Objective function change in multi-start algorithms

0

0.5

1

-5 0 5 10 15

y

df(y)
dg(y)

Figure 4.8: Distribution function change in multi-start algorithms

If a function h : [0, 1] → [0, 1] can be defined, which maps the new distribution

function to the old one, i.e., h(x) = df (d
−1
g (x)), this function will determine how

efficient the multi-start algorithm will be. Figure 4.9 shows an example mapping

function for the objective function in Figure 4.7. Note that h(x) < x always holds

since df (y) < dg(y).

43

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

d g(
y)

df(y)

h(x)
x

Figure 4.9: Example mapping function from dg(y) to df (y)

Assume that the local search procedure takes an average of l function evalu-

ations to reach a local optimum, then the average result metric of the multi-start

algorithm after n samples can be approximately calculated as:

Cm(n) = h

(
1

bn/lc+ 1

)
, (4.6)

where b·c takes the integer floor of a decimal number. Therefore, for a multi-start

algorithm to be better than random sampling, the following inequality has to hold:

Cm(n)− Cr(n) = h

(
1

bn/lc+ 1

)
− 1

n + 1
< 0 (4.7)

As shown in the above equation, the performance of multi-start algorithm suffers

from the term bn/lc. However, it takes advantage of the property h(x) < x to make

up this loss of efficiency and outperform random sampling. Therefore, the more far

below h(x) is to x, the better the performance of the multi-start algorithm will be.

Otherwise, if h(x) is close to x, the performance of the multi-start algorithm may

become worse than random sampling. When n À l, i.e., the search is executed

for a large number of function evaluations, 1
n+1

≈ 1
bn/lc+1

. In this case, multi-start

algorithms will perform better since h(x) < x always holds.

4.4 Large-scale Optimization Problems

One of the important goals in network optimization is to handle large-scale

problems which has hundreds or thousands of parameters. Therefore, it is important

44

to investigate the properties of large-scale problems. “Curse of dimensionality” is

present in large-scale problems[6] and most search algorithms cannot scale well with

increasing dimension. This section attempts to explain why large-scale problems are

difficult. Specifically, the questions we want to answer are: In which ways are large-

scale problems different from small-scale ones? Why will these changes happen?

How will these changes affect the performance of search algorithms?

As the dimension of the problem increases, the following features will be

present:

The size of the parameter space increase exponentially because of “curse of di-

mensionality”. For example, if the range of every parameter is large than a,

then the size of the parameter space m(D) increases in a way of an.

The number of local optima may increase exponentially in many cases. Many

paper have commented that most practical problems tend to have a large

number of local optima[34, 69]. For example, for the molecular conformation

problem (finding the structure or relative positions of a cluster of atoms that

minimize the potential energy of the structure), Hoare[15] has conjectured that

the general number of local minimizers for an N-atom cluster using Lennard-

Jones potential energy function is O(eN2
). This is also been confirmed by

so-called “Levinthal Paradox”[16].

Central Limit Catastrophe may occur in many cases, i.e., local optima in large-

scale problems tend to all have average quality with little variance and are

significantly worse than the global optimal solution. In other words, when

the problem size increases, an increasing percentage of the local optima will

be clustered near the average value which is far from the global optima.

This phenomena has been found in many practical problems, such as Trav-

eling Salesman Problem(TSP), graph bisection and molecular conformation

problems[34, 71, 72].

“Globally convex” or “big valley” structure is often present in many practical

problems[73, 50]. That is, high-quality local optima tend to center around the

global optimum with small average distance, whereas low-quality local optima

45

tend to distribute around the global optimum with larger average distance.

Boese[71] has demonstrated the existence of this structure in complex TSP

and graph bisection problems and presented an intuitive graph for this struc-

ture as shown in Figure 4.10. The same structures have also been found in

circuit/graph partitioning and job-shop scheduling, etc[34]. Leary[74] also con-

firmed that there exist similar “funnel” structures in molecular conformation

problems.

Figure 4.10: Big valley structure

One possible reason for these phenomena the so-called parameter separability

property in many large-scale problems, i.e., the objective function can be represented

by

f(x) =
m∑

i=1

fi(xi) (4.8)

where xi are the mutual exclusive subsets of elements in x. This property often ap-

pears in practical large-scale problems since a large-scale system usually comprises

many smaller subsystem which are not or weakly dependent on each other. This is

consistent with the “Building Block Hypothesis” which genetic algorithms exploit

to improve efficiency. The wide success of genetic algorithms also indirectly proves

the existence of the separability property in practical problems. Many widely used

benchmark functions, such as Rastrigin and Schewefel, also have this structure. For

a objective function with parameter separability, we can know from Central Limit

Theorem that its distribution function will follow normal distribution. Furthermore,

if we assume m in Equation 4.8 increases with n, then most part of the parameter

space will have the average function value with small deviation(relative to the av-

46

erage), i.e., Central Limit Catastrophe occurs. For example, the empirical density

functions(derivative of distribution function) for Rastrigin benchmark function in

different dimensions are shown in Figure 4.11. Note the function value in the fig-

ure has been normalized to show the relative deviation. The parameter separability

20−dimensional
100−dimensional
200−dimensional

Figure 4.11: Density function of Rastrigin benchmark function in differ-
ent dimensions

property can also explain the phenomenon that the number of local optima increases

exponentially with dimension since the number of local optima in f(x) is equal to

the product of the local optima number for each fi(xi).

According to the above discussion, as the dimension of a problem increases,

the properties of the underlying objective function also change. Therefore, when

studying the scalability of a search algorithm, we actually examine its performance

on different problems. As a result, a search algorithm good at low dimensions may

not be good at high dimensions since the properties which they aim to exploit

have diminished. If the changes described as above appear in a practical problem,

only those algorithm which are not sensitive to these changes can scale well with

the increase of dimension. In other words, only the algorithms which exploit the

properties not affected by these changes can perform well with increasing dimension.

Random sampling does not exploit any problem-specific information, there-

fore, it should exhibit the same performance across all class of problems according

to the above discussion. However, it is usually believed that the performance of

random sampling degrades exponentially with the problem dimensionality. The

contradiction is due to the metrics used in the efficiency study for different prob-

lem dimensions. In the study, Mf or Mx is used to measure the goodness of an

47

optimization result. However, as described before, the same Mf or Mx may means

different things in different problems and Mφ is more appropriate in these cases.

For example, if the same optimization objective Mx is defined for different problem

dimensions, this actually implies an exponentially increasing optimization objective

in terms of Mφ in higher dimensions since the size of the parameter space increases

exponentially with dimensionality. Implicit increasing optimization objective by use

of Mx or Mf is another factor which make many algorithms not scale well to high-

dimensional problems. If the metric Mφ is directly used in the efficiency study, this

problem will not appear. In fact, for any dimension, random sampling has the same

performance in terms of Mφ.

CHAPTER 5

Recursive Random Search Algorithm

Based on the previous investigation of the problems in network optimization, this

chapter presents a Recursive Random Search(RRS) algorithm which is designed to

perform efficient optimization in the concerned problems. The most remarkable fea-

ture of this algorithm is that it is completely based on random sampling. Random

sampling is usually believed to be lacking in efficiency. However, as we describe in

the following, it is actually very efficient in its initial steps. The RRS algorithm

exploits this feature and maintains the high efficiency by constantly restarting ran-

dom sampling in new sample spaces. Besides its high efficiency, the RRS algorithm

has additional advantages. First, in the situation where the evaluation of objective

function is affected by noises, the RRS algorithm is more robust than the algorithms

using local search methods. In addition, the RRS algorithm is especially efficient

for the objective function with negligible parameters.

In the following, the design ideas of the RRS algorithm is first described and

the details of the algorithm is then presented. Finally, the advantages described

above are validated with the tests on a suite of benchmark functions.

5.1 Design Ideas of Recursive Random Search

In this section, we first describe the initial high-efficiency property of random

sampling, which is the base of the Recursive Random Search algorithm and then

present the strategy of RRS for the balance between exploration and exploitation.

5.1.1 Efficiency of Random Sampling

Random sampling may be the simplest and most widely used search technique,

which takes random samples from a uniform distribution over the parameter space.

This technique provides a strong probabilistic convergence guarantee but is generally

considered to be lacking in efficiency. Opposite to this common belief, we will show

in the following that random sampling is in fact very efficient in its initial steps and

48

49

its inefficiency is from the latter sampling.

Assume an objective function f(x) is defined on the parameter space D and

its value range is [ymin, ymax]. Given a number yr ∈ [ymin, ymax] such that φD(yr) =

r, r ∈ [0, 1], we can define a r-percentile set in the parameter space D:

AD(r) = {x ∈ D | f(x) ≤ yr } (5.1)

Note that AD(1) is just the whole parameter space D and limε→0 AD(ε) will converge

to the global optima. Suppose the sample sequence generated by n steps of random

sampling is xi, i = 1 . . . n and xn
(1) is the one with the minimum function value, then

the probability of xn
(1) in AD(r) is:

P (xn
(1) ∈ AD(r)) = 1− (1− r)n = p (5.2)

Alternatively, the r value of the r-percentile set that xn
(1) will reach with probability

p can be represented as:

r = 1− (1− p)1/n (5.3)

For any probability p < 1, r will tend to 0 with increasing n, that means, random

sampling will converge to the global optima with increasing number of samples.

Figure 5.1 shows the r-percentile set that n steps of random sampling can reach

with a probability of 99%. We can see that random sampling is highly efficient at

initial steps since r decreases exponentially with increasing n, and its inefficiency

is from later samples. As shown in Figure 5.1, it takes only 44 samples to reach a

point in AD(0.1) area, whereas all future samples can only improve r value of xn
(1)

at most by 0.1.

To maintain its initial efficiency, random sampling has to be “restarted” when

its efficiency becomes low. However, unlike the other methods, such as hillclimbing,

random sampling cannot be restarted by simply selecting a new starting point.

Instead we accomplish the “restart” of random sampling by changing its sample

space. Basically, we perform random sampling for a number of times, then move

and resize the sample space according to the previous samples and start another

50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

r

Number of Function Evaluations

Convergence Curve of Random Sampling with Probability 0.99

Figure 5.1: Convergence curve of random sampling with probability 0.99

random sampling in the new sample space. This restart strategy is used as the base

of Recursive Random Search to maintain the high efficiency of random sampling.

5.1.2 Balance between Exploration and Exploitation

A stochastic search algorithm consists of two procedures: exploration and ex-

ploitation. Basically, the RRS algorithm uses random sampling for exploration and

recursive random sampling for exploitation. The balance between exploration and

exploitation is essential to the efficiency of an algorithm. Ideally it should only

execute the exploitation procedure in prospective areas. However, it is difficult to

determine which areas are more promising and should be exploited. Many algo-

rithms, such as multi-start type algorithms, do not differentiate areas and hence

may waste much time in trivial areas. Our approach is to identify a certain r-

percentile set AD(r) and only start exploitation from this set. In this way, most

of trivial areas will be excluded from exploitation and thus the overall efficiency of

the search process can be improved. This can be illustrated by the example shown

in Figure 5.2. The left graph shows a contour plot of a 2-dimensional multi-modal

objective function and the right graph shows the set of AD(0.05). As shown in the

figure, the function has many local optima; however, only three regions of attraction

remain in AD(0.05) (shaded areas in the right plot). Each of these regions encloses

a local optimum and the one with the biggest size happens to contain the global

optimum. This is often true for many optimization problems since the region of

attraction containing the global optimum usually has the largest size [6]. If we per-

form random sampling on the whole parameter space, the samples falling in AD(r)

51

are also uniformly distributed over AD(r), consequently, they are more likely to be-

long to the region containing the global optimum. That means, if exploitation is

started from these points, the search will arrive at the global optimum with a larger

probability than other non-global optima.

 950
 900
 850
 800
 750
 700
 650
 600

−150 −100 −50 0 50 100
−150

−100

−50

0

50

100
 666

−150 −100 −50 0 50 100
−150

−100

−50

0

50

100

Figure 5.2: Contour plot of an objective function(left) and its region of
AD(0.05)(right)

The size of AD(r) region identified by exploration is desired to be as small

as possible such that most of trivial areas are filtered out. On the other hand, its

smallest size is limited by the efficiency of random sampling, i.e., it should be within

the reach of initial high-efficiency steps of random sampling so that identifying a

point in it will not take too long to lower the overall efficiency.

5.2 Algorithm Details

The basic idea of the RRS algorithm is to use random sampling to explore the

whole parameter space and only start exploitation, i.e., recursive random sampling,

for those points which fall in a certain AD(r) region. The pseudo-code of the algo-

rithm is shown in Algorithm 1 and we will explain its details in the following with

reference to the lines of the pseudo-code.

5.2.1 Exploration

In the exploration phase, random sampling is used to identify a point in AD(r)

for exploitation. The value of r should be first chosen. Based on this value and

a predefined confidence probability p, the number of samples required to make

Pr(xn
(1) ∈ AD(r)) = p can be calculated as(according to Equation 5.2): n = ln(1−p)

ln(1−r)

52

Algorithm 1: Recursive Random Search

1 Initialize exploration parameters p, r, n ← ln(1− p)/ ln(1− r) ;
2 Initialize exploitation parameters q, υ, c, st, l ← ln(1− q)/ ln(1− υ);
3 Take n random samples xi, i = 1 . . . n from parameter space D;
4 x0 ← arg min1≤i≤n(f(xi)), yr ← f(x0), add f(x0) to the threshold set

F;
5 i ← 0, exploit flag ← 1, xopt ← x0;
6 while stopping criterion is not satisfied do
7 if exploit flag = 1 then

// Exploit flag is set, start exploitation process
8 j ← 0, fc ← f(x0), xl ← x0, ρ ← r;
9 while ρ > st do

10 Take a random sample x′ from ND,ρ(xl);
11 if f(x′) < fc then

// Find a better point, re-align the center of sample space
to the new point

12 xl ← x′, fc ← f(x′);
13 j ← 0;

else
14 j ← j + 1;

endif
15 if j = l then

// Fail to find a better point, shrink the sample space
16 ρ ← c · ρ, j ← 0;

endif
endw

17 exploit flag ← 0, update xopt if f(xl) < f(xopt);

endif
18 Take a random sample x0 from S;
19 if f(x0) < yr then

// Find a promising point, set the flag to exploit
20 exploit flag ← 1;

endif
21 if i = n then

// Update the exploitation threshold every n samples in the pa-
rameter space

22 Add min1≤i≤n(f(xi)) to the threshold set F;
23 yr ← mean(F), i ← 0;

endif
24 i ← i + 1;

endw

53

(line 1 in pseudo-code). The algorithm uses the value of f(xn
(1)) in the first n sam-

ples as the threshold value yr(line 4) and any future sample with a smaller function

value than yr is considered to belong to AD(r). In later exploration, a new xn
(1) is

obtained every n samples and yr is updated with the average of these xn
(1) (lines [21-

23]). Note that this calculation of yr is not intended to be an accurate estimation of

the threshold for AD(r), instead it only function as the adjustment for the balance

between exploration and exploitation. In other words, it is to ensure that on the

average the exploration process will not continue for n samples and hence enter its

low-efficiency phase.

In this exploration method, the confidence probability p should choose a value

close to 1, for example, 0.99. The value of r decides the balance between exploration

and exploitation and should be chosen carefully as discussed before. According to

the current experience, we have used r = 0.1 and p = 0.99 in the algorithm, and

with such values it only takes 44 samples to find a point for the estimation of yr.

5.2.2 Exploitation

As soon as exploration finds a promising point x0 whose function value is

smaller than yr, we start a recursive random sampling procedure in the neighbor-

hood N(x0) of x0. The initial size of N(x0) is taken as the size of A(r), i.e.,

r ·m(D), where D is the original parameter space since x0 belongs to A(r) with a

high probability. Currently a simple method is used to construct N(x0): assume

the parameter space D is defined by the upper and lower limits for its ith element,

[li, ui], the neighborhood of x0 with a size of r ·m(D) is the original parameter space

scaled down by r, i.e., NS,r(x0) = {z ∈ S | |zi − x0,i| < r1/n · (ui − li)}(line 10),

where x0,i is ith element of x0 and zi ith element of z. With this new sample space

NS,r(x0), random sampling is continued. And then based on the obtained samples,

the sample space is re-aligned or shrunk as exemplified in Figure 5.3 until its size

falls below a predefined level sl, which decides the resolution of the optimization.

Re-align sub-phase As described above, exploitation first starts in the neighbor-

hood N(x0) of x0. If φN(x0)(f(x0)) (defined in Equation 5.3) is large, that

means most points in N(x0) are better than x0. Therefore, if we do random

54

R
R

R R

C C2

2 3
4

1

1

Parameter Space

Figure 5.3: Shrink and Re-align Process

sampling in N(x0), it will be highly likely to find a point better than x0 with

a small number of samples. Let’s define an expected value of φN(x0)(f(x0)), υ,

with a confidence probability q, random sampling should find a better point in

N(x0) with l = ln(1−q)
ln(1−υ)

(line 2) samples. If a better point is found within l sam-

ples, we replace x0 with this point, move the sample space to the new N(x0)

and keep its size unchanged (lines [11-13]). This is called re-align operation.

For example, in Figure 5.3, the exploration identifies a promising point C1 and

then the exploitation (i.e., random sampling) start in the neighborhood R1 of

C1. After a few samples, a new point C2 is found to be better than C1, hence

the sample space is moved from R1 to the neighborhood R2 of C2. In this

way, even if the initial N(x0) (i.e., R1 in the example) might miss the local

optimum, the later re-align moves will still lead the search to converge to the

local optimum.

Shrink sub-phase If random sampling fails to find a better point in l samples,

that suggests φN(x0)(f(x0)) is smaller than the expected level υ. In this case,

we reduce N(x0) by a certain ratio c ∈ [0, 1], i.e., generate a new neighborhood

N ′(x0) whose size is c·m(N(x0)) (lines [15-16]). This is called shrink operation,

which is performed only when we fail to find a better point in l samples.

