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Abstract

Internet data traffic is doubling each year, yet bandwidth does
not appear to be growing as fast as expected and thus short
falls in available bandwidth, particularly at the “last mile” may
result. To address these bandwidth allocation and congestion
problems, researchers are proposing new overlay networks that
provide a high quality of service and a near lossless guaran-
tee. However, the central question raised by these new ser-
vices is what impact will they have in the large? To address
these and other network engineering research questions, high-
performance simulation tools are required. However, to date,
optimistic techniques have been viewed as operating outside of
the performance envelope for Internet protocols, such as TCP,
OSPF and BGP.

In this paper, we dispel those views and demonstrate that
optimistic protocols are able to efficiently simulate large-scale
TCP scenarios for realistic, network topologies using a single
Hyper-Threaded computing system costing less than $7,000
USD. For our real-world topology, we use the core AT&T US
network. Our optimistic simulator yields extremely high effi-
ciency and many of our performance runs produce zero roll-
backs. Our compact modeling framework reduces the amount
of memory required per TCP connection and thus our memory
overhead per connection for one of our largest experimental
network topologies was 2.6 KB. That value was comprised of
all events used to model TCP packets, TCP connection state
and routing information.

1 Introduction

The predominate technique used to analyze Internet protocol
behavior is packet-level, discrete-event simulation. Here, net-
working researchers are interested in examining how routing
protocols like OSPF and BGP have on quality service guar-
antees and measures [11] as well as other large-scale network
operation and engineering problems. Because the computa-
tional requirements of this problem are immense, network de-
signers require tools that can efficiently model a network with
potentially millions of nodes and data streams. These tools
will enable better network configurations and more efficient,

accurate management of capacity.
To date, optimistic techniques, such as Time Warp [14],

have been viewed as operating outside performance range for
Internet protocol models such as TCP, OSPF and BGP. The
reason most often cited are state-saving overheads [24, 23].
These overheads not only impede the performance of the model
but also limits the scale of the model because of increased
memory consumption. Other critiques of optimistic methods
are associated with inconsistent states due to the inherent risk
involved in optimistic processing [18].

In this paper, we dispel those views and demonstrate that
optimistic protocols are able to efficiently simulate over mil-
lion node TCP scenarios for realistic, network topologies. In
addition to efficient execution, we observed that Time Warp
executes with increased stability as model size increases and
handles short delays in high-bandwidth links exceptionally well.
Last, from the developers point-of-view, the issue of inconsis-
tent states as a consequence of full optimistic processing was
not observed. As we moved our TCP model from sequential
to parallel execution, the only real developer overhead was in
the creation of reverse execution event handlers. Special error
handling considerations for the forward code path were not
required.

The innovations for achieving this level of scalability are
two fold. First, to the undo operation as part of optimistic
processing, we employ reverse computation [2]. Here, the
event computations are developed such that they can be re-
verse processed as opposed to state saving event computations
as events process forward. This approach has been shown to
have negligible impact on forward execution and substantially
reduces the memory requirements of the optimistic parallel
models [2, 30]

The second innovation is our compact implementation mod-
eling approach. Here we demonstrate a TCP model compactly
implemented atop a parallel discrete-event platform. The ob-
ject hierarchy for a TCP connection is kept extremely lean and
compressed into a single contiguous logical process (LP) state
vector. Similarly, the event data is compressed to a minimum
for the feature set of the protocol model. This approach en-
ables a single TCP connection state to only occupy 320 bytes
total (both sender and receiver) and 64 bytes per each packet-
event.



The end result of these innovations is that we are able to
simulate million node network topologies using commercial
off-the-shelf multiprocessor systems costing less than $7,000
USD, and consumes less than 1.4 GB of RAM in total.

In the next section, we describe our TCP model and its im-
plementation on an optimistic parallel simulation engine called
ROSS.

2 TCP Model

2.1 TCP Overview
The Internet relies on the TCP/IP protocol suite combined with
router mechanisms to perform the necessary traffic manage-
ment functions. TCP provides reliable transport using a end-
to-end window-based control strategy [12]. TCP design is
guided by the “end-to-end” principle which suggests that “func-
tions placed at the lower levels may be redundant or of lit-
tle value when compared to the cost of providing them at the
lower level” As a consequence, TCP provides several critical
functions (reliability, congestion control, session/connection
management) because layer four is where these functions can
be completely and correctly implemented.