When the size of sample space is reduced to a value such that φN(x0)(f(x0))

is larger than υ, then “re-align” will take over again to moves to the local

optimum. With re-align and shrink alternately performed, the sample space

will gradually converge to the local optimum. For example, in Figure 5.3, after

l unsuccessful samples in R2, the sample space is shrunk to R3, then to R4

55

if sampling in R3 continue to fail. The whole exploitation process continues

until the size of sample space falls below a certain threshold, whose value is

dependent on the resolution requirement of the optimization problem.

5.2.3 Remarks on the RRS Algorithm

Recursive random search is an algorithm completely based on random sam-

pling. It attempts to maintain the high efficiency of random sampling by constantly

changing the sample space. The exploration process of RRS accomplishes two tasks.

One is to filter out most of trivial areas in the parameter space and consequently

the optimization can be focused on the areas which contain high-quality solutions.

The other task is to provide a good starting point for the exploitation process. This

is to make the most of the efficiency of the exploration phase and only execute

exploitation when exploration cannot supply enough efficiency.

The ideal behavior of a search algorithm is to first inspect the macroscopic

of the objective function, and then examine microscopic features in selected areas.

The search process of RRS algorithm is fully consistent with this idea. In the

beginning of the search, random sampling is performed over the whole parameter

space and the overall structure of the objective function is examined. With the

search continuing, the sample space gradually shrinks and consequently the search

becomes increasingly focused on microscopic information until it finally converges

to a local optimum. The search algorithms deviating the above ideal behavior

usually cannot perform efficiently. For example, multi-start type algorithms start

a local search from every random sample without considering macroscopic features,

therefore, their performance often suffers greatly from the time waste on trivial

areas.

Since the RRS algorithm performs the search process based on stochastic in-

formation, its performance will be less affected by noises imposed on the objective

function than those using local search methods. In addition, random sampling is

more efficient when dealing with an objective function with some negligible parame-

ters, i.e., the parameters which contribute little to the function value. Since random

samples can maintain its uniform distribution in the subspace composed of only

56

those important parameters, this effectively removes the negligible parameters from

the optimization. In this way, the search efficiency can be greatly improved.

5.2.4 Efficiency of the RRS Algorithm

In this section, we will analyze the major reasons that the RRS algorithm can

perform more efficiently than other algorithms. Black-box optimization problems

are known to be NP-hard[75]. Because of the complexity of these problems, it is

usually very difficult to quantitatively analyze the efficiency of an optimization al-

gorithm. As indicated in [9], “the variety of techniques that have been proposed

is impressive, but their relative merits have neither been analyzed in a systematic

manner nor properly investigated by computational experiments on a wide range of

problems.” To study the efficiency of an optimization algorithm, the convergence

curve expression, m(n), has to be derived where n denotes the number of function

evaluations and m(n) is the performance metric of the algorithm after n function

evaluations. Since the performance of an optimization algorithm varies with prob-

lems according to No Free Lunch Theorem, it is normally not possible to obtain a

uniform formula of m(n) such that the algorithms can be compared without refer-

ence to a specific problem. Even given a specific problem, it is often too difficult to

analytically derive the expression of m(n) because of the complexity of black-box

optimization. It may be possible to derive a formula of m(n) for a certain algorithm

in a simple benchmark problem, however, too much simplification and restriction

makes it useless in studying the performance of the algorithm in practice. This

is the reason that there has been no analytical performance result for stochastic

optimization algorithms, such as, genetic algorithm, simulated annealing and con-

trolled random search, though these algorithms have been widely studied and used

in practice.

The performance of stochastic algorithms is typically studied in a empirical

way with benchmark tests like in the vast amount of optimization literature[76,

60, 10, 69, 77, 78, 72, 79]. The analytical work is mainly centered on the demon-

stration of the effectiveness of a stochastic algorithm, i.e., its convergence to the

global optima in probability, such as the convergence of simulated annealing[13, 64].

57

However, for some stochastic algorithms, even this convergence property cannot

be analytically obtained. For example, controlled random search(CRS) is a widely

used black-box optimization algorithm[30, 56, 80, 40, 81, 9], however, as indicated

in [57, 82], “a disturbing fact concerning CRS algorithms is their totally heuristic

nature with no theoretical convergence properties” and “up to date there was no

analysis on the performance of the algorithm”. Even for genetic algorithm which

has numerous successful applications in practice, “no theoretical convergence results

for genetic algorithms are known.”[83] The convergence of RRS is straightforward

since it is based on random sampling and any stochastic algorithm including random

sampling will converge to global optima in probability. In the following, we will only

present a qualitative analysis for the efficiency of the RRS algorithm.

First of all, the balance strategy of RRS can filter out those trivial hills, i.e.,

only start exploitation in a certain r-percentile set. As we shown in the previous

example in Figure 5.2, there are tens of hills in the original objective function,

however, in RRS, the number of hills to be exploited is reduced to only three.

Therefore, the RRS algorithm will perform much more efficient than multi-start local

search methods for the objective function with many trivial hills. One example of

such objective functions is “global convex” function, which appears in many practical

optimization problems.

The efficiency of RRS also comes from its robustness to noises. The effect

of noises is usually embodied as small random fluctuations imposed on the original

objective function. For example, Figure 5.4 shows a 2-dimensional empirical ob-

jective function obtained with network simulation. It can be seen that there exist

many irregular small fluctuations on the overall structure. For such objective func-

tion, multi-start local search algorithms will explore each of those small noise hills

and hence basically perform like a random sampling. However, the RRS algorithm

does not base its search strategy on a local structure, instead it starts with a large

sample space and examines the overall structure first, and then increasingly adjusts

the sample space to converge to a local optimum. Therefore, the RRS algorithm

will perform more efficient in noise-affected objective functions as exemplified in

Figure 5.4 than multi-start algorithms.

58

Drop Rate

0

0.02
Queue Weight 0

0.2

Maxiumum Drop Probability

0.015
0.016
0.017
0.018
0.019
0.02

0.021
0.022

Drop Rate

Figure 5.4: An empirical objective function obtained with network simu-
lation

Furthermore, RRS can automatically exclude negligible parameters from the

optimization while local search methods cannot. In practice, a problem often in-

cludes many parameters which are insignificant in terms of its contribution to the

objective function. For these problems, RRS will perform much more efficiently

than those based on local search methods.

5.3 Test Results

As mentioned before, the design objectives of Recursive Random Search are:

high efficiency, scalability to high-dimensional problems and robustness to noises.

This section will present the performance tests of the RRS algorithm in these aspects.

Usually, the benchmark tests of a search algorithm are performed by exam-

ining the number of function evaluations that it requires to obtain a point close to

the global optimum. Since the emphasis of our design objective is not on full opti-

mization but achieving high efficiency in the limited time frame, the above method

is not adopted in the tests presented in this section. Instead, we execute the search

algorithm for a certain number of function evaluations, and draw the convergence

curve of the optimization, i.e., the optimization result as a function of the number of

function evaluations. The performance of the algorithms is studied based on these

convergence curves.

59

5.3.1 Benchmark Functions

A suite of classical benchmark functions have been used in our performance

tests. Most of them have a large number of local optima and are considered very

difficult to optimize. We describe these function in the following. For these func-

tions, we assume that the parameter x is a n-dimensional vector and xi denotes its

ith element.

1. The first function is a simple square sum function:

f(x) =
n∑

i=1

(x2
i) (5.4)

where −500 ≤ xi ≤ 500, i = 1 . . . n. The global minimum is 0 at xi = 0, i =

1 . . . n. This function is often used for the first benchmark test of a search

algorithm.

2. Rastrigin’s Function was proposed by Rastrigin[84] and generalized as the

following format by Mühelenbein, Schomisch and Born[85]

f(x) = n · A +
n∑

i=1

(x2
i − A · cos 2πxi) (5.5)

where −5.12 ≤ xi ≤ 5.12, i = 1 . . . n and A = 10. The global minimum is

0 at xi = 0, i = 1 . . . n. There are a large number of local minima in this

function, for example, grid points with xi = 0 except one coordinate, where

xj = 1.0, give f(x) = 1.0. It is considered a very difficult benchmark function.

A 2-dimensional Rastrigin function is shown in Fig 5.5.

Rastrigin function

f(x, y)
 80
 40

-4 -2 0 2 4x -4
-2

0
2

4

y

0
20
40
60
80

100

Figure 5.5: Rastrigin Function

60

3. Rosenbrock’s Saddle[86] is defined as:

f(x) =
n−1∑
i=1

(100 · (xi+1 − xi)
2 + (1− xi)

2) (5.6)

where −2.048 ≤ xi ≤ 2.048, i = 1 . . . n. The global minimum is 0 at xi =

1.0, i = 1 . . . n. This function has a long curved valley which is only slightly

decreasing. There are strong interactions between variables. A 2-dimensional

Rosenbrock function is shown in Fig 5.6.

Rosenbrock function

f(x, y)
 1.2e+03

 800
 400
 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x -2

-1
0

1
2

y

0
400
800

1200
1600
2000

Figure 5.6: Rosenbrock’s Saddle Function

4. Griewangk’s Function is one of the most difficult global optimization test

functions[6]:

f(x) = 1 +
n∑

i=1

(x2
i /4000)−

n∏
i=1

(cos(xi/
√

i)) (5.7)

where −600 ≤ xi ≤ 600, i = 1 . . . n. The global minimum is 0 at xi = 0, i =

1 . . . n. Typical n is 10, for which there are four local minima f(x) ≈ 0.0074 at

x ≈ (±π,±π · √2, 0, ..., 0). This function has a product term, introducing an

interdependency between the variables. This is intended to disrupt optimiza-

tion techniques that work on one function variable at a time. A 2-dimensional

Griewangk function is shown in Fig 5.7.

A modified Griewangk function varies the weight of the quadratic term:

fσ(x) = 1 + σ

n∑
i=1

(x2
i /4000)−

n∏
i=1

(cos(xi/
√

i)) (5.8)

This function is a bumpy quadratic when σ is one and a product of cosines

61

Griewangk function

f(x, y)
 6
 4
 2

-100 -50 0 50 100
x -100

-50
0

50
100

y

0
2
4
6
8

Figure 5.7: Griewangk’s Function

when σ is zero. The value of σ decides the difference between the local minima.

When σ approaches 0, the values of local minima become similar.

5. Ackley’s Function[87] is defined as:

f(x) = 20 + e− 20 · e−0.2·
√

1
n
·∑n

i=1 x2
i − e

1
n
·∑n

i=1 cos 2πxi (5.9)

where −30 ≤ xi ≤ 30, i = 1 . . . n. The global minimum is 0 at xi = 0, i =

1 . . . n. A 2-dimensional Ackley function is shown in Fig 5.8.

Ackley function

f(x, y)
 15
 10
 5

-10 -5 0 5 10
x -10

-5
0

5
10

y

0
4
8

12
16
20

Figure 5.8: Ackley’s Function

6. Shekel’s family[6]

f(x) = −
m∑

i=1

1

(x− ai)T (x− ai) + ci)

where xi ∈ [0, 10], n = 4, ai is a 4-element vector. This function has m minima

in positions ai with levels ci. The values of ai and ci are given in Table 5.1 for

m ≤ 10.

62

i ai ci

1 (4, 4, 4, 4) 0.1
2 (1, 1, 1, 1) 0.2
3 (8, 8, 8, 8) 0.2
4 (6, 6, 6, 6) 0.4
5 (3, 7, 3, 7) 0.4
6 (2, 9, 2, 9) 0.6
7 (5, 5, 3, 3) 0.3
8 (8, 1, 8, 1) 0.7
9 (6, 2, 6, 2) 0.5
10 (7, 3.6, 7, 3.6) 0.5

Table 5.1: Parameters for Shekel’s function family

7. Hartman’s family[6]

f(x) = −
m∑

i=1

ci exp(−
n∑

j=1

aij(xj − pij)
2)

where xi ∈ [0, 1], m = 4, n = 3, 6. This functions has m minima in positions

pi with levels ci. ai, ci and pi are given in Table 5.2 for Hartman3(n = 3) and

5.3 for Hartman6 (n = 6).

i ai ci pi

1 (3, 10, 30) 1 (0.3689, 0.1170, 0.2673)
2 (0.1, 10, 35) 1.2 (0.4699, 0.4387, 0.7470)
3 (3, 10, 30) 3 (0.1091, 0.8732, 0.5547)
4 (0.1, 10, 35) 3.2 (0.03815, 0.5743, 0.8828)

Table 5.2: Parameters for Hartman’s function family

i ai ci pi

1 (10, 3, 17, 3.5, 1.7, 8) 1 (0.1312, 0.1696, 0.5569, 0.0124, 0.8283, 0.5886)
2 (0.05, 10, 17, 0.1, 8, 14) 1.2 (0.2329, 0.4135, 0.8307, 0.3736, 0.1004, 0.9991)
3 (3, 3.5, 1.7, 10, 17, 8) 3 (0.2348, 0.1451, 0.3522, 0.2883, 0.3047, 0.6650)
4 (17, 8, 0.05, 10, 0.1, 14) 3.2 (0.4047, 0.8826, 0.8732, 0.5743, 0.1091, 0.0381)

Table 5.3: Parameters for Hartman’s function family

8. Six hump camel back function[6]

f(x1, x2) = (4− 2.1x2
1 + x4

1/3)x2
1 + x1x2 + (−4 + 4x2

2)x
2
2

63

where x1 ∈ [−3, 3], x2 ∈ [−2, 2], f∗ ≈ −1.0316285.

9. Goldstein Price[6]

(1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2))·

(30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2))

where −2 ≤ xi ≤ 2, f∗ = 3.

5.3.2 Tests on Efficiency of RRS

First the RRS algorithm is tested on the benchmark functions in different

dimensions and its performance is compared with two other search algorithms: con-

trolled random search and multi-start pattern search. Controlled random search is

recommended for black-box optimization problems in many literature[9, 40]. Multi-

start pattern search is chosen because multi-start type algorithms are always one

of the most popular methods in practice[69] and have been demonstrated to work

very well and outperform many more sophisticated algorithms, such as genetic al-

gorithm and simulated annealing, in many practical problems[51, 52, 53]. And

pattern search[47] is one of direct search techniques which are usually recommended

for black-box optimization problems[39].

In the tests, the search algorithms are executed on each function with the

function dimension varying from 20 to 2000. To eliminate randomness caused by the

stochastic elements in the search algorithms, each test is repeated for 50 times with

random starting points and the average of the results is used. We have chosen A = 10

for Rastrigin function and used the following parameters for the RRS algorithm:

p = 0.99, r = 0.1, c = 0.5, υ = 0.8, q = 0.99, st = 0.001. The test results for

benchmark function 1-5 are shown in Fig 5.9-5.13. It can be seen that the RRS

algorithm converges very rapidly and its efficiency is much better than the other two

search algorithms. Note that in Figure 5.12, for 200-dimensional Ackely function,

the performances of RRS and the multi-start algorithm are close. However, the

RRS tends to converge to the optimal solution quickly while the convergence curve

of multi-start algorithm tends to be flatten out. In fact, in the subsequent search

64

process which is not shown in the graph, it has been observed that RRS will perform

much better than the other two algorithms. Controlled random search performs

much like pure random search in the beginning when it has not yet converged to high-

quality solutions. From the results, we can see that it does perform very efficiently

at its initial few steps and is better than multi-start pattern search. However, with

the search continuing, its performance quickly degrades and falls far behind the

other two algorithms.

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

0 500 1000 1500 2000

O
p

tim
iz

a
tio

n
 r

e
su

lt

Number of function evaluations

20-dimensional Squaresum function

Recursive Random Search
Multistart Pattern Search

Controlled Random Search

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

0 500 1000 1500 2000

O
p

tim
iz

a
tio

n
 r

e
su

lt

Number of function evaluations

200-dimensional Squaresum function

Recursive Random Search
Multistart Pattern Search

Controlled Random Search

1.1e+08

1.2e+08

1.3e+08

1.4e+08

1.5e+08

1.6e+08

1.7e+08

0 200 400 600 800 100012001400160018002000

O
p

tim
iz

a
tio

n
 r

e
su

lt

Number of function evaluations

2000-dimensional Squaresum function

Recursive Random Search
Multistart Pattern Search

Controlled Random Search

Figure 5.9: Performance tests on SquareSum function

0

1000

2000

3000

4000

5000

6000

0 500 1000 1500 2000

O
p

tim
iz

a
tio

n
 r

e
su

lt

Number of function evaluations

20-dimensional Rosenbrock function

Recursive Random Search
Multistart Pattern Search

Controlled Random Search

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

0 500 1000 1500 2000

O
p

tim
iz

a
tio

n
 r

e
su

lt

Number of function evaluations

200-dimensional Rosenbrock function

Recursive Random Search
Multistart Pattern Search

Controlled Random Search

380000

400000

420000

440000

460000

480000

500000

520000

540000

560000

580000

0 200 400 600 800 100012001400160018002000

O
p

tim
iz

a
tio

n
 r

e
su

lt

Number of function evaluations

2000-dimensional Rosenbrock function

Recursive Random Search
Multistart Pattern Search

Controlled Random Search

Figure 5.10: Performance tests on Rosenbrock function

0

100

200

300

400

500

600

700

0 500 1000 1500 2000

O
p

tim
iz

a
tio

n
 r

e
su

lt

Number of function evaluations

20-dimensional Griewangk function

Recursive Random Search
Multistart Pattern Search

Controlled Random Search

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

0 500 1000 1500 2000

O
p

tim
iz

a
tio

n
 r

e
su

lt

Number of function evaluations

200-dimensional Griewangk function

Recursive Random Search
Multistart Pattern Search

Controlled Random Search

40000
42000
44000
46000
48000
50000
52000
54000
56000
58000
60000
62000

0 200 400 600 800 100012001400160018002000

O
p

tim
iz

a
tio

n
 r

e
su

lt

Number of function evaluations

2000-dimensional Griewangk function

Recursive Random Search
Multistart Pattern Search

Controlled Random Search

Figure 5.11: Performance tests on Griewangk function

65

2

4

6

8

10

12

14

16

18

20

22

0 500 1000 1500 2000

O
p

tim
iz

a
tio

n
 r

e
su

lt

Number of function evaluations

20-dimensional Ackley function

Recursive Random Search
Multistart Pattern Search

Controlled Random Search

19
19.2
19.4
19.6
19.8

20
20.2
20.4
20.6
20.8

21
21.2

0 500 1000 1500 2000

O
p

tim
iz

a
tio

n
 r

e
su

lt

Number of function evaluations

200-dimensional Ackley function

Recursive Random Search
Multistart Pattern Search

Controlled Random Search

20.55
20.6

20.65
20.7

20.75
20.8

20.85
20.9

20.95
21

21.05
21.1

0 200 400 600 800 100012001400160018002000

O
p

tim
iz

a
tio

n
 r

e
su

lt

Number of function evaluations

2000-dimensional Ackley function

Recursive Random Search
Multistart Pattern Search

Controlled Random Search

Figure 5.12: Performance tests on Ackley function

200

300

400

500

600

700

800

900

0 500 1000 1500 2000

O
p

tim
iz

a
tio

n
 r

e
su

lt

Number of function evaluations

20-dimensional Rastrigin function

Recursive Random Search
Multistart Pattern Search

Controlled Random Search

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

0 500 1000 1500 2000

O
p

tim
iz

a
tio

n
 r

e
su

lt

Number of function evaluations

200-dimensional Rastrigin function

Recursive Random Search
Multistart Pattern Search

Controlled Random Search

65000

70000

75000

80000

85000

90000

0 200 400 600 800 100012001400160018002000

O
p

tim
iz

a
tio

n
 r

e
su

lt

Number of function evaluations

2000-dimensional Rastrigin function

Recursive Random Search
Multistart Pattern Search

Controlled Random Search

Figure 5.13: Performance tests on Rastrigin function

We also test the RRS algorithm on some low-dimensional classical benchmark

functions (function 6-9 as listed before) for which the optimization results approach

the global optima with only hundreds of function evaluations. Similar convergence

curve results to above can be obtained. We summarize the test results in Table 5.4

which shows the best-so-far function values after 75 function evaluations. It can be

observed that the RRS always delivers better results than the other two algorithms.