While TCP provides multiplexing/de-multiplexing and er-
ror detection using means similar to UDP (e.g.: port numbers,
checksum), one fundamental difference between them lies is
the fact that TCP is connection oriented and reliable. The con-
nection oriented nature of TCP implies that before a host can
start sending data to another host, it has to first setup a connec-
tion using a 3-way reliable handshaking mechanism.

The functions of reliability and congestion control are cou-
pled in TCP. The reliability process in TCP works as follows:

When TCP sends the segment, it maintains a timer and
waits for the receiver to send a acknowledgment on the receipt
of the packet. If an acknowledgment is not received at the
sender before its timer expires (i.e. a timeout event), the seg-
ment is retransmitted. Another way in which TCP can detect
losses during transmission is through duplicate acknowledg-
ments. Duplicate acknowledgments arise due to the cumula-
tive acknowledgment mechanism of TCP wherein if segments
are received out of order, TCP sends a acknowledgment for the
next byte of data that it is expecting. Duplicate acknowledg-
ments refer to those segments that re-acknowledge a segment
for which the sender has already received an earlier acknowl-
edgment. If the TCP sender receives three duplicate acknowl-
edgments for the same data, it assumes that a packet loss has
occurred. In this case the sender now retransmits the missing
segment without waiting for its timer to expire. This mode of
loss recovery is called “fast retransmit”.

TCP’s flow and congestion control mechanisms work as
follows: TCP uses a window that limits the number of pack-
ets in flight, (i.e. unacknowledged). TCP’s congestion control
works by modulating this window as a function of the con-
gestion that it estimates. TCP starts with a window size of
one segment. As the source receives acknowledgments, it in-
crease the window size by one segment per acknowledgment
received (“slow start”), until a packet is lost, or the receiver
window (flow control) limit is hit. After this event it decreases
its window by a multiplicative factor (one half) and uses the
variable ss thresh to denote its current estimate of the net-

work bandwidth-delay product. Beyond ss thresh the win-
dow size follows a linear increase. This procedure of additive
increase/multiplicative decrease (AIMD) allows TCP to oper-
ate in an efficient and fair manner [5].

The various flavors of TCP (TCP Tahoe, Reno, SACK)
differ primarily in the details of the congestion control al-
gorithms, though TCP SACK also proposes an efficient se-
lective retransmit procedure for reliability. In TCP Tahoe,
when a packet is lost, it is detected through the fast retrans-
mit procedure, but the window is set to a value of one and
TCP initiates slow start after this. TCP Reno attempts to use
the stream of duplicate acknowledgments to infer the correct
delivery of future segments, especially for the case of occa-
sional packet loss. It is designed to offer 1/2 RTT of quiet
time, followed by transmission of new packets until the ac-
knowledgment for the original lost packet arrives. Unfortu-
nately Reno often times out when a burst of packets in a win-
dow are lost. TCP NewReno fixes this problem by limiting
TCP’s window reduction to at most during a single congestion
epoch. TCP SACK enhances NewReno by adding a selective
retransmit procedure where the source can pinpoint blocks of
missing data at receivers and can optimize its retransmission.
All versions of TCP would timeout if the window sizes are
small (e.g.: small files) and the transfer encounters a packet
loss. All versions of TCP implement Jacobson’s RTT estima-
tion algorithm (that sets the timeout to the mean RTT plus four
times the mean deviation of RTT, rounded up to the nearest
multiple of the timer-granularity (e.g.: 500 ms)). A compara-
tive simulation analysis of these versions of TCP was done by
Fall and Floyd[8].

2.2 ROSS: Optimistic Parallel Simulation En-
gine

ROSS is an acronym for Rensselaer’s Optimistic Simulation
System. It is a parallel discrete-event simulator that executes
on shared-memory multiprocessor systems. ROSS is geared
for running large-scale simulation models.

To achieve good parallel performance, ROSS uses a tech-
nique called Reverse Computation. Here, the roll back mecha-
nism in the optimistic simulator is realized not by classic state-
saving, but by enabling events to be reverse processed. Thus,
as models are developed for parallel execution, both the for-
ward and reverse execution code must be written.