Function Best-so-far Function Values
CSR Multistart PatternSearch RRS

Shekel5 -0.68 -0.34 -1.97
Shekel7 -0.77 -0.39 -1.77
Shekel10 -1.03 -0.45 -1.92
Hartman3 -3.57 -3.17 -3.75
Hartman6 -2.02 -1.77 -2.60
GoldPrice 25.75 587.87 12.39
CamelBack -0.774 -0.114 -0.994

Table 5.4: Benchmark test results showing better optimization results
found by RRS

66

5.3.3 Tests on Noise-Resistance of RRS

This section will compare the performance of RRS and multi-start pattern

search algorithm for noise-affected objective functions. Directly imposing random

noises on the objective function may introduce randomness into the test results.

Therefore, to obtain consistent results, Rastrigin function have been used to emulate

the situations where the evaluation of the objective function is affected by small

noises. Recall that Rastrigin function is defined as:

f(x) = n · A +
n∑

i=1

(x2
i − A · cos(2πxi)) (5.10)

It can be also considered as a simple sphere function
∑n

i=1 x2
i superimposed with

the noise term
∑n

i=1 A · cos(2πxi). The magnitude of noises is determined by the

value of A. To test the noise-resistance of the search algorithms, we vary the noise

level in Rastrigin function, i.e., the value of A, and see how the search algorithms

perform under different magnitudes of noises. Note that the noise magnitude should

not be too large to distort the overall structure of the original function. Figure 5.14

shows the test results on Rastrigin functions with different noise level and different

dimensions. The results demonstrate that increasing magnitude of noises seriously

degrade the performance of multi-start pattern search while the effect on RRS is

slight.

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

O
b
je

ct
iv

e
F

u
n
ct

io
n

Number of Function Evaluation

Optimization on a noisy 5−dimensional Rastrigin function

RRS, noise level = 3
RRS, noise level = 5

multi−start HC, noise level = 3
multi−start HC, noise level = 5

3600

3800

4000

4200

4400

4600

4800

5000

5200

5400

0 50 100 150 200

O
b
je

ct
iv

e
F

u
n
ct

io
n

Number of Function Evaluation

Optimization on a noisy 150−dimensional Rastrigin function

RRS, noise level = 0.6
RRS, noise level = 1

multi−start HC, noise level = 0.6
multi−start HC, noise level = 1

Figure 5.14: Noise-resistance tests of search algorithms

5.3.4 Tests on Objective Functions with Negligible Parameters

In many practical problems, it is common that only some of the parameters

are important in terms of their contributions to the objective function and the

67

optimization result is largely affected by these parameters. In contrast, the other

parameters are negligible in the sense that they have little effect on the value of the

objective function. It is often difficult to identify these negligible parameters and

exclude them from the optimization process. For such cases, the RRS algorithm is

especially efficient since it automatically achieves the exclusion of trivial parameters

with random sampling. The tests in this section will validate this property of RRS.

To simulate the occasion with trivial parameters, an n-dimensional test function in

Equation (5.11) is used:

f(x) =
5∑

i=1

x2
i + 10−12 ·

n∑
i=5

x2
i (5.11)

where −500 < xi < 500, i = 1 . . . n. In this function, the first five parameters

are the major ones that determine the function value while the others are trivial

parameters. The tests are performed for the cases where there are 0, 5 and 10

negligible parameters in the function, and the performances of RRS and multi-start

pattern search are compared. Figure 5.15 shows the test results. It can be seen that

the introducing of trivial parameters can hardly affect the performance of the RRS

algorithm while the performance of multi-start patter search degrades considerably

with increasing number of trivial parameters. Therefore, the tests demonstrate that

the RRS algorithm is able to automatically exclude negligible parameters from the

optimization process and thus greatly improve the efficiency.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 200 400 600 800 1000

O
pt

im
iz

at
io

n
re

su
lt

Number of function evaluations

Recursive Random Search, no negligible
Recursive Random Search, 5 negligible

Recursive Random Search, 10 negligible
Multistart Pattern Search, no negigible
Multistart Pattern Search, 5 negligible

Multistart Pattern Search, 10 negligible

Figure 5.15: Performance tests on objective functions with negligible pa-
rameters

CHAPTER 6

Unified Search Framework

Despite the rapid progress in recent years, two major issues remain in black-box

optimization, i.e., how to select an appropriate optimization algorithm for a give

problem and how to manage and take full advantage of available computing resource.

In this chapter, we propose a Unified Search Framework (USF) as a general solution

to address these problems.

According to No Free Lunch theorem[12], no algorithm can consistently out-

perform the others for every class of problem. As a result, given an optimization

problem, it is very important to choose an appropriate optimization algorithm which

best exploits the structural properties of the concerned problem. Recursive Ran-

dom Search is designed to be a general solution for typical network optimization

problems with features described before. The design objective of RRS is to strike

an appropriate balance between applicability and efficiency. In other words, RRS

tries to maintain general applicability to typical network optimization problems

while striving for high efficiency. For certain problems where there exist the ex-

tra exploitable structures, RRS can be outperformed by a search algorithm which

aggressively exploits the problem-specific knowledge.

In light of the fact that one single optimization technique is not sufficient

to handle the wide range of practical problems, numerous efforts have been made

to combine different techniques together, for example, combining GA with local

search[88, 89, 90], simulated annealing with local search[78, 72], controlled random

search with local search[81]. However, there has been no general platform which

can be used to facilitate the construction of hybrid algorithms. The USF is our

attempt to provide such a platform. Basically, an optimization process is sampling

process in which samples are continually taken from the parameter space until the

optimization objective is met. An optimization algorithm is just a combination of

sampling techniques which decide how the samples are taken. The USF is essen-

tially a meta algorithm in the sense that it is not an optimization algorithm itself,

68

69

instead, it provides various sampling techniques as building blocks, such as, such

as random sampling, pattern search and hillclimbing. For a specific problem, an

appropriate optimization algorithm can be easily built by just combining some of

these techniques according to the properties of the underlying problem. With the

capability of correlating problems with appropriate search techniques, the USF is

aimed to provide a general solution for various classes of optimization problems.

Another design objective of USF is to maximize the utilization of available

computing resources. The existence of optimization algorithm is due to the limit

of the available computing resources. If we have an infinite supply of computing

resources which can evaluate any number of samples at one time, there will be no

need for any optimization algorithm. A brutal enumeration method will find the

exact global optimum. In practice, optimization is alway performed with a certain

supply of computing resources, which may comprise a number of work stations,

parallel computers, etc.. Therefore, the objective of an optimization algorithm is

to optimally utilize the limited resources to obtain the desired solution quickly. In

sequential optimization algorithms, the computing resource is considered a single

monopolized resources, consequently they cannot fully utilize the resources with

the parallel computing capability. Many parallel algorithms have been proposed to

exploit the parallel computing resources. However, most of them are only designed

for a certain hardware architecture, such as a certain parallel computer, and hence is

not scalable to heterogeneous computing environment. The USF provides a resource

management and allocation scheme which attempts to manage various computing

resources in a unified framework and strives to take full advantage of available

computing resource to maximize the optimization efficiency.

6.1 The Unified Search Framework

As discussed before, the USF includes various simple search techniques, such

as random sampling and pattern search, as basic building blocks. For a practical

problem, some building blocks are selected and run in parallel. Being coupled to-

gether with memories, which store certain samples during the optimization process,

these building block can coordinate with each other to perform an efficient opti-

70

mization. The basic structure of Unified Search Framework is shown in Figure 6.1.

There are two basic components in USF: sampler and memory. Any optimization

...

& Algorithm Selection

Resources
Management

Resources
Computing

Agent

Agent ...

Sampler Pool

Sampler 1

Sampler 2

Sampler n

Smart Designer

Structure Identification

Figure 6.1: The Unified Search Framework

algorithm is established upon these two type of components. A sampler implements

a certain search technique, such as, random sampling and pattern search, and a

memory is used to store sampling points which are generated by a sampler and may

be used in the future optimization process. For one specific problem, we can choose

a few types of samplers and combine them together with the help of various types of

memory for the most efficient optimization. Another important component of USF

is its computing resource management. In one USF type optimization algorithm,

the samplers are run in parallel with assigned allocations of computing resources.

The computing resource management will maintain the resource usage of each sam-

plers to its allocation. In the following, we will present the detailed description of

these important components in USF.

6.1.1 Sampler

Samplers in USF implement various search technique and are building blocks

of USF. Essentially a sampler performs a sampling process from the parameter space

based on certain memories. For a specific problem, appropriate samplers should be

chosen and combined based on the features of the problem. It is crucial for the

efficiency of the optimization to include an proper selection of samplers which best

exploit the structures of the underlying objective function. In fact, the selection

of appropriate techniques is usually the most challenging and difficult task for a

practical optimization problem.

71

For black-box problems, it is usually recommended to use direct search techniques[40],

such as, Nelder-Mead simplex method[43] and pattern search. Each search technique

tries to exploit a certain structure in the objective function and can perform well

in the objective with the exploited structure. To select appropriate techniques, ex-

ploitable structures should be first investigated. In the following, we attempt to

identify some important structural properties and the corresponding search tech-

niques exploiting these properties.

Local correlativity is present in many practical problems. This structure means

that in a parameter space, the neighboring points have similar function values,

i.e., if a point has a good function value, the points near it may very possi-

bly have good values and vice versa. Local search methods, such as, pattern

search and downhill simplex, exploit this structure to find better points quickly.

These methods normally start with a random point and look for a better point

in the neighborhood of this point. If a new better point is found, the process

is repeated at the new point until reaching the local optimum whose neigh-

borhood does not include a better point. Because of its ubiquitous presence,

local search techniques have been widely adopted in optimization algorithms.

Parameter separability is another structure which exhibits in many practical

problems, especially large-scale problems. Parameter separability means that

the objective function follows the following type:

f(x) =
m∑

i=1

fi(xi) (6.1)

where x is a n-dimensional vector and xi, i = 1 . . .m, are m lower-dimensional

vectors whose elements are mutual exclusive subsets of elements of x. With

parameter separability, a large-scale problem can be decomposed into smaller

sub-problems whose parameter spaces are subsets of the parameters of the

original problem. We can optimize each xi separately and then combine the

results to find the global solution. The cross-over operation in genetic algo-

rithms is one search technique which exploits this structure.

72

Mathematical models may also exist for practical problems. The methods ex-

ploiting this property fit a simple mathematical model to previous samples,

and find the global optimum of this model and use it as a estimation of the

global optimum in the original objective function. The model used in this

type of methods is very important. On one hand, it has to be simple enough

to make its own optimum-seeking easy to accomplish. On the other hand, it

should also include enough complexity to approximate the underlying objec-

tive function as closely as possible. The model can be either deterministic,

such as quadratic model, or stochastic, such as Weiner process. The appropri-

ate selection of the model usually requires extensive a priori knowledge, which

limits the application of this type of techniques.

Based on the structural properties and their suitable search techniques de-

scribed above, we can make more sensible selection of search techniques. For the

problem where sufficient a priori knowledge is available, we can take advantage of

the knowledge to select proper search techniques. For example, if a priori knowl-

edge strongly suggests that the response surface of the objective function is smooth

and there is only one local extreme, a local search technique should be chosen and

allocated with as much computing resources as it needs. If it has been known that

most of the parameters are separable, the crossover technique should be selected

and allocated with as much resources as possible.

For the problem where little a priori knowledge is known, a simple approach

is just trial and error. That is, we can try some search techniques and choose those

which perform better to continue. For example, in [91], GA and a local search

method are combined and the local search is executed only if GA is either not

increasing fast enough or if the GA is converging to a solution. A more advanced

strategy is to first explore the parameter space and identify exploitable structures,

and then try appropriate search techniques. For example, Torn[10] has proposed a

conceptive strategy for multi-start local search algorithms.

• Take N random samples from the parameter space

• Start a local search for each sample as the starting point

73

• Analyze the characteristics of these local searches, such as, relative sizes of

regions of attraction, minimizers;

• Based on this analysis, choose appropriate techniques and search parameters.

6.1.2 Memory

Memory selectively stores the sampling points output by samplers and these

samples can be used by other samplers in later optimization process. The concept

of memory is first proposed in tabu search algorithm[65], where memory is used

to prevent the revisit of the sampling points already examined. Basically, any op-

timization algorithm can take advantage of memory to improve the efficiency. In

USF, memory is of more importance than the one in tabu search and is the essential

component of any optimization algorithm. In USF, samplers are run independently

in parallel. To coordinately with each other, they have to be coupled with various

types of memories. One example algorithm is shown in Figure 6.2. As shown in the

figure, the algorithm is composed of two samplers: random sampling and pattern

search. The samples generated by random sampling are put into a “drop-head”

memory, which drops the oldest samples when the memory reaches its capacity.

Pattern search uses these samples as the starting points to perform local search.

Therefore, it basically implements a multi-start pattern search algorithm. In this

algorithm, random sampling and pattern search are executed independently in par-

allel and their cooperation is achieved by the help of drop-head memory. Besides

the drop-head memory used in the example, many other types of memory can be

used. For example, we can use a memory which stores only the best few samples or

the samples which satisfy a certain criterion, say, better than a certain threshold.

The choice of of memories may affect the optimization efficiency substantially and

should be carefully made based on the features of the underlying problem.

samples

Pattern
Search

Random
Sampling samples

DropHead memory

Figure 6.2: An example of samplers coupled with memory

74

With samplers and memories as building blocks, most of traditional optimiza-

tion algorithm can be composed in the USF. For example, a genetic algorithm can

be formed by combining random sampling, cross-over and mutation operators with

a certain memory implementing the selection mechanism. Furthermore, it is easy

to build an optimization algorithm which is specifically tailed for a certain prob-

lem. The algorithms implemented in USF have an additional advantage, i.e., the

samplers are performed in parallel to take full advantage of available computing

resources and the coordination between samplers can be easily controlled by adjust-

ing memory types and resource allocations. We will show in the tests that these

flexibility can improve the optimization efficiency significantly.

6.1.3 Computing Resource Model and Management Mechanism

As mentioned before, the computing resource management of USF is based

upon the assumption that function evaluation consumes most of computing resources

while the consumption of the other operations can hence be ignored. Furthermore,

we also assume each function evaluation consume the same amount of computing

resources. Therefore, the resource allocation in USF is performed based on the

number of function evaluations. In other words, we calculate the resource usage of

each sampler by the number of function evaluation which has been executed. Note

that these assumptions are valid for most of practical optimization problems where

function evaluations are usually performed with complicated computer simulations.

In fact, the number of function evaluations have been widely used in optimization

literature as the approximate measure for the computing effort of one optimization

algorithm consumes in benchmark tests. In the following, we describe the details of

this resource management mechanism.

The resources management of USF is illustrated in Figure 6.3. The comput-

ing resources can be composed of multi-processor parallel computers or a network of

workstations. On each computing device, an agent is run to manage the device and

communicate with the resource manager of USF. Whenever an agent finds that the

managed computing device is free, it requests an experiment, i.e., function evalua-

tion, from the manager. Each sampler maintains an experiment queue. Whenever

75

Sampler n

Sampler 2

Sampler 1

Designer

Sampler n

...

Experiment Queue

Resources
Computing

50%
20%

10%

... ...

Resource Allocation Table

Sampler 1
Sampler 2

Figure 6.3: Resource allocation mechanism

the sampler generates a sample, it puts it into the queue for function evaluation.

When the queue is full, the sampler will stop generating new samples until the queue

becomes available again. When receiving a request from an agent, the resource man-

ager will then examine the experiment queues of all running samplers and choose

one to return according to the resource allocation rule.

To allocate computing resources among the samplers, the manager maintains

a resource allocation table which defines the percentage of computing resources that

each sampler can use. For example, the following table shows the resource allocation

among 3 samplers:

Sampler 1 50%

Sampler 2 20%

Sampler 3 30%

This table indicates that Sampler 1 may use 50% of resources, Sampler 2 20%

and Sampler 3 30%. The resource allocation table should be decided based on

the features of the underlying problem and can be adaptively adjusted during the

optimization process to maximize the efficiency.

The manager also maintains another table which records the actual resource

usage for each sampler and is initialized to be the same as the allocation table in

the beginning. Whenever the manager receives a experiment request from com-

puting resources, it will check those samplers with non-empty experiment queues,

and choose the one with the maximum unused allocation in the usage table. Af-

76

ter sending the selected experiment to computing resources, the manager updates

the usage table by subtracting the chosen item by 1 and then adding each item in

the usage table (including those with empty queues) by its corresponding allocation

percentage. One example of this procedure is shown as in Figure 6.4. As shown in

Sampler 1 50%
Sampler 2 20%
Sampler 3 30%

↓
choose 1

→
Sampler 1 -50%
Sampler 2 20%
Sampler 3 30%

→
Sampler 1 0%
Sampler 2 40%
Sampler 3 60%

↓
choose 3

(a) initial status (b) subtract sampler 1 (c) add each by
by 1 its allocation

Figure 6.4: An example of resource allocation operation

the example, the usage table is first initialized as the allocation table. Suppose the

experiment queues of all samplers are not empty, sampler 1 is first chosen to send

its experiment for evaluation since it has the maximum allocation. Then the usage

of sampler 1 is subtracted by 1 as shown in table (b) and the usage of each sampler

is added by its allocation as shown in table (c). After this, sampler 3 will be chosen

next time since now it has the maximum value in the usage table.

By using the above method, the computing resources can be distributed among

the samplers in accordance with the resources allocation table. The resource alloca-

tion table provides us with the flexibility to adjust the coordination between sam-

plers running in parallel and achieve the best efficiency. In fact, many sequential

optimization algorithms use certain mechanisms to adjust the computing resource

allocation between search techniques. For example, in simulated annealing[13], the

“temperature” parameter is used to control the balance between random walk and

hillclimbing. With the high temperature in the beginning, random walk runs more

frequently and hence uses more resources. With the temperature cooling down,

hillclimbing gets more and more computing resources. In genetic algorithm, similar

control parameters also exists, such as, crossover rate or mutation rate.

Another advantage of the above resource allocation mechanism is that if some

sampler can not use all of its allocation, the surplus resources will be consumed

by other samplers whose allocation do not meet their needs. Some samplers may

77

not generate enough samples to use up its allocation. For example, a local search

sampler has to wait for the results of previous samples to decide further samples.

Therefore, its experiment queue may become empty during the waiting period. Since

the allocation mechanism in USF only examines the items with non-empty queues,

its allocation will be used by other samplers. By such “borrowing mechanism”, the

full utilization of the available computing resource can be achieved. For example, a

random sampling sampler with a very small allocation, say 0.0001%, can be always

used to take up all the surplus resources. Since its allocation is very small, it will

hardly affect other samplers’ operation and only come to execution when other

samplers could not fully utilize the available resources.

6.1.4 Parallel Optimization Strategy

One design objective of USF is to fully utilize available computing resources.

To achieve this, All samplers in USF are run in parallel and their function evaluations

are distributed to computing resources based on their allocation. As mentioned

before, some search technique, especially local search methods, such as, hillclimbing,

may not be able to fully use its allocated resources. For these techniques, a certain

parallel optimization strategy has to be used for full resource utilization. Many

parallel optimization algorithms has been proposed[92, 93]. The parallel strategies

used in these algorithm can be classified into the following three categories:

Problem partition divides the parameter space of the original problem into many

small areas and performs optimization on each of these sub-spaces in parallel.

The disadvantage of this strategy is that since each area is allocated with equal

shares of computing resources, it may waste resources on many trivial areas

which is very unlikely to have the global optimum.

Multi-path is a method used to parallelize multi-start local search methods. Basi-

cally, this strategy just performs multiple local searches with different starting

points in parallel.

Algorithm parallelization is to parallelize a sequential algorithm by careful chang-

ing its design. This method is specific to a certain search technique and hence

78

is not generally applicable to other techniques. Furthermore, its parallelity is

normally constrained by the inherent limit of the algorithm and not scalable

with available computing resources.

In USF, two mechanisms have been used to achieve the complete resource

utilization. One is the “borrowing mechanism” described in the previous section,

i.e., when one sampler cannot use up its allocation, the surplus can be temporarily

used by other samplers. For example, one simple method to take advantage of

all computing resources is to include random sampling with a very low resource

allocation, which will use up the resources left by other samplers. In addition, USF

use multi-path method described as above to automatically increase parallelity of

search techniques. In USF, resource manager keeps track of the demand and supply

of computing resources. When resource manager finds that the demand of a sampler

is always less than its allocation, i.e., its experiment queue is always empty, it will

increase the number of this type of samplers and run these samplers in parallel to

use up its allocation. Note that in USF, the number of “multi-path” is decided by

available computing resources instead of a predefined level in traditional multi-path

methods.

6.2 Test Results

In this section, we use benchmark tests to demonstrate the flexibility of USF

in handling various situations. Each test is repeated for 50 times and the average is

taken as the final result.

6.2.1 Effect of Memory Types

One of the main advantage of USF is that it provides various building blocks

and can be easily used to built an optimization algorithm by combining appropriate

building blocks. Furthermore, the coordination of these samplers can be achieved

with various types of memories. The tests in this section will demonstrate that using

appropriate types of memory can greatly improve the optimization performance.

Memory is used in USF to store previous samples and couple samplers together.

79

Various memories can be used for different problems. The tests in this section have

examined two types of memory used:

• Drop-head, which drops the oldest samples when its capacity is reached.

• Drop-worst, which drops the worst samples when its capacity is reached.

Two samplers are used in the tests: random sampling and pattern search and they

are coupled together with a certain memory just like the example shown in Fig-

ure 6.2. The optimization algorithms obtained with the above memories are tested

on a benchmark function, i.e., 20-dimensional Rastrigin function. The convergence

curves of two memory types are shown in Figure 6.5. We can see that by using

drop-worst memory, the optimization efficiency can be improved substantially.

400

450

500

550

0 1000 2000 3000 4000 5000

O
pt

im
iz

at
io

n
re

su
lt

Number of function evalutions

Effect of Memory on Optimization Efficiency

DropHead memory
DropWorst memory

Figure 6.5: Effect of memory on optimization efficiency

6.2.2 Effect of Resource Allocation Strategy

In addition to memory, USF also provide a flexible resource allocation mech-

anism to adjust the coordination of samplers. In this section, we will examine the

effect of resource allocation strategy on the optimization efficiency. We still use the

same two samplers as before: random sampling and pattern search, however, we

vary the resource allocation between these two samplers in the tests. The results

are shown in Figure 6.6. The horizontal axis indicate the resource allocation of ran-

dom sampling. Given the allocation of random sampling, pattern search will take

all the remaining resources with multi-path strategy described before. For example,

80

if random sampling gets 20% resources, pattern search then gets 80%. The vertical

axis indicates the optimization result after 5000 function evaluations. As we can

see from the figure, the optimization efficiency varies greatly with the resource al-

locations for the samplers. At one extreme, allocating all computing resources to

random sampling is equivalent to a pure random sampling algorithm. At the other

extreme, allocation most of resources to pattern search is equivalent to a simple

multi-start pattern search algorithm. Neither case can produce good efficiency in

the test. The best balance between two samplers is achieved at a point between two

extreme case. As shown in the figure, allocating 60% resources to random sampling

produces the best efficiency.

380

390

400

410

420

430

440

450

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
pt

im
iz

at
io

n
re

su
lt

Resource allocation of random sampling

Effect of Resource Allocation on Optimization Efficiency

Figure 6.6: Effect of resource allocation on optimization efficiency

6.2.3 Scalability of Parallel Optimization

One important design objective of USF is to fully utilize available computing

resources. In this section, we examine if the optimization efficiency can be improved

by making full use of computing resources. In the tests, we use the algorithm

described in Figure 6.2 with a network of workstations to optimize 20-dimensional

Rastrigin function. We vary the number of workstations in the tests and compare

the optimization performance of USF with different number of workstations. To

simulate the situation where function evaluations are expensive, we did not code the

benchmark function directly into the optimization algorithm. Instead we used a slow

script language to evaluate the benchmark function. The left plot in Figure 6.7 shows

81

the optimization results as a function of elapsed time for 1, 2, 4 and 8 workstations.

We can see with increasing computing resources, the optimization performance is

improved accordingly. If we specify a function value as the optimization objective,

for example, 480 in the left plot, we can see that the optimization time required to

achieve this objective is approximately reduced proportionally with the number of

workstations as shown in the right plot. That is, the linear speed-up may be achieved

with the USF parallel optimization mechanism. Note that the speed-up is dependent

on the underlying problem and the selected search techniques. Although the linear

speed-up may not be alway be obtained, the advantage of resource management

mechanism in USF is its scalability, i.e., it can always take full advantage of available

computing resource to improve the optimization efficiency.

400

450

500

550

600

650

700

750

800

0 20 40 60 80 100 120 140 160 180

O
pt

im
iz

at
io

n
re

su
lt

Time(in second)

Paralle Optimization in USF

1 workstation
2 workstations
4 workstations
8 workstations

0

40

80

120

160

200

1 2 4 8

O
pt

im
iz

at
io

n
tim

e
co

ns
um

pt
io

n(
in

 s
ec

on
ds

)

Number of workstations(log)

Scalablity of Parallel Optimization of USF

Figure 6.7: Scalability of parallel optimization in USF

82

6.3 Conclusion

The Unified Search Framework provides a flexible platform to construct op-

timization algorithms for various practical optimization problems. To achieve the

best efficiency, appropriate search techniques should be first chosen. In addition,

the coordination among these techniques should also be carefully adjusted. This

can be achieved in USF by adjusting resource allocation of these techniques and

selecting memory types coupling these techniques. To make the correct selection

and adjustment, the features of the problem have to be carefully examined. Cur-

rently, this step has to be performed manually based on the practitioner’s experience

or trial and error. The USF made some attempts to establish the correspondence

between search techniques and their suitable structural properties. However, more

work has to be done to automate this process. Essentially, in addition to establish-

ing the correspondence between search techniques and suitable structures, we have

to know how to identify these structures and how they affect the coordination of

search techniques.

CHAPTER 7

Application to Network Optimization

With the capabilities provided by the on-line simulation scheme, any network pro-

tocol can be optimized to varying network scenarios. However, Formulating the

tuning of the concerned network protocol as an optimization problem often is not

a straightforward task. Since network performance is measured by many metrics,

such as network utilization, queueing delay and packet loss, it is very important to

design a proper optimization metric which best captures the relationship between

the network protocol and performance metrics. A poor problem formulation may

seriously affect the performance of the on-line tuning scheme. In the following, we

investigate the on-line tuning problems of three important protocols: RED queueing

management, OSPF routing protocol and BGP routing protocol.

7.1 Optimize RED for Network Congestion Control

Congestion control in the current Internet is accomplished by end-to-end con-

gestion avoidance together with queue management mechanism. Traditional Drop-

Tail queue management could not effectively prevent the occurrence of serious con-

gestion and often suffer from long queueing delays. Furthermore, the global syn-

chronization may occur during the period of congestion, i.e., a large number of TCP

connections experience packet drops and hence back off their sending rate at the

same time, resulting in underutilization and large oscillation of queueing delay. Ran-

dom Early Detection (RED) has been proposed [94] to address these problems. The

basic idea of RED is to detect the inception of congestion and notify traffic sources

early to avoid serious congestion. It has been demonstrated to be able to avoid

global synchronization problem, maintain low average queueing delay and provide

better utilization than DropTail[94]. Therefore, IETF has recommended RED as the

single active queue management for wide deployment in the Internet[95]. However,

the setting of RED parameters has proved to be highly sensitive to network scenarios

and the performance of misconfigured RED may suffer significantly [96, 97, 98]. In

83

84

addition, since network is a dynamic system, RED needs constant tuning to adapt

to current network conditions. In view of this, it has been debated whether or not

RED can achieve its claimed advantages[98, 99, 100].

Currently the interaction between RED and TCP is not yet clearly understood.

Based on simplified models, some general guidelines for setting RED parameters

have been proposed[94, 97, 101]. Intuitive modifications on RED have also been

proposed to automate the tuning of RED under varying network conditions by

adjusting one of the parameters[96, 102]. However, the effectiveness of these methods

in complex network scenarios is still under investigation. Rather than relying on

simplified models or intuition, we will attempt to use the on-line simulation scheme

to perform the dynamical tuning of RED.

7.1.1 Formulation of RED Optimization Problem

7.1.1.1 Parameter Sensitivity of RED

RED uses the average queue size q̄ as an indicator of the congestion extent

and determines the packet drop rate accordingly. Fig 7.1 illustrates the working

mechanism of RED. As shown in the figure, the instantaneous queue size q is sampled

P=f(q)

Bottleneck

Control Function

q

Low Pass Filter

r u

q
P

TCP sources

Figure 7.1: RED working mechanism

at every packet arrival and then passed through a low-pass filter to remove transient

noises. Based on the smoothed average queue size q̄, the drop probability P is

calculated with a control function P = f(q̄). The arrived packets are randomly

dropped (or marked) according to this probability P . Traffic sources react to these

drops and adjust offered load r accordingly. Therefore, RED is mainly designed to

work with TCP traffic sources which are responsive to packet drops and it will not

85

work well in the cases like UDP traffic or short-life HTTP traffic.

A queue will build up and keep increasing if the offered load is larger than the

bottleneck capacity; therefore, the objective of a queue management is to stabilize

the offered load around the bottleneck capacity. Basically, TCP sources increase

their sending rate every round trip time; on the other hand, the packet drops cause

TCP sources to lower their sending rates. In the equilibrium status, the increase

rate of TCP traffic should be approximately equal to its decrease rate caused by

packet drops and thus the offered load will stabilize around a certain level. If

this equilibrium status is achieved while maintaining a certain queue size, the link

utilization will be close to 1, i.e., the offered load will stabilize around the bottleneck

capacity. The rationale of RED is to search for an appropriate packet drop rate by

varying the average queue size to counteract the increase of offered load.

There are four parameters in RED. Among them, the moving average weight

wq determines the cut-off frequency of the low-pass filter, and the other three pa-

rameters, i.e., minimum threshold minth, maximum threshold maxth and maximum

drop probability maxp, determine the control function P = f(q̄). In the standard

version of RED, the control function is determined by the parameters as illustrated

in Fig 7.2. With this function, the drop probability can be calculated according to

p

qAverage Queue Size
min

1

max

D
ro

p
Pr

ob
ab

ili
ty

P

th 2maxthth

max

Figure 7.2: RED control function P = f(q̄)

the average queue size. The equilibrium drop probability depends on two factors,

the offered load increase rate and the granularity of congestion notification, i.e., the

load decrement caused by one packet drop. With TCP fast recovery and fast re-

transmission mechanism, each drop will cause a TCP source to decrease its sending

rate by half. Therefore, the granularity of the congestion notification is determined

86

by the average TCP sending rate. When the average sending rate is large, for ex-

ample, a small number of TCPs share a bottleneck, each packet drop will cause a

large decrease in offered load, and vice versa. In different scenarios, the increase rate

of offered load is also different. For example, the increase rate will be large when

there are many TCP flows or the round trip time is short. As a result, the drop

probability should be adjusted according to network scenarios to maintain a stable

equilibrium point. If the control function remains unchanged, the average queue

size has to be varied to obtain the new equilibrium drop probability. Therefore,

to keep the average queue size stable around a certain level in varying conditions,

the control function has to be adjusted accordingly, i.e., the three parameter which

determines f(q̄) should be dynamically tuned.

wq controls the cut-off frequency of the low-pass filter. The cut-off frequency

should be high enough to detect manageable traffic variations, while low enough

to filter out transient traffic oscillations which can not be effectively controlled by

RED. For example, the oscillation within one round trip time rtt should be removed.

Therefore, the optimal wq is usually related to rtt. In addition, since the average

queue size is calculated at every packet arrival instead of a constant interval, different

link speeds will result in different packet arrival intervals and hence affect the cut-off

frequency of the low-pass filter. Consequently, the optimal wq is also dependent on

the link speed.

7.1.1.2 Optimization Objective

For a queue management mechanism, there are basically two performance met-

rics, i.e., link utilization and average queue size. The main objective of RED is to

maintain a high utilization while keeping a low average queue size[94]. However, op-

timizing one of the performance metrics may compromise the other. For example, a

high link utilization can always be obtained by increasing minth or decreasing maxp,

hence virtually increasing the average queue size. On the other hand, a low average

queue size can be obtained by decreasing maxth or increasing maxp. However, this

obviously will cause underutilization of the link. Therefore, an appropriate tradeoff

has to be made to reflect the requirement of network operators. This is essentially a

87

multi-objective optimization problem and corresponding techniques should be em-

ployed to convert it into a tractable single objective problem.

One classic multi-objective optimization technique is to optimize the weighted

average of the performance metrics. The weights for different metrics reflect the

quantitative tradeoff among them and are essential to the effectiveness of optimiza-

tion results. However, the weights are normally difficult to determine. Another

common technique is to define the lower limits for less significant metrics, and only

optimize the most important one with the restriction that the other metrics are not

below their limits. Instead of using traditional multi-objective optimization tech-

niques to directly work on link utilization and queueing delay, we have proposed a

performance metric whose optimization will cause RED to settle in a equilibrium

status and hence achieve high utilization and low queueing delay.