The key property that Reverse Computation exploits is that
a majority of the operations that modify the state variables are
“constructive” in nature. That is, the undo operation for such
operations requires no history. Only the most current values of
the variables are required to undo the operation. For example,
operators such as ��� , ��� , ��� , ��� , ��� and ��� belong
to this category. Note, that the �	� and �
� operators require
special treatment in the case of multiply or divide by zero,
and overflow/underflow conditions. More complex operations
such as circular shift (swap being a special case), and certain
classes of random number generation also belong here.

Operations of the form ���� , modulo and bitwise compu-
tations that result in the loss of data, are termed to be destruc-
tive. Typically these operations can only be restored using
conventional state-saving techniques. However, we observe
that many of these destructive operations are a consequence of
the arrival of data contained within the event being processed.



For example, in our TCP model, the last-sent time records the
time stamp of the last packet forwarded on a router LP. We use
the swap operation to make this operation reversible. More
detail on precisely how the TCP model was made reversible is
given in Section 2.6.

The ROSS API is kept very simple and lean. Developed
in ANSI C, the API is based on logical process or LP model.
Here, an LP represents a physical object in the model such as
a host or router in the case of network simulation. To model
packets traveling through the network, LPs will schedule time
stamped events messages. Services are provided to allocate
and schedule messages between LPs. A random number gen-
erator library is provided based on L’Ecuyer’s Combined Lin-
ear Congruential Generator [15]. Each LP by default is given
a single seed set. All memory is directly managed by the sim-
ulation engine. Fossil collection and global virtual time com-
putations are driven by the availability of free event memory.
Their frequencies are controlled with tuning parameters and
start-up memory allocation. The event-list priority queue can
be configured to a Calendar Queue [1], a binary heap or splay
tree. The heap is used in all experiments presented here.

To reduce fossil collection overheads, ROSS introduces
kernel processes (KPs). A KP contains the statistics and pro-
cess event-list for an collection of LPs. With KPs there are
fewer event-list to search through during fossil collection, thus
improving performance, particularly when the number of LPs
is large. For the experiments presented here we typically al-
locate 4 to 8 KPs irrespective of the number of LPs. KPs are
similar to DaSSF timelines [19] and USSF clusters [26]

For more information on ROSS and Reverse Computation
we refer the interested reader to the ROSS User’s Guide [4]

2.3 ROSSNet TCP Host Functionality
Our implementation follows the TCP Tahoe specification. Be-
low are the specific capabilities of the ROSSNet TCP session
on a single host.

� Logs: The system has the ability to log sequence num-
bers, and congestion control window information. This
information was used in our validation study. For per-
formance runs, logging was disabled.

� Receiver side: Data is acknowledged when received. If
the received packet’s sequence number is NOT equal-to
AND is greater-than the expected sequence number, it is
stored in the receive buffer. Next, an acknowledgment is
sent for the wanted packet (duplicate acknowledgment).
When a packet with the expected sequence number is
received, the next appropriate acknowledgment is sent
according to the receive buffer’s contents.

� Sender side: The sender will be in slow-start until the
congestion window is greater than the slow-start thresh-
old. After that, congestion avoidance is started. If 3
duplicate acknowledgments are observed by the sender,
then fast retransmission is performed (see below). If the
acknowledgment sequence number is greater then the
lowest unacknowledged sequence number, the sender
assumes that a gap was filled and sends the appropriate
packet.

� Fast retransmission: When 3 duplicate acknowledg-
ments are observed, fast retransmission is started. Here,
the slow-start threshold is set to half the minimum con-
gestion window size or the maximum of the receive win-
dow. If this value is less than two times the maximum
segment size, the slow start threshold is reset to that
value. The congestion window is set to maximum seg-
ment size.

� Slow start In slow start, two packets are sent for every
acknowledgment. Here, the congestion window grows
by one maximum segment size every acknowledgment.

� Congestion avoidance The window grows by one max-
imum segment size every window worth of acknowledg-
ments. Here, one packet per acknowledgment is nor-
mally sent and two packets are sent every congestion
window worth acknowledgments.

� Round trip time (Rtt).The Rtt is measured one segment
at a time. When sending a packet and Rtt is not being
measured, a new measure is initiated. When retrans-
mitting, cancel the current Rtt measurement if ongoing.
The Rtt measurement process is complete upon receiv-
ing the first acknowledgment that covers the Rtt packet
which is being measured.

� Round trip timeout (Rto). We approximate Rto us-
ing a weighted average of the past values of Rto and
Rtt. We are currently implementing Jacobson’s tick-
based algorithm for computing round trip time, which
provides more of a dampen Rto computation by includ-
ing the deviation its measure [12].