As mentioned above, in the equilibrium status, the average queue size of RED

stabilizes around a certain level. When traffic pattern changes, the equilibrium

point may also shift which makes the average queue size move around. This is an

undesired behavior since end users normally expect a predictable delay and constant

changes in delay are unacceptable for delay-sensitive applications. Furthermore,

when the average queue size drifts beyond the control of RED, RED will become

unstable, i.e., the queue status oscillates between full and empty[96, 97]. This not

only causes end users to experience significant delay jitters, but also results in link

underutilization. Therefore, it is important to keep the average queue size of RED

stable at a target level, such as the middle between minth and maxth as proposed

in[102]. In consideration of this, we define the performance metric to be optimized

as:

m =

∑N
i=1(q̄i − q0)

2

N
(7.1)

where q0 is the expected average queue size predefined by network operators, q̄i

is the periodic sample of the average queue size and N is the number of samples.

This metric essentially calculates the variance of the average queue size relative to

q0 over a certain period of time. When the equilibrium level of RED is far from

the expected level, m will be large. Or when RED is misconfigured and hence the

equilibrium cannot be reached, the queue size will oscillate greatly, also resulting in

88

a large m. Therefore, minimizing m will cause RED to avoid both situations and

always maintain an equilibrium around q0. Thus, high link utilization and stable

queueing delay can both be achieved.

Based on the above analysis, the optimization of RED can be formulated

as: given a parameter space D specifying the ranges of parameters, minimize the

following objective function

m = f(wq,minth,maxth,maxp) (7.2)

where, m is the performance metric to be optimized, i.e., the variance of RED queue

size relative to the expected level, f(·) is a scalar function mapping a set of RED

parameters to the performance metric. This function is determined by the specific

network scenario and is analytically unknown, which is the basic feature of black-

box optimization. For a certain RED parameter setting, the value of m can be

empirically evaluated with network simulation based on Equation (7.1).

7.1.2 Simulation Results

7.1.2.1 Simulation for Optimization of Single RED

This section presents simulations of the proposed on-line tuning approach,

which deal with varying traffic load and round trip time, two major factors affecting

RED performance.

The network topology used in the simulations is shown in Fig 7.3. We used

r1
10Mbps, 10ms

TCP sources TCP sinks

45Mbps,2ms
RED

...
...

...
...

45Mbps,2ms

r2

Figure 7.3: Network topology for simulation

ns[3] as the simulation tool. Infinite FTP traffic between TCP sources and sinks is

generated to build up a queue at router r1. RED is configured on r1 to manage a

100-packet buffer. Each simulation runs for 40 seconds and network conditions are

89

changed twice during the simulation. We will compare the performance of standard

RED and RED controlled with the on-line simulation framework under changing

network conditions.

We define an expected average queue size of 30 packets and the objective is to

maintain the equilibrium status of RED around this level. According to the common

guideline of RED parameter setting, we use minth = 15,maxth = 45,maxp =

0.1, wq = 0.002 for standard RED. We also assume that the on-line simulation system

can promptly detect the change in network conditions and trigger the optimization

process of RED parameters. In reality, this can be achieved by monitoring the

change in performance metrics or analyzing traffic statistics directly.

First we test the tuning of RED to varying traffic load. The number of TCP

flows in the simulation starts with 16, then increases to 64 after around 13 seconds,

and finally decreases to 4 after another 13 seconds. The instantaneous queue sizes of

standard RED and RED with on-line simulation control are shown in Fig 7.4. The

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40Q
u

e
u

e
 S

iz
e

 (
in

 p
a

c
k
e

ts
)

Time (in seconds)

RED Controled with On-line Simulation

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40Q
u

e
u

e
 S

iz
e

 (
in

 p
a

c
k
e

ts
)

Time (in seconds)

Standard RED

Figure 7.4: Comparison of standard RED (upper graph) and RED con-
trolled by on-line simulation (lower graph) under varying traf-
fic load

upper graph shows that for the standard RED, when the traffic load increases beyond

the control of current RED parameter setting, the equilibrium status may not be

broken and the queue remains in a very unstable status where large oscillations

between full and empty queue persist. On the other hand, when the traffic load

decreases to a certain level, the queue frequently becomes empty and this causes the

90

underutilization of the link capacity. The lower graph shows that when dynamically

tuned, RED always maintains an equilibrium status where the queue size remains

very stable and the utilization is close to 100%.

Then we test the tuning of RED to varying round trip time. The simulation

starts with 16 TCP flows and each with a round trip time of 18ms (not including

queueing delay). After 13 seconds, the rtt of these flows is increased to 170ms.

And after another 13 seconds, the rtt is reduced to around 2ms. The instantaneous

queue sizes of standard RED and RED with on-line simulation control are shown in

Fig 7.5. The upper graph shows that when rtt is increased to 170ms, the equilibrium

0
10
20
30
40
50
60

0 5 10 15 20 25 30 35 40Q
u

e
u

e
 S

iz
e

 (
in

 p
a

ck
e

ts
)

Time (in seconds)

RED Controled with On-line Simulation

0
10
20
30
40
50
60
70

0 5 10 15 20 25 30 35 40Q
u

e
u

e
 S

iz
e

 (
in

 p
a

ck
e

ts
)

Time (in seconds)

Standard RED

Figure 7.5: Comparison of standard RED (upper graph) and RED con-
trolled by on-line simulation (lower graph) under varying
round trip time

of standard RED queue is again broken and the queue keep oscillating between full

and empty status. And when rtt is reduced to 2ms, although the queue does reach

an equilibrium status, there still exist big variations in queue size. As shown in the

lower graph, the dynamically tuned RED eliminated these problems.

7.1.2.2 Real Network Experiment for Optimization of Multiple RED

Queues

The effectiveness of our approach is also tested with experiments in real net-

work situations. This section presents one such experiment. A Linux-based testbed

shown in Fig 7.6 is used and ns is adopted for network simulation in the on-line

simulation system. There are 4 Linux routers in the network and each of them

91

10M

10M

r1

r3

r2

RED

RED

10M 100M
r4

RED

100M

100M

TCP sources

TCP sinks

TCP sources

RED

..
.

..
.

..
.

..
.

..
.

..
.

Figure 7.6: Linux-based testbed topology with multiple RED queues

is configured with a RED queue which is monitored and controlled by the on-line

simulation system through SNMP. Again, infinite FTP sources are used to generate

network traffic. Note that in this test we will try to tune the parameters for all

four RED concurrently. Since optimizing each RED individually may compromise

the performance of the others, we have taken all RED queues as a single black-box

system with a total of 16 parameters. Consequently, a global performance metric

has to be defined based on the objective of network operators. If using ISP-based

metrics, such as utilization and queueing delay, a certain multi-objective technique

has to be employed to combine the metrics from every RED router. Instead, we

have selected an end user performance metric, i.e., the coefficient of variation (σ
µ
)

of goodputs for TCP connections, which measures the variability of TCP goodputs.

This choice is somewhat arbitrary, only to demonstrate the effectiveness of our ap-

proach. In addition, choosing such a metric is also to demonstrate the flexibility of

the approach, i.e., rather than being restricted to a few metrics like utilization and

delay, RED can be tuned according to any performance metric defined by network

operators though the mechanism of how RED affects this performance metric may

be completely unknown.

During the experiment, a number of TCP flows are generated from one side

to the other. The goodputs of these TCP flows are collected periodically from TCP

sinks. The Coefficient of Variation(COV) of the goodputs is calculated and plotted

as a function of time as shown in Fig 7.7. In the beginning, the parameters of these

RED queues are set to random values to represent a misconfigured system, which

results in a large unfairness between TCP flows, i.e., a high average COV value

and large oscillations. At 325 second, the on-line simulator starts and detects the

92

misconfiguration of REDs. Soon the good configuration with a performance better

than a predefined threshold is found and the network is reconfigured. This results in

an immediate performance improvement as shown in the plot: the average of COV

drops to a very low value and the instantaneous COV curve becomes stable over

time.

On−line simulator start

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700

co
ef

fi
ci

en
t

o
f

v
ar

ia
ti

o
n

time(in seconds)

cov of goodput
average

Figure 7.7: Tuning multiple RED queues for optimizing coefficient of vari-
ation of goodputs

7.1.3 Conclusion

Simulation results have demonstrated that when managed by the proposed

approach, RED can effectively control congestion under varying network conditions

and achieve its design objective. In addition to the on-line tuning, optimization tech-

niques can also be used for the study of network protocols. The obtained empirical

knowledge can help with better understanding of network protocols. For example,

we can optimize RED for different network scenarios and obtain the correlations

between RED parameters and network conditions, such as the correlation between

wq and round trip time.

7.2 Optimize OSPF for Traffic Engineering

In this section, we address the problem of traffic engineering in a network of

OSPF routers. Traffic engineering is defined as the task of mapping traffic flows

onto an existing physical topology to meet the objectives of network operators.

In current Internet, IP traffic is mapped onto the network by standard routing

protocols, such as, Open Shortest Path First (OSPF) for intra-domain traffic and

Border Gateway Protocol (BGP) for inter-domain traffic. When routing the traffic,

93

the routing algorithms used in these protocols normally select the shortest path

without taking into account the traffic conditions and Quality of Service (QoS)

constraints. These routing protocols are often called topology-driven. The routing

generated by such algorithms tends to result in a highly uneven mapping of traffic.

Some links may get very congested while the others may be consistently under-

utilized. This phenomenon has been confirmed by many traffic measurements[103,

104] where a large variation in link utilization is observed across the network. Traffic

Engineering (TE) tries to eliminate this situation by adapting the network routing

according to the prevailing traffic conditions.

Two main approaches have been taken to solve the traffic engineering problem

in the Internet. One approach is to deploy the emerging MPLS technology which

is not constrained by the shortest path nature of routing. Constraint-based routing

can be used to compute routes in an MPLS network subject to QoS and policy

constraints. Another approach is to adjust the link weights of the existing network

(running OSPF) such that the OSPF routing with these link weights leads to desired

routes [28].

The main issue with using existing OSPF routing for traffic engineering is its

shortest path nature. OSPF routes traffic on shortest paths based on the advertised

link weights. As a result, the link along the shortest path between the two nodes

may become congested while the links on longer paths may remain idle. OSPF also

allows for Equal Cost Multi Path(ECMP) where the traffic is distributed equally

among various next hops of the equal cost paths between a source and a destination

[105]. This is useful in distributing the load to several shortest paths. However,

the splitting of load by ECMP is not optimal as shown in [106]. Various methods

have been proposed in literature to balance the traffic across the network in OSPF

routing framework. One of the earlier approaches was to adapt link weights to

reflect the local traffic conditions on a link or to avoid congestion ([107, 108, 109]).

This is called adaptive routing or traffic-sensitive routing. However, adapting link

weights to local traffic conditions leads to frequent route changes and is unstable (see

[110, 111] for stability analysis). Additionally, adaptive routing is based on the local

information and therefore cannot optimize traffic allocation from the viewpoint of

94

the overall network. These drawbacks are alleviated in [28] where the traffic demand

of the network is used to estimate the offered load for each link and then a local

search heuristic is deployed to find “good” OSPF link weight settings which optimize

the traffic load allocation across the network.

Basically, authors in [28] have modeled the optimum setting of OSPF weights

as a global optimization problem. They have chosen a heuristic cost function which

is piecewise linear with offered load. By using such a cost function, they can model

the optimal general routing as a linear programming problem and solve for the

exact solution. Here the optimal general routing represents routing where there is

no limitation on the way a flow is split among multiple paths available between a

source and destination. The optimal general routing is the best that can be achieved

by carefully setting up multiple Label Switched Paths (LSPs) in MPLS. Authors

in [28] have shown that for the proposed AT&T WorldNet backbone, OSPF with

optimized link weights can yield a routing with a performance within few percent of

the optimal general routing and even for the randomly generated network topologies,

50%-110% more demand can be supported than link weight setting based on some

standard heuristic.

In this work, we will apply the on-line simulation scheme to the optimization

of OSPF link weights. We have chosen the total packet drop rate in the network

as the optimization metric since it is a more accurate to indicate the congestion in

the network than the heuristic metric in [28] and it also has great impacts on the

performance of some underlying protocols, such as TCP. The packet drop rate for

one set of link weights can be estimated using packet-level or flow level simulation.

However, in this work, we use an analytic approach to calculate the packet drop

rate by using a GI/M/1/K queuing model. This is considerably faster than the

simulation approach.

7.2.1 The Objective Function

Our goal is to minimize the packet drop rate in the network for a given mean

and variance of the aggregate demands between each source and destination routers.

Let us consider a network represented by a directed graph G=(N ,L), where N and

95

L represent respectively the set of routers and links in the network. Each link l ∈ L
has bandwidth denoted by Bl and a buffer space of Kl packets. We assume that

packets arriving when the buffer space at a link is full are dropped and there is no

other active queue management algorithm running at the routers. In addition to the

knowledge of bandwidth and buffers at all the links, we assume that an estimate of

the mean and variance of the aggregate demand from each source s to destination t

is known. Let D, V denote the mean and variance matrix of the estimated aggregate

demand. In practice, all such information can be obtained using the tools described

in [112, 113].

In the following, we will first show how to derive the drop probability for one

link based on the offered load. Then we will formulate the optimal general routing

problem which aims to optimize the overall packet drop rate for the network. Note

that the OSPF optimization problem is just the optimal general routing subject to

the shortest path constraint.

7.2.1.1 Link Drop Probability

Let P denote the packet drop probability on a link, λ, σ2 denote the mean,

variance of the offered load to this link in packets per second, and B, K denote its

bandwidth and buffer space respectively. In order to find a closed-form expression

for the packet drop probability P , let us assume an exponentially distributed packet

size with mean X̄. However, we consider a general arrival process. We compute

the packet drop probability at the link using a GI/M/1/K queuing model. The

drop probability of a finite GI/M/1/K has been approximated by an infinite buffer

GI/M/1 queue [114] using the following equation.

P (NK = K) =
P (N∞ = K)

P (N∞ ≤ K)
(7.3)

NK denotes the number of packets in the finite buffered queue, whereas, N∞ de-

notes number of packets in the infinite buffer GI/M/1 queue. The queue length

distribution of GI/M/1 queue is given by [115]:

P (N∞ = j) = Aωj−1 (j ≥ 0) (7.4)

96

where A is the normalization constant and ω is a constant depending on the arrival

process and service rate. ω can be obtained by solving the following equation:

ω = γ ((1− ω)µ) (7.5)

where γ(s) is the Laplace transform of the arrival process and µ is the service rate

which is given by B
X̄

. In order to solve (7.5) for ω, we need to assume a inter-arrival

time distribution for the arrival process. Let us consider the Generalized Exponential

(GE) distribution for modeling the arrival process to first two moments. We discuss

below the reason for choice of GE distribution.

The pdf of GE distribution is given by

g(x) = (1− p)δ(x) + pae−ax (7.6)

where δ(x) is the delta function, p and a two constant parameters. As can be

seen from (7.6), a GE process is characterized by two parameters, p and a. GE

distribution is a special case of H2 distribution and can be used to model general

inter-arrival processes that are more bursty than Poisson process. For a Poisson

process the variance is equal to the square of mean. Hence, GE distribution may

be used to model the first two moments of processes with variance greater than the

square of mean. If the arrival process is represented by a GE distribution, then, with

probability p the inter-arrival time is exponentially distributed with mean a and with

probability 1 − p, the inter-arrival time is zero. Hence, this distribution represents

a batch arrival process with geometrically distributed batch size and exponentially

distributed inter-batch arrival times. For a link with λ, σ as its mean and variance

of the offered load, we can have the parameters of the GE distribution representing

the arrival process:

p =
2λ2

σ2 + λ2
and a = pλ (7.7)

The merging of N independent GE(pi,ai) processes is a bulk-arrival Poisson process

with mean arrival rate a equal to
∑N

i=1 ai and p equal to a/
∑

ai

pi
. Similarly, splitting

of a GE(p,a) process into N streams according to a Bernoulli filter r1, r2, ...rN , the

97

parameters of the ith process are

pi =
p

p(1− ri) + ri

and ai = ria. (7.8)

Reader may refer to [116], Section 1.4 for more details.

The packet arrival process of a single TCP flow is bursty in nature with a

“bulk” of packets arriving every round-trip time. The model that we have considered

implies that we have “bulk” arrivals (in form of bursts of packets from competing

TCP sources) of varying sizes arriving into a queue. Our model does not capture

the feedback effect of packet drops on TCP flows because we have considered the

aggregate traffic arriving at an OSPF router as our demand estimate.

Taking the Laplace transform of (7.6), we get,

G(s) = 1− p +
pa

s + a
(7.9)

Then substitute it into (7.5) and solve it for ω for the GE arrival process gives

ω = ρ + (1− p) (7.10)

where,

ρ =
a

µ
=

aX̄

B
. (7.11)

Finally, using (7.3), (7.4), (7.5) and (7.9), we get the packet drop probability

P =
(p− ρ)(ρ + 1− p)K

1− (ρ + 1− p)K+1
(7.12)

In summary, (7.12) represents the closed form expression of packet drop probability,

P , on a single link as a function of mean, variance λ, σ2 of the arrival process, mean

packet size X̄, link bandwidth B and buffer space K. Figure 7.8 shows the drop

probability as a function of the offered load for difference values of variance of the

inter-arrival time for a buffer size of 20 packets. As expected, higher drop probability

is observed when the arrival process has a high variance, i.e., when the incoming

traffic is more bursty.

98

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ob

ab
ilit

y
of

 P
ac

ke
t D

ro
p

Offered Load (Normalized to Bandwidth/Packet Size(in bits))

M/M/1/K Queue
Variance = 0
Variance = 4
Variance = 8

Figure 7.8: Packet drop probability as a function of offered load for a
GE/M/1/20 queue for different values of variance

7.2.1.2 The Optimal General Routing

Using link packet drop probabilities obtained from (7.12), we can formulate

the optimal general routing problem as:

Φ =
∑

l∈L
λlPl (7.13)

where λl is the arrival rate for link l and Pl is its drop rate calculated by (7.12).

This is a constrained optimization problem with the flow constraints at each router

j for each demand D(s, t) between source s and destination t. If f
(s,t)
l denotes the

fraction of the demand D(s, t) on link l, then the flow balance constraints are given

by

∑

i:(i,j)∈L
f

(s,t)
(i,j) −

∑

i:(j,i)∈L
f

(s,t)
(j,i) =

−D(s, t) if j = s

D(s, t) if j = t

0 Otherwise

(7.14)

The mean packet arrival rate to a link l, λl, is given by

λl =
∑

(s,t)∈N×N
f

(s,t)
l (7.15)

The parameter p(s,t) for the GE process used to fit the demand D(s, t) is given

according to (7.7):

p(s,t) =
2D(s, t)2

D(s, t)2 + V(s, t)
(7.16)

99

Let r
(s,t)
l denote the probability with which the demand D(s, t) is sent on link l.

Then r
(s,t)
l is given by

r
(s,t)
l =

f
(s,t)
l

D(s, t)
(7.17)

Let p
(s,t)
l denote the parameter p of the GE process after splitting the demand

D(s, t) with probability r
(s,t)
l . Then p

(s,t)
l denotes the parameter p of the GE process

representing the flow f
(s,t)
l . The parameter p

(s,t)
l is given according to (7.8):

p
(s,t)
l =

p(s,t)

p(s,t)(1− r
(s,t)
l) + r

(s,t)
l

(7.18)

The total offered load on link l is given by λl (7.15), the parameter p of the associated

GE distribution may be obtained by merging the flows f
(s,t)
l going through l. If pl

denotes the parameter p of the GE process associated with the aggregate traffic on

link l, then pl is given by

pl = λl(
∑

(s,t)∈N×N
f

(s,t)
l p

(s,t)
l)−1 (7.19)

If ρl is equal to λlplX̄
Bl

, then, using (7.12), the probability of packet dropped at link

l is given by

Pl =
(pl − ρl)(ρl + 1− pl)

Kl

1− (ρl + 1− pl)Kl+1
(7.20)

The optimal general routing problem is given by (7.13), subject to the con-

straints given by (7.15), (7.16), (7.17), (7.18), (7.19), (7.20). It may be noted that

we are casting the traffic according to the routing in order to obtain the mean and

variance of the total offered traffic to each l ∈ L. However, we are not iterating to

obtain the equilibrium traffic parameters. Essentially, we are using the upper bound

on the packet drop probability in (7.13).

7.2.2 Optimization of OSPF Weights Using On-line Simulation

The general optimal routing problem, where the objective function is com-

pletely defined by (7.13)-(7.20), may possibly be solved for f
(s,t)
l ∀l ∈ L by using some

non-linear programming techniques. However, under constraints of OSPF routing,

100

the relation between the link weights and optimization metric can no longer be

analytically defined. Hence, the optimal routing in OSPF becomes a “black box”

optimization problem which may be defined as:

min Φ(w) (7.21)

where w is the vector of network link weights and Φ(·) the objective function, which

is unknown. Basically, in order to obtain the value of Φ for a given OSPF weight

setting, we run modified Floyd Warshall’s algorithm (modified to obtain equal cost

paths also) to obtain the routing. Then the traffic is cast to obtain parameters

of the aggregate packet arrival process and drop probability for every link l ∈ L
using (7.15), (7.16), (7.17), (7.18), (7.19) and (7.20). Finally the value of Φ may

be calculated by (7.13). In [106], authors have proved that it is NP-hard to find

OSPF link weight settings for an optimization metric piecewise linear in offered

load. It is straightforward to show, by proceeding along the same lines, that our

problem, i.e., minimize the packet drop rate given by (7.13) is also NP-hard. For

such NP-hard problems, heuristic optimization algorithms are usually used to search

for approximate solution. In this work, the on-line simulation scheme is used to

dynamically optimize OSPF link weights.

7.2.3 Simulation Results

In this section we present two sets of simulation results. One is to demonstrate

that the Recursive Random Search obtains better OSPF link weight settings with

fewer function evaluations than the algorithm proposed in [28]. Another set of

results demonstrate the improvement in end-to-end performance (in terms of the

drop rate) by dynamic optimization of OSPF weights.

We have considered three network topologies, shown in Figure 7.9, to demon-

strate our results. Two are well-known ARPANET topology and MCI topology. We

couldn’t include AT&T topology used in [28] since it is not publicly available. The

ARPANET topology consists of 48 routers and 140 simplex links Each link in the

network is assumed to consist of two simplex link whose weights may be set inde-

pendently. MCI topology consists of 19 routers and 62 simplex links. We have also

101

considered a randomly generated topology with 22 routers and 60 simplex links.

34

33

32

31

30

29

28

27

9

26

8

25

7

24

6

23

5

22

4

21

3

20

19

2

18

1

17

0

16

15

14

13

12

11

10

47

46

45 44

43

42

41

40

39

38

37

36

35

16

15

14

13

12

11

10

9

8

7

6
5

4

3
2

1

18

0

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

21

2

19

20

1

18

0

17

(a) ARPANET Topology (b) MCI Topology (c) Randomly Generated Topology

Figure 7.9: Figure showing the network topologies used in simulation

Random amount of traffic was sent from every node to every other node in the

network. This random traffic was generated using the method outlined in [28]. For

each node u, two random numbers are generated Ou, Du ∈ [0, 1]. For each pair of

nodes (u, v) another random number C(u,v) ∈ [0, 1] was generated. If ∆ denotes the

largest Eucledian distance between any pair of nodes and if α denotes a constant,

the average demand between u and v is given by

D(u, v) = αOuDvC(u,v)e
−δ(u,v)

2∆

where, δ(u, v) denotes the Eucledian distance between the nodes u and v. This

method of generating random traffic (the term e
−δ(u,v)

2∆) ensures more traffic for source

destination pairs that are closer to each other. Since a product of three random

variables is taken to generate the demands, there is actually a large variation in the

traffic demands. The ratio of square of mean to the variance was assumed to be a

uniformly distributed random variable in [0, 1]. The mean and variance of the traffic

demands are generated using the above procedure. All the links in the network have

1Mbps bandwidth with a buffer size of 50 packets. The packet size was chosen to

be exponentially distributed with mean packet size of 200 bytes.

In the simulation results, we do not verify the traffic modeling assumptions

as this is not a focus of this work. The performance results shown in 7.2.3.1 are

the average results from ten simulation runs. Average of multiple simulation runs

is presented as we compare the performance of two stochastic search algorithms.

102

7.2.3.1 Comparison of Search Schemes

In this section, we present the results of comparison of Recursive Random

Search with the local search scheme proposed in [28]. In optimization literatures,

the comparison between algorithms is usually done in terms of the number of func-

tion evaluation instead of the absolute time taken to find a “good” parameter setting.

This is because the computation time is considerably dependent on many other fac-

tors, such as, implementation efficiency, testing platform, etc.. Considering the main

computation time is for function evaluations, the number of function evaluation is a

more appropriate performance metric under the assumption that the computation

time per function evaluation is approximately the same for both schemes. Note this

assumption is not exactly true in the context of our problem, where one function

evaluation represents one optimization metric computation for a specific set of link

weights. In [28], authors have used incremental shortest path computations to im-

prove the speed of search as very few link weights change from one iteration to the

next which is reported to have 15% improvements on an average. In spite of this, we

still use the number of function evaluations as our algorithm performance metric for

the reasons mentioned above and the consideration that our algorithm is designed to

be a general “black-box” search algorithm where no problem-specific is available. It

should be noted that even if taking 15% improvement for the local search scheme of

[106] into consideration, the test results still show that our algorithm is significantly

faster.

Loosely, we refer to the number of function evaluations required to obtain a

“good” parameter setting as the speed of convergence. A “good” parameter setting

has been defined as the OSPF link weight setting that give metric value lower than

that by setting all link weights equal to unity (called unit OSPF). This definition

is just for the purpose of comparison. A “good” parameter setting may have been

defined alternatively as the link weight setting to achieve performance metric equal

to, say, 80% of the unit OSPF.

103

7.2.3.2 Heuristic Piecewise Linear Metric

In order to compare the speed of convergence of our search scheme with the

local search scheme proposed in [28], we use the same metric used in [28], which is

piecewise linear with the link offered load.

Figure 7.10 shows the optimization convergence curves for the ARPANET,

MCI and Randomly generated network topologies respectively. For the sake of

comparison, these graphs also show the optimization metric value when all the links’

weights are set to unity. It can be seen that the recursive random search scheme

outperforms the local search scheme in terms of the number of function evaluations

needed to find a “good” parameter setting for all three network topologies. These

results have been tabulated in Table 7.1.

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900 1000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Number of Function Evaluations

Convergence Curve for ARPANET Network

recursive random search
local search

unit weights OSPF

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900 1000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Number of Function Evaluations

Convergence Curve for MCI Network

recursive random search
local search

unit weights OSPF

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900 1000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
Number of Function Evaluations

Convergence Curve for Randomly Generated Network

recursive random search
local search

unit weights OSPF

(a) (b) (c)

Figure 7.10: Figure showing the convergence curves of piecewise linear
metric for (a) ARPANET (b) MCI (c) Randomly generated
network topology

Scheme ARPANET MCI Random
Local Search 932 433 322

RRS 350 183 9
Improvement 62.4% 57.7% 97.2%

Table 7.1: Table comparing the number of function evaluations needed to
obtain a “good” parameter setting for piecewise linear metric

7.2.3.3 Packet Drop Rate Metric

In this section we present the comparative results for the packet drop metric

defined in (7.20). Figure 7.11 shows the comparison results of the optimization

104

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 100 200 300 400 500 600 700 800 900 1000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Number of Function Evaluations

Convergence Curve for ARPANET Network

recursive random search
local search

unit weights OSPF

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 700 800 900 1000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Number of Function Evaluations

Convergence Curve for MCI Network

recursive random search
local search

unit weights OSPF

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 100 200 300 400 500 600 700 800 900 1000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Number of Function Evaluations

Convergence Curve for Randomly Generated Network

recursive random search
local search

unit weights OSPF

(a) (b) (c)

Figure 7.11: Figure showing the convergence curve of total packet drop
rate for (a) ARPANET (b) MCI (c) Randomly generated
network topology

convergence speed. The results clearly show that the recursive random algorithm

significantly outperforms the local search algorithm. Table 7.2 shows that for the

packet drop rate metric, our recursive random search scheme took 70% or fewer

function evaluations to obtain a “good” OSPF link weight setting.

Scheme ARPANET MCI Random
Local Search 882 469 372

RRS 210 125 54
Improvement 76.1% 73.3% 85.5%

Table 7.2: Table comparing the number of function evaluations needed to
obtain a “good” parameter setting packet drop rate metric

7.2.3.4 Optimizing OSPF for Improving Packet Drop Rate

Now we describe the simulation showing how the network performance can

be improved by our OSPF optimization scheme. Figure 7.12 shows the functional

block diagram of the overall setup of this simulation. The OLS monitors the traffic

to provide the estimates of mean and variance of the traffic demand for performance

evaluation of link weights. Recursive random search is then be used to search for

better link weight setting for the network. When a certain stopping criteria is met,

for example, the time limit is reached, the best-so-far link weight setting found by

RRS may be deployed in the real network if it results in substantial improvement

in the performance.

105

Compute Shortest Paths

Cast Traffic

Fit a Model

Monitor Network Traffic

Recursive Random Search

Network Management Tool

SNMP etc.

Online Simulation
Real Network

Φw

Compute λ, Φ

Figure 7.12: Overall OSPF optimization setup using on-line simulation
architecture

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700 800 900 1000

T
o

ta
l
P

a
c
k
e

t
D

ro
p

 R
a

te
(i
n

 p
a

c
k
e

ts
/s

e
c
o

n
d

)

Time(in seconds)

Simulation Results of ARPANET Network

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500 600 700 800 900 1000

T
o

ta
l
P

a
c
k
e

t
D

ro
p

 R
a

te
(i
n

 p
a

c
k
e

ts
/s

e
c
o

n
d

)

Time(in seconds)

Simulation Results of MCI Network

800

1000

1200

1400

1600

1800

2000

2200

2400

0 100 200 300 400 500 600 700 800 900 1000

T
o

ta
l
P

a
c
k
e

t
D

ro
p

 R
a

te
(i
n

 p
a

c
k
e

ts
/s

e
c
o

n
d

)

Time(in seconds)

Simulation Results of Randomly Generated Network

(a) (b) (c)

Figure 7.13: Figure showing total packet drop rate as a function of time
for the (a) ARPANET (b) MCI (c) Randomly generated
network topology. Traffic pattern was changed at times 0,
200, 400..., the optimized OSPF weights were deployed at
times 100, 300,...

We used ns[3] to simulate the real network running OSPF. The traffic in

the network was generated in the same way as outlined in the beginning of this

section. However, every 200 seconds the traffic pattern (the mean and variance of

demand matrix) was changed in order to create a dynamic scenario. The traffic

generator is implemented over UDP to generate bursty traffic with the GE inter-

arrival distribution described in (7.6). In our simulation, we assume OLS has a

complete knowledge of necessary network information, such as, traffic demands,

network topology, etc.. Whenever a change of traffic pattern happens, the OLS runs

the recursive random search for a certain iterations to obtain a better parameter

setting. If the optimized setting is better than the original, it will be deployed at 100

106

seconds after the traffic change. The 100-seconds time difference is used because we

want to observe the performance difference between before optimization and after

optimization. Note that here we assume the running time of the search algorithm is

faster than the traffic change period, i.e., the search algorithm has finished running

at 100 seconds after the traffic change.

The actual packet drop rates are collected during the simulation for all the

traffic sinks in the network and then summed together to get the total packet drop

rate. Figure 7.13 shows total packet drop rate in the network as a function of

time. Table 7.3 summarizes the maximum improvement in packet drop rates for

different topologies. Note that more or less improvements may result depending on

the topology and traffic conditions.

ARPANET MCI Random
Max. Improvement 31.8% 60.2% 35.7%

Table 7.3: Table summarizing the maximum percentage improvement in
the packet drop rates obtained for different topologies for the
results shown in Figure 7.13

7.2.4 Conclusions

We have investigated the problems associated with the optimization of OSPF

weights using on-line simulation framework. The optimization problem was formu-

lated where total packet drop rate was chosen as the optimization criteria. The

simulation results demonstrate that our search algorithm took 50-90% fewer func-

tion evaluations to find a good OSPF weights “setting” as compared to the local

search algorithm of [28]. The simulation results of our OSPF optimization scheme

also demonstrate improvements of the order of 30-60% in the total drop rate in the

network.

7.3 Optimize BGP Routing Algorithm

Intra-domain traffic engineering can be performed with the global knowledge

of network-wide traffic demands since all the routers are under the same adminis-

trative organization and the control over the routers in the network is accessible.

107

However, in the case of inter-domain TE involving different administrative organi-

zations, the traffic demand statistics are usually kept private and the control over

routers outside the administrative organization is normally not practical. Therefore,

inter-domain TE has mainly focused on multi-homed Autonomous Systems (AS),

in-bound/out-bound load-balancing between adjacent ASes using BGP attributes

(e.g. MED, local_pref, as_path, etc.) [117].

The ASes are increasingly becoming multi-homed [117]. The outbound traffic

of an AS may be routed on any of the multiple links, depending on the decision

made by the inter-AS routing algorithm, usually Border Gateway Protocol(BGP).

BGP routing decisions are made by a series of policy filters. Most ASes use the

shortest AS path for most destinations. This may lead to unbalanced load even

amongst the multiple outbound interfaces of an AS. In this section, we consider the

problem of load-balancing outbound traffic in BGP from the perspective of a single

AS. We show that this is an NP-hard problem and use the OLS tool to solve this

problem.

BGP provides only some simple capabilities for TE between AS neighbors. The

MED attribute can be used by an AS to inform its neighbor of a preferred connection

(among multiple physical connections) for inbound traffic to a particular address

prefix. Usually it is used by the service providers on the request of their multi-

homed customers. Lately, it is also being used between the service providers. The

as_path attribute has also been used to achieve TE objectives. as_path is “stuffed”

or “padded” with additional instances of the same AS number to increase its length

and expect lower amount of inbound traffic from the neighbor AS to whom it is

announced. However, this may lead to a large overhead if done too often. Another

way used to achieve some TE is to subvert the BGP-CIDR address aggregation

process. In particular an AS may extract more-specifics, or de-aggregate it and

re-advertise the more-specifics to other ASes. The longest-prefix match rule in IP

forwarding will lead to a different route for the more specific address. However, this

is achieved at the expense of larger number of entries in forwarding tables. This is an

indirect and undesirable way to achieve inbound load-balancing. One way to avoid

subverting CIDR aggregation (shown in our recent work [118]), in the case of multi-

108

homed stub AS, is by mapping the inbound load-balancing problem to an address

management problem. Alternatively, AS neighbors may agree on BGP community

attributes [119] (that are not re-advertised) to specify traffic engineering. We notice

that inbound load-balancing is considerably complex and requires re-advertisements

or support from neighboring ASes. However, outbound load-balancing is simpler,

and can be achieved by impacting local policy changes.

The local_pref attribute is used locally within the AS to prefer an outbound

direction for a chosen destination prefix, AS or exit router. local_pref holds the

highest priority in the policy filter hierarchy, i.e. the BGP will choose the path

with highest local_pref over other policy attributes. Therefore, if we know the

desired routing to meet the traffic engineering objective, we can use the local_pref

to over-ride the default routing. Recent work [120] notice that it is possible to au-

tomatically tune the local_pref parameters of “hot-prefixes” to control outbound

traffic subject to a range of policy constraints. However, they do not provide any

mechanism to do this. In this section, we use the on-line simulation scheme to cal-

culate the ideal routing based on the prevailing traffic conditions and deploys the

preferred routing by adjusting local_pref attributes.

7.3.1 Traffic Demands

Given a certain outbound traffic demand, load balancing aims to split this

traffic demand and distribute them evenly among outbound links. Usually, the

traffic demand can be divided into a number of traffic flows. In the finest granularity,

a traffic flow is determined by the source and destination IP addresses and the

port number. In a coarse granularity, a traffic flow can be identified by the source

and destination AS-pair. Internet measurements have shown that traffic aggregates

based on destination prefixes in the routing table are more suitable for load balancing

[103] since they are relatively stable through the day and on per-hour time scales. We

have used this granularity for defining a flow in our load balancing scheme. In other

words, the traffic demand is split into flows at the level of per destination-prefix.

A typical BGP routing table consists of thousands of destination prefix entries.

It will be very complex to work with such a large number of traffic flows. However,

109

many traffic measurements [103, 104] have demonstrated the existence of so-called

elephant and mice phenomenon. That is, a small number of traffic streams, known as

elephants, generate a large portion of total traffic whereas a large number of streams,

mice, generate a small portion of total traffic. For example, it has been found that

the top 9% of flows between ASes account for 86.7% of the packets or 90.7% of the

bytes transmitted [104]. Furthermore, these elephant traffic flows are usually very

stable over time and hence are suitable to be re-routed for load-balancing purpose.

Based on these observations, our load balancing scheme only attempt to adjust the

routing of the top 10% destination prefixes in the routing table based on their traffic

demands. 1.

7.3.2 Optimal Routing Calculation for Load Balancing

Given the knowledge of traffic demand and outbound link information, the

optimal routing for load balancing can be calculated. Let m be the number of

outbound links in the concerned AS. Let li and ci, i = 1 . . . m, denote the ith

outbound link and its capacity (or bandwidth), respectively. All the outbound

traffic of this AS will be routed on these links. If si, i = 1 . . .m, denotes the total

outbound traffic carried by the ith link, then the utilization of link li is given by

si/ci. The objective of load balancing is to minimize the maximum link utilization

among all the outbound links, i.e.,

minimize max
i=1...m

si

ci

(7.22)

Let n denote the number of selected destination prefixes and dj, j = 1 . . . n,

denote the average offered load for these destinations. Our load balancing scheme

attempts to adjust the routing of these n prefixes in order to minimize the objective

function in Equation (7.22). Let Di denote the subset of the n prefixes that are

routed on link li under adjusted routing. If fi denotes the load on link li generated

by the other 90% traffic flows, which is sent on this link by the default BGP routing,

1The fraction of optimized destination prefixes can be kept fixed or increased in the event of
increase in routing tables. In future, a smaller fraction of destination prefixes may be used if 10%
gives a very large number.

110

then Equation (7.22) becomes

minimize Φ = max
i=1...m

(
∑
j∈Di

dj

ci

) +
fi

ci

(7.23)

where, the first term represents the percentage load due to the selected 10% flows

and the second term represents the percentage load generated by the other 90% flows

on link li. This problem can also be written as the following integer programming

problem.

minimize t (7.24)

subject to
n∑

j=1

xij
dj

ci

+
fi

ci

≤ t, i = 1 . . . m

m∑
i=1

xij = 1, j = 1 . . . n

xij ∈ {0, 1}, i = 1 . . . m, j = 1 . . . n

where xij is a binary number and xij = 1 means flow dj is output on link li, otherwise

xij = 0. Note that traffic flow dj may not have all outbound links as its alterna-

tive paths. One can assume an arbitrarily large dj/ci for those links. The problem

represented by Equation (7.24) is actually a classical task scheduling problem with

unrelated parallel machines [121], where a number of tasks with different sizes are

assigned to a set of parallel machines. The processing time of each task is different

on different machines and the objective there is to minimize the completion time

of all tasks by carefully distributing these tasks onto the parallel machines. This

problem is NP-hard and approximation algorithms can be used to obtain approxi-

mate solutions. For example, in [122] a linear programming technique is first used

to obtain a basic solution where there are at most m− 1 non-integral xij. Then for

these non-integral xij, an exhaustive enumeration is performed to find the optimal

scheduling. Combining the solutions of these two steps can produce an approximate

solution with a upper bound of 2t∗, where t∗ denotes the value of t produced by the

optimal solution. The time complexity of this method is exponential in the value of

m.

111

In stead of the integer programming approach, we have applied the OLS

scheme to this load balancing problem. With the OLS scheme, it is also possible

to optimize for various performance objectives in addition load balancing, or multi-

ple objectives by formulating appropriate objective functions and combining these

objectives using multi-objective optimization techniques. For example, in addition

to load-balancing, the network operator also prefers to use the shortest paths. It is

possible to formulate a multi-objective optimization problem and obtain a solution,

using OLS, that meets both load-balancing and shortest path criteria.

7.3.3 The BGP Optimization Scheme

The complete procedure can be summarized as follows:

Step 1 Extract top 10% destination prefixes, with traffic demands dj, j = 1 . . . n,

from the routing table;

Step 2 Calculate dj/ci and fi/ci, i = 1 . . . m, j = 1 . . . n according to the traffic

demand for each prefix and the capacity of each outbound link.

Step 3 Each destination prefix may be reachable by all or some of the outbound links.

This information can be obtained from Adj-RIBs-In at a BGP router. Assign a

very large value of dj/ci for the infeasible routes, so the solution (minimization)

will not result in an infeasible solution.

Step 4 Measure or compute the value of Φ for default routing using Equation (7.23)

denoted by Φ0.

Step 5 Obtain a routing r from the RRS; Run RRS till a stopping criteria is reached.

A stopping criteria can be a limit on time, number of iterations etc.. Let Φ∗,

r∗ denote the value of objective function and corresponding routing at the end

of optimization.

Step 6 If |Φ0−Φ∗
Φ0 | ≥ ∆, deploy r∗ by setting a high local_pref of desired links for

appropriate destination prefixes.

112

7.3.4 Simulation Results

We have used two optimization objectives, load-balancing objective given by

Equation (7.22) and the minimization of packets dropped, to illustrate our results.

We have use the SSFNet [4] simulator to simulate the AS topology shown in Fig-

Figure 7.14: Network topology used for simulation results

ure 7.14. This network consists of 31 ASes, 90 routers and 90 hosts. In the simula-

tion, the ASes did not have any policies (apart from the local_pref used to deploy

the optimized routing). We optimize the performance for the AS 0 (shown in the

center of graph).

7.3.4.1 Optimizing for Load Balancing

For the concerned AS, there are 8 outbound links with normalized capacity of

100, 100, 100, 100, 45, 45, 45, 12, respectively. We assume the number of top 10%

destination prefixes which generate most of the traffic is 148, i.e., there are about

1480 prefixes in the routing table. Note this number is chosen somewhat arbitrarily

only for the sake of illustration. In the simulation, we generate only 148 traffic

flows instead of all the traffic flows since the actual effect of all the other 90% flows

on the simulation is only to reduce the capacity of the links by a certain amount.

Therefore, ignoring these flows will not compromise the validity of the simulation

results in any way. We assign each destination prefix a certain load such that the

total offered load is the 30% of the total capacity of all the links. In the beginning

of the simulation, the routing of outbound traffic is decided by the default BGP

routing. Then in the simulation, we apply the proposed load balancing scheme to

the network. The maximum link utilization (given by Equation 7.22) before and

113

after optimization is shown is Table 7.4 and the link utilization of outbound links is

compared in Fig 7.15.

Before optimization After optimization
Max. Link Utilization 91% 35%

Table 7.4: Maximum link utilization before and after optimization

� �� �� �� �

� �� �� �� �� �� �� �� �

��
��
��
��

���� � �� �� �� �� �

��
��
�

��
��
��
�

		
		
		
	

��
��
��
��
��

� �� �� �� �� �� �� �� �� �� �� �� �� �

��
��
��
��
��
��

��
��
��
��
��
��

� �

��
��
��
��
��
��
��
��
��
��

After optimization

0.2

0.4

0.6

0.8

1

1.2

Li
nk

 u
til

iz
at

io
n

Link capacity
100 100 100 100 45 45 45 12

Before optimization

0

Figure 7.15: Link utilization of different outbound links before and after
optimization

Figure 7.15 shows that the default BGP routing leads to an uneven distribu-

tion of load across the outbound links, for example, one link is greatly under-utilized

with a utilization of 7% while one other link is approaching full utilization with a

utilization of 0.91%. After optimization with the proposed scheme, the load dis-

tribution become much more even over the outbound links and the utilization of

all the links is very close to the ideal value, i.e., the average utilization 30%. This

simulation demonstrates that using the proposed optimization approach, the load

balancing on the outbound links can be effectively achieved. Note that the opti-

mization result shown in the table is obtained with an optimization process of only

1500 function evaluations. In a 500MHz Pentium PC, it only takes around 1 minute

to finish the optimization process. Therefore, this optimization process can be used

for on-line tuning of the load balancing objective.

7.3.4.2 Minimizing Packet Loss

In this section, we present the simulation results by using the packet loss ob-

jective. We used the same topology (shown in Figure 7.14) for the results presented

in this section. However, the bandwidth of all the links was assumed to be 10Mbps.

114

During the simulation, the number of packets dropped on the outbound links

is collected and the overall packet drop probability is calculated by the total packet

number arrived on all outbound links. The optimization objective here is to mini-

mize the overall packet drop probability. Table 7.5 shows the average packet drop

probability before and optimization optimization and Figure 7.16 compares the num-

ber of packets dropped on each outbound link. We see that the average packet drop

Before optimization After optimization
% Packet Drop 41.07% 6.74%

Table 7.5: Comparison of average packet loss probability at outbound
links before and after optimization

� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	

After optimization

250

Pa
ck

et
s

dr
op

pe
d

Link capacity
100 100 100 100 45 45 45 12

Before optimization

0

Figure 7.16: Packets dropped on various outbound interfaces before and
after optimization

probability of the original routing is very high because of the uneven load distribu-

tion. After optimization, the average packet drop probability reduces dramatically

since no link is over utilized.

CHAPTER 8

Conclusion and Future Research Direction

8.1 Conclusion

Network performance management can be accomplished with a black-box op-

timization approach, where the network is considered as a black box with a set of

parameters, network simulation is used to evaluate the performance of the black box

and an optimization algorithm is employed to optimize the parameters for better

performance. Based on this approach, an on-line simulation scheme has been pro-

posed as a general network performance management framework. This dissertation

investigated the problem of designing an efficient optimization algorithm for such

a on-line simulation scheme and validated the effectiveness of the proposed scheme

with simulations and experiments on some important network protocols.

Due to No Free Lunch theorem, no optimization algorithm can perform consis-

tently better than the others for all classes of problems. The “best” algorithm is only

locally meaningful, i.e., one algorithm may outperforms the others for a certain class

of problems, but its performance will suffer in other classes of problem. The average

performance of any optimization algorithm over all classes of problems is the same.

Therefore a trade-off between applicability and efficiency has to be made in practice.

An optimization algorithm claiming to be efficient always has more restrictions on

applicable problems while a widely applicable algorithm usually means an average

performance. Therefore, to design a good optimization algorithm is effectively to

find a proper balance between applicability and efficiency.

This dissertation first examined the general requirements of network opti-

mization problems, i.e., high efficiency, scalability to high-dimensions, robustness

to noises in objective functions. Based on these requirements, the Recursive Ran-

dom Search algorithm has been designed to perform efficient search for concerned

network optimization problems. According to the design objective, the emphasis of

RRS is not on “full” optimization but on quickly finding near-optimum solutions

within the limited time frame. Furthermore, the proposed algorithm is not claimed

115

116

to be the most efficient algorithm for every network optimization problem, instead,

the algorithm is intended to be a general solution for the network optimization prob-

lems, which aim to achieve a good balance between efficiency and applicability. In

other words, RRS tries the best to perform efficiently and consistently for various

network optimization problems.

To achieve high efficiency for different problems, proper search techniques

have to be selected to exploit the structural properties of the underlying problem.

In addition, a search algorithm for practical optimization problems should also try

to fully utilize the available computing resource, which may have parallel computing

capability. To address these issues, the Unified Search Framework has been designed,

which integrates various search techniques and selects appropriate ones based on

the features of the underlying problem. In addition, the USF also employs a unified

resource management mechanism to fully exploit available computing resources and

achieve the maximum efficiency.

The adaptive network performance management using on-line simulation scheme

has been validated with simulations and experiments on the optimization of three im-

portant network protocols: RED queueing management, OSPF intro-domain rout-

ing and BGP inter-domain routing. The problem formulation of optimizing the

concerned protocols are first studied. A network protocol is employed to achieve

one or multiple objectives which may correlated with each other. To formulate the

optimal configure of this protocol as an optimization problem, a single optimization

metric has to be carefully designed to quantify the concerned objectives so that

the optimization of this metric will lead to the desired results. A poorly designed

metric, which does not reflect the objectives controlled by the underlying network

protocol, will fail the optimization scheme. This dissertation carefully formulated

the optimization problems of the concerned network protocols. The results from

simulations and experiments have demonstrated that the proposed approaches can

significantly improve network performance under varying network conditions and

the RRS algorithm performs very efficiently in these applications.

117

8.2 Future Research Direction

Many engineering design problems can be formulated as black-box optimiza-

tion problems. The optimization strategies proposed in this dissertation not only

can be used in the optimization of network protocols as described, they can also

be used in many other situations. In fact, a wide range of optimization problems

have similar features as network optimization problems. That is, these problems

emphasize efficiency more than full optimization, and the objective function is eval-

uated with simulation and noises may be introduced into the function evaluation

by inaccuracies in simulation. Recursive Random Search algorithm can be used to

solve these problems efficiently. Furthermore, the Unified Search Framework is more

widely applicable since it includes various search techniques. The USF can be used

as a general solution for any kind of black-box optimization problems.

For a black-box optimization problem, since little knowledge is available to

exploit, random sampling seems the best one can do. To perform better than random

sampling, an optimization algorithm has to extract the structural properties of the

underlying problem and exploit them during its optimization process. Therefore,

the optimization process can be considered as a learning process, during which the

structural properties are found through sampling and then used to expedite the

optimization. This learning process is crucial to the efficiency of an optimization

algorithm. Statistical analysis is a powerful technique to extract information from

samples and can be used in the optimization algorithm. Recursive Random Search

uses the statistics of the function values to guide the further optimization and is one

attempt to apply statistical techniques in optimization process. Many aspect of RRS

may be enhanced by using other statistical techniques. For example, in RRS, when

the sample space is re-aligned around the center of a new sample, the size of sample

space can also be adjusted by estimating the tail distribution of the function value of

the center point value since this tail distribution is just the Lebesgue measure of all

points with better function values than the center sample point. Another possible

way to further refine the sample space is to use the statistics of multiple samples,

such as, the ranges of their parameters, to decide the location and the shape of new

sample space instead of a simple hypercube when using a single sample.

118

Since there is no single all-purpose optimization algorithm which is efficient

for all problems, the essential task in a practical optimization problem is to choose

appropriate search techniques based on the features of the given problem. Cur-

rently, this is typically achieved by the practitioner’s experience or trial and error.

The Unified Search Framework has been proposed in this dissertation as a general

platform to implement this ideas. In USF, the correlation between structural prop-

erties of the underlying problem and search techniques has been investigated. Based

on this, one can select appropriate search techniques as building blocks to build a

tailed optimization algorithm for the underlying problem. It is more desirable that

USF can automatically analyze the underlying problems and come up with a proper

selection of search techniques. It is essentially a decision process in which a number

of samples are used to decide if a certain structure exists. This is a very challenging

problem and there has been not much work done in this area. Statistical techniques

might be a solution to this problem. Basically, an appropriate statistics should be

designed to characterize the features of the samples. For example, with an objective

function with many separable parameters, the function values of random samples

should follow a Gaussian distribution. Therefore, we can make approximate infer-

ence about the separability of the objective function by applying hypothesis testing

on the distribution of function values of random samples. Note this example is

just intended to demonstrate the idea. Actually Gaussian distribution of objective

function values does not mean parameter separability. The objective function with-

out parameter separability may also have Gaussian distributed random samples. In

fact, the design of an appropriate statistics is the most important task in applying

statistical techniques to structural property identification.

LITERATURE CITED

[1] Ratul Mahajan, David Wetherall, and Tom Anderson. Understanding bgp

misconfiguration. In Proceedings of ACM SIGCOMM, 2002.

[2] Tao Ye and et al. Traffic management and network control using

collaborative on-line simulation. In Proc. of IEEE ICC’01, Helsinki, Finland,

2001.

[3] NS. network simulator. http://www-mash.cs.berkeley.edu/ns.

[4] SSFNET. network simulator. http://www.ssfnet.org.

[5] GloMoSim. network simulator. http://pcl.cs.ucla.edu/projects/glomosim.

[6] Aimo Törn and Antanas Z̆ilinskas. Global Optimization, volume 350 of

Lecture Notes in Computer Science. Springer-Verlag, 1989.

[7] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine

Learning. MA: Addison Wesley, 1989.

[8] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. John

Wiley & Sons, 1989.

[9] M. Ali, C. Storey, and A. Törn. Application of stochastic global optimization

algorithms to practical problems. Journal of Optimization Theory and

Applications, 95(3):545–563, 1997.

[10] A. Törn, M.M. Ali, and S. Viitanen. Stochastic global optimization: Problem

classes and solution techniques. Journal of Global Optimization, 14:437–447,

1999.

[11] Nicholas J. Radcliffe and Patrick D. Surry. Fundamental limitations on

search algorithms: Evolutionary computing in perspective. In Computer

Science Today, pages 275–291. 1995.

119

120

[12] D. h. Wolpert and W. G. Macready. No free lunch theorems for

optimization. IEEE Transaction on Evolutionary Computing, 1:67–82, 1997.

[13] S. Kirkpatrick, D.C. Gelatt, and M.P. Vechhi. Optimization by simulated

annealing. Science, 220:671–680, 1983.

[14] W. Zhang and T. G. Dietterich. A reinforcement learning approach to

job-shop scheduling. In Proceedings of the International Joint Conference on

Artificial Intellience, 1995.

[15] M. R. Hoare and P. Pal. Physical cluster mechanics, statics and energy

surfaces for monatomic systems. Adv. Phys., 20:161–196, 1971.

[16] A Neumaier. Molecular modeling of proteins and mathematical prediction of

protein structure. SIAM Review, 39:407–460, 1997.

[17] OSI system management overview. ISO-10040.

[18] William Stallings. SNMP, SNMPv2, and CMIP: The Practical Guide to

Network Management Standards. Addison-Wesley, 1993.

[19] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A simple network

management protocol. RFC 1157, 1990.

[20] Principles for a telecommunications management network. ITU-T Rec.

M.3010, 1992.

[21] J. Case SNMPv2 Working Group, K. McCloghrie, M. Rose, and

S. Waldbusser. Protocol operations for version 2 of the simple network

management protocol (snmpv2). RFC 1905, 1996.

[22] J. Case, R. Mundy, D. Partain, and B. Stewart. Introduction to version 3 of

the internet-standard network management framework. RFC 2570, 1999.

[23] S. Waldbusser. Remote network monitoring management information base.

RFC 1757, 1995.

121

[24] S. Waldbusser. Remote network monitoring management information base

version 2. RFC 2021, 1997.

[25] R. Elbaum and M. Sidi. Topological design of local area networks using

genetic algorithms. In Proceedings of INFOCOM 1995, 1995.

[26] B. Dengiz, F. Altiparmak, and A. Smith. Genetic algorithm design of

networks considering all-terminal reliability. In Proceedings of the 6th

Industrial Engineering Research Conference, pages 30–35, 1997.

[27] A.Pitsillides, G.Stylianou, C.S.Pattichis, A.Sekercioglu, and T.Vassilakos.

Bandwidth allocation for virtual paths(bavp): Investigation of performance

of classical constrained and genetic algorithm based optimization techniques.

Tel Aviv,Israel, 2000.

[28] Bernard Fortz and Mikkel Thorup. Internet traffic engineering by optimizing

ospf weights. In Proceedings of the INFOCOM 2000, pages 519–528, 2000.

[29] J. E. Falk and R. M. Soland. An algorithm for separable nonconvex

programming problems. Management Science, 15(9):550–569, May 1969.

[30] W. L. Price. Global optimization by controlled random search. Journal of

Optimization Theory and Applications, 40:333–348, 1978.

[31] J. H. Holland. Adaptation in Natural and Artificial Systems. Univ. of

Michigan Press: Ann Arbor, 1975.

[32] A. H. Kan and G. T. Timmer. Stochastic global optimization methods part

I: Clustering methods. Mathematical Programming, 39:27–56, 1987.

[33] R. Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley &

Sons, New York, 1981.

[34] Justin A. Boyan and Andrew W. Moore. Learning evaluation functions to

improve optimization by local search. Journal of Machine Learning

Research, 1(2000):77–112, 2000.

122

[35] J. Mockus. On bayesian methods of optimization. In L. C. W. Dixon and

G. P. Szegö, editors, Towards Global Optimization, pages 166–181.

North-Holland, 1975.

[36] M. J. Kushner. A new method of locating the maximum point of an

arbitrary multipeak curve in the presence of noise. Journal of Basic

Engineering, 86:97–106, 1964.

[37] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.

Numerical Recipes in C. Cambridge University Press, 2 edition, 1992.

[38] W. C. Davidon. Variable metric method for minimization. SIAM Journal on

Optimization, 1:1–17, 1991. The article was originally published as Argonne

National Laboratory Research and Development Report May 1959(revised

November 1959).

[39] Michael W. Trosset. On the use of direct search methods for stochastic

optimization. Technical report, Department of Computational and Applied

Mathematics, Rice University, 2000.

[40] P. Brachetti, M. De Felice Ciccoli, G. Di Pillo, and S. Lucidi. A new version

of the price’s algorithm for global optimization. Journal of Global

Optimization, 10:165–184, 1997.

[41] R. M. Lewis, V. Torczon, and M. W. Trosset. Direct search methods: Then

and now. Journal of Computational and Applied Mathmatics, 124:191–207,

December 2000.

[42] W. Spendley, G. R. Hext, and F. R. Himworth. Sequential application of

simplex designs in optimization and evolutionary operation. Technometrics,

4:441–461, 1962.

[43] R. MEAD and J. A. NELDER. A simplex method for function

minimization. Computer Journal, 7(4):308–313, 1965.

123

[44] J. Nocedal. Theory of algorithms for unconstrained optimization. In

A. Iserles, editor, Acta Numerical, pages 199–242. Cambridge University

Press, Cambridge, 1992.

[45] M. J. D. Powell. A direct search search optimization method that models the

objective and constraint functions by linear interpolation. Numerical

Analysis Report, DAMTP 1992/NA5, Department of Applied Mathematics

and Theoretical Physics, University of Cambridge, England, 1992.

[46] V. Torczon. Multi-Directional Search: A Direct Search Algorithm for Parallel

Machines. PhD thesis, Department of Mathematical Sciences, Rice

University, Houston, Texas, 1989.

[47] R. Hooke and T. Jeeves. Direct search solution of numerical and statistical

problems. Journal of the ACM, 8(2):212–229, April 1961.

[48] V. Torczon. On the convergence of pattern search algorithm. SIAM Journal

on Optimization, 7:1–25, 1997.

[49] G. E. P. Box. Evolutionary operation: A method for increasing industrial

productivity. Appl. Statist., 6:81–101, 1957.

[50] K. D. Boese, A. B. Kahng, and S. Muddu. On the big valley and adaptive

multi-start for discrete global optimizations. Technical Report TR-930015,

UCLA CS Department, 1993.

[51] J. Beveridge, C. Graves, and C. E. Lesher. Local search as a tool for horizon

line matching. Technical Report CS-96-109, Colorado State University, 1996.

[52] D. S. Johnson and L. A. McGeoch. The travelling salesman problem: a case

study in local optimizaiton. In E. H. L. Aarts and J. K. Lenstra, editors,

Local Search in Combinatorial Optimization. Wiley and Sons, 1997.

[53] A. Juels and M. Wattenberg. Stochastic hillclimbing as a baseline method

for evaluating generic algorithms. In D. S. Touretzky, M. C. Mozer, and

M. E. Hasselmo, editors, Advances in Neural Information Processing

Systems, volume 8, pages 430–436. 1996.

124

[54] Z. Michalewicz. Genetic Algorithm +Data Structures = Evolution Programs.

Springer-Verlag: New York, 1996.

[55] A. H. Kan and G. T. Timmer. Stochastic global optimization methods part

II: Multi level methods. Mathematical Programming, 39:57–78, 1987.

[56] W. L. Price. A controlled random search procedure for global optimization.

In L. C. W. Dixon and G. P. Szegö, editors, Towards Global Optimization 2,

pages 71–84. North-Holland, Amsterdam, Holland, 1978.

[57] M. Ali, A. Törn, and S. Viitanen. A numerical comparison of some modified

controlled random search algorithms. Journal of Global Optimization,

11(4):377–385, 1997.

[58] I. Garcia, P.M. Ortigosa, L.G. Casado, G.T. Herman, and S. Matej.

Multidimensional optimization in image reconstruction from projections. In

Developments in Global Optimization, pages 289–300. Kluwer, 1997.

[59] Martin Pelikan, David E. Goldberg, and Fernando Lobo. A survey of

optimization by building and using probabilistic models. In Computational

Optimization and Applications. Kluwer Academic Publishers (in press, 2000.

[60] Melanie Mitchell, John Holland, and Stephanie Forrest. When will a genetic

algorithm outperform hill climbing? In J. Cowan, G. Tesauro, and

J. Alspector, editors, Advances in Neural Information Processing Systems.

Morgan Kauffman, San Francisco, CA, 1994.

[61] M. Mitchell, S. Forrest, and J. H. Holland. The royal road for genetic

algorithms: Fitness landscapes and ga performance. In F. J. Varela and

P. Bourgine, editors, Proceesings of the First Europen Conference on

Artificial Life, pages 245–254, Cambridge, MA, 1992. MIT Press.

[62] Anton Dekkers and Emile Aarts. Global optimization and simulated

annealing. Mathmatical Programming, 50:367–393, 1991.

[63] H. Szu and R. Hartley. Fast simulated annealing. Phys. Lett. A,

122(3-4):157–162, 1987.

125

[64] L. Ingber. Very fast simulated re-annealing. J. Mathl. Comput. Modelling,

12:967–973,, 1989.

[65] Fred Glover. Tabu search– part I. ORSA Journal on Computing,

1(3):190–206, 1989.

[66] Fred Glover. Tabu search– part II. ORSA Journal on Computing, 2:4–32,

1990.

[67] Nanfang Hu. Tabu search method with random moves for globally optimal

design. International Joural for Numerical Methods in Engineering,

35:1055–1070, 1992.

[68] R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA Journal on

Computing, 6(2):126–140, 1994.

[69] Zelda B. Zabinsky. Stochastic methods for practical global optimization.

Journal of Global Optimization, 13:433–444, 1998.

[70] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja. A First Course in

Order Statistics. John Wiley & Sons, 1992.

[71] K. D. Boese, A. B. Kahng, and S. Muddu. a new adaptive multi-start

technique for combinatorial global optimizations. Operation Research

Letters, 16:101–113, 1994.

[72] O. C. Martin and S. W. Otto. Combining simulated annealing with local

search heuristics. Technical Report CS/E 94-016, Oregon Graduate Institute

Department of Computer Science and Engineering, 1994.

[73] T. C. Hu, V. Klee, and D. Larman. Optimization of globally convex

functions. SIAM Journal on Control and Optimization, 27(5):1026–1047,

1989.

[74] Robert H. Leary. Global optimization on funneling landscapes. Journal of

Global Optimization, 18(4):367–383, December 2000.

126

[75] Zelda B. Zabinsky. Introduction to analyses of adaptive stochastic search

methods for global optimization. Tutorial in INFORMS meeting 2001, 2001.

[76] M. F. Hussain and K. S. Al-Sultan. A hybrid genetic algorithm for

nonconvex function minimization. Journal of Global Optimization,

11:313–324, 1997.

[77] Rainer Storn and Kenneth Price. Differential evolution-a simple and efficient

heuristic for global optimization over continuousspaces. Journal of Global

Optimizaiton, 11:341–359, 1997.

[78] R. Desai and R. Patil. Salo: combining simulated annealing and local

optimization for efficient global optimization. In J.H. Stewman, editor,

Proceedings of the 9th Florida AI Research Symposium (FLAIRS-’96), pages

233–237, St. Petersburg, FL, USA, 1996.

[79] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global

optimization of expensive black-box functions. Journal of Global

Optimizaiton, 13:455–492, 1998.

[80] C. Mohan and K. Shanker. A numerical study of some modified versions of

controlled random search method for global optimization. International

Journal of Computer Mathematics, 23:325–341, 1988.

[81] M. Ali and C. Storey. Modified controlled random search algorithms.

International Journal of Computer Mathematics, 53:229–235, 1994.

[82] Eligius M.T. Hendrix, P.M. Ortigosa, and I. Garcia. On success rates for

controlled random search. Journal of Global Optimizaiton, 21:239–263, 2001.

[83] G. R. Wood, Z. B. Zabinsky, and B. P. Kristinsdottir. Hesitant adaptive

search: The distribution of the number of iterations to convergence.

Mathematical Programming, 89(3):479–486, 2001.

[84] L. A. Rastrigin. Systems of Extremal Control. Nauka, 1974.

127

[85] H. Mühlenbein M. Schomisch and J. Born. The parallel genetic algorithm as

function optimizer. In Richard K. Belew and Lashon B. Booker, editors,

Proceedings of the Fourth Intl. Conf. on Genetic Algorithms, pages 271–278.

Morgan-Kaufman, 1991.

[86] M. A. Wolfe. Numerical Methods for Unconstrained Optimization. Van

Nostrand Reinhold Company, New York, 1978.

[87] D. H. Ackley. A Connectionist Machine for Genetic Hillclimbing. Boston:

Kluwer Academic Publishers, 1987.

[88] Ko-Hsin Liang, Xin Yao, and Charles Newton. Combining landscape

approximation and local search.

[89] David E. Goldberg and Siegfried Voessner. Optimizing global-local search

hybrids. IlliGAL Report 99001, Department of General Engineering,

University of Illinois at Urbana-Champaign, January 1999.

[90] W. E. Hart. Adaptive Global Optimization with Local Search. PhD thesis,

University of California, San Diego, 1994.

[91] H. Mühlenbein, M. Schomisch, and J. Born. The parallel genetic algorithm

as function optimizer. Parallel Computing, 17:619–632, 1991.

[92] J. E. Dennis, Jr. and V. Torczon. Direct search methods on parallel

machines. SIAM Journal of Optimization, 1(4):448–474, 1991.

[93] G. Rudolph. Parallel approaches to stochastic global optimization. pages

256–267. IOS Press, Amsterdam, 1992.

[94] S. Floyd and V. Jacobson. Random early detection gateways for congetsion

avoidance. IEEE/ACM Transactions on Networking, 1:397–413, August

1993.

[95] B. Braden and et al. Recommendations on queue management and

congestion avoidance in the internet. RFC 2309, 1998.

128

[96] Wu chang Feng, Dilip D. Kandlur, Debanjan Saha, and Kang G. Shi. A

self-configuring RED gateway. Proceedings of IEEE Infocom 1999, March

1999.

[97] Victor Firoiu and Marty Borden. A study of active queue management for

congestion control. In INFOCOM (3), pages 1435–1444, 2000.

[98] M. May, J. Bolot, C. Diot, and B. Lyles. Reasons not to deploy RED.

Technical report, INRIA Sophia-Antipolis, France, 1999.

[99] M. Christiansen, K. Jeffay, D. Ott, and F.D. Smith. Tuning RED for web

traffic. In Proceeding of ACM SIGCOMM, 2000.

[100] Thomas Bonald, Martin May, and Jean-Chrysostome Bolot. Analytic

evaluation of RED performance. IEEE Infocom 2000, pages 1415–1444, 2000.

[101] C.V. Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong. A control

theoretic analysis of red. In Proceedings of IEEE Infocom 2001, 2001.

[102] Sally Floyd, Ramakrishna Gummadi, and Scott Shenker. Adaptive RED: An

algorithm for increasing the robustness of RED’s active queue management.

unpubished, 2001.

[103] S. Bhattacharyya, C. Diot, J. Jetcheva, and N. Taft. Pop-level and

access-link-level traffic dynamics in a tier-1 pop. In ACM SIGCOMM

Internet Measurement Workshop, November 2001.

[104] Wenjia Fang and Larry Peterson. Inter-as traffic patterns and their

implications. In Proceedings of Global Internet 99, Rio, Brazil, 1999.

[105] J. Moy. Ospf version 2. RFC 2178, April 1998.

[106] Bernard Fortz and Mikkel Thorup. Increasing internet capacity using local

search. IEEE Transaction on Networking, 2000.

[107] Atul Khanna and John Zinky. The revised arpanet routing metric. In

Proceedings of the ACM SIGCOMM, pages 45–56, 1989.

129

[108] David W. Glazer and Carl Tropper. A new metric for dynamic routing

algorithms. IEEE Transactions on Communications, 38(3), March 1990.

[109] A. Sakamoto D. S. Lee, G. Ramamurthy and B. Sengupta. Performance

analysis of a threshold-based dynamic routing algorithm. In Proceedings of

the Fourteenth International Teletraffic Congress, 1994.

[110] Dimitri P. Bertsekas. Dynamic models of shortest path routing algorithms

for communication networks with multiple destinations. In Proceedings of

1979 IEEE Conference on Decision and Control, pages 127–133, Ft.

Lauderdale, FL, Dec 1979.

[111] Jon Crowcroft Zheng Wang. Analysis of shortest-path routing algorithms in

a dynamic network environment. Computer Communication Review,

22(2):63–71, 1992.

[112] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and F. True.

Deriving traffic demands for operational ip networks: methodology and

experience. IEEE/ACM Transaction on Networking, pages 265–278, June

2001.

[113] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford.

Netscope: traffic engineering for ip networks. IEEE Network Magazine:

special issue on Internet traffic engineeringh, pages 11–19, March/April 2000.

[114] Ramesh Nagarajan, James F. Kurose, and Don Towsley. Approximation

techniques for computing packet loss in finite-buffered voice multiplexers.

IEEE J.Select.Areas Commun, 9(3):368–337, April 1991.

[115] Robert B. Cooper. Introduction to Queueing Theory. New York : North

Holland, second edition, 1981.

[116] Harry G. Perros. Queueing Networks With Blocking, Exact and Approximate

Solutions. Oxford University Press, 1994.

[117] G. Huston. Commentary on inter-domain routing in the internet. RFC 3221,

December 2001.

130

[118] T. Ye, S. Yadav, M. Doshi, A. Gandhi, S. Kalyanaraman, and H. T. Kaur.

Load balancing in bgp environment using online simulation and dynamic

nat. ISMA Workshop by CAIDA, December 2001.

[119] J. Stewart III. BGP-4 Inter-domain routing in the Internet. Addison-Wesley,

1999.

[120] Jay Borkenhagen, Nick Feamster, and Jennifer Rexford. Controlling the

impact of BGP policy changes on IP traffic. NANOG, June 2002.

[121] L. A. Hall. Approximation algorithms for scheduling. In D. S. Hochbaum,

editor, Approximation Algorithms for NP-hard Problems. PWS Publishing

Company, 1995.

[122] C. N. Potts. Analyssis of a linear programming heuristic for scheduling

unrelated parallel machines. Discrete Appl. Math., 10:155–164, 1985.