2.4 ROSSNet TCP Model Data Structures

In the implementation of the TCP model there are three main
data structures. The message, which is the data packet, is
sent from host to host via the forwarding plane. The routers
LP state maintains the queuing information along with the
dropped statistics. Finally the host LP’s data structure keeps
track of the transferring of data.

A message contains the source and destination address.
These addresses are used for forwarding. The message also
has the length of the data being transferred which is used to
calculate the transfer times at the routers. The acknowledg-
ment number is also included for the sender to observe which
packets have been received. The sequence number is another
variable which indicates which chuck of data is being trans-
ferred.

Now, in our model the actual data transferred is irrelevant
and therefore it was not modeled. However in the case that
the application was running on top of TCP, such as the Border
Gateway Protocol (BGP), such data is required for the correct-
ness of the simulation. We are currently examining solution to
this issue.

Now, the router model’s state is kept small by exploiting
the fact that most of the information is read-only and does not
change for the static routing scenarios described in this paper.
Inside each router, only queuing information is kept along with
a dropped count statistics.



There is a global adjacency list which contains link infor-
mation. This information is used by the All-Pairs-Shortest-
Path algorithm to generate the set global routing tables (one or
each router). Each table is initialized during simulation setup
and consists only of the next hop/link number for all routers in
the network.

Given the link number the router can directly lookup of
the next hop’s IP address in its entry of the adjacency list. The
adjacency list has an entry for each router and each entry con-
tains all the adjacencies for that router. Along with the router
neighbor’s address, it contains the speed, buffer size, and link
delay for that neighbor.

The host has the same data structures for both the sender
and receiver sides of the TCP connection. There is also a
global adjacency list for the host, however there is only one
adjacency per host. In our model, a host is not multi-homed
and can only be connected to one router. There is also a read-
only global array which contains the sender or receiver host
status, and size of the network transfer (which is usually a file
of infinite size). The maximum segment size and the adver-
tised window size were also implemented as global variables
to cut down on memory requirements.

The receiver contains a “next expected sequence” variable
and a buffer for out-of-order sequence numbers. On the sender
side of a connection the following variables are used to com-
plete our TCP model implementation: the round trip timeout
(Rto), the measured round trip time (Rtt), the sequence number
that is being use to measure the Rtt, the next sequence number,
the unacknowledged packet sequence number, the congestion
control window (cnwd), the slow-start threshold, and the du-
plicate acknowledgment count.

For all experiments reported here, the Rto is initialized to
3 second at the beginning of a transfer, along with the slow
start threshold being initialized to 65,536. The maximum con-
gestion window size is set to 32 packets, however this value is
easily modified. The host, in addition to the variables needed
for TCP, has variables for statistic collection. Each host keeps
track of the number of packets sent and received, the number
of timeouts that occur and its measurement of the transfer’s
throughput.

2.5 Compressing Router State
As previously indicated, our router design at this point is as-
sumed to have a fixed, static routes. By leveraging this as-
sumption, we set out to reduce the router table state.

Now, a problem encountered with real Internet topologies,
such as the AT&T network, is they tend not to have an well
defined structure for the purpose of imposing a space-efficient
address mapping scheme. Ideally, one would like to impose
some hierarchical address mapping scheme on the topology
for the purposes of compressing the routing tables. From the
point-of-view the model, such a compression will not lead to
an incorrect simulation of the network so long as flow paths re-
main the same from the real network to the simulated network.
Currently, we are implementing such a scheme.

Our implementation of the routing table just contains the
next hop’s link number. Here, the maximum number of
links per routers is 67. Therefore the routing table could
be represented in a byte per entry instead of an full integer
size address. In our simulation we have an entry in the rout-

ack = SV->unack;
SV->unack = M->ack + g_mss;
/* other operations */
M->ack = ack;

Figure 1: LP state to message data swap example for acknowl-
edgment process.

ing table for each router. If we had to have an entry for each
host, the routing tables would be extremely large. The hosts
were addressed in such a way that the router they are con-
nected to can be inferred and therefore a routing table of only
routers is acceptable. In the case that it cannot be inferred,
we could have a global table of hosts and the routers that they
are connected to. This one table is a lot smaller than having a
routing table in each router with every host. We note that some
topologies are such that a routing table is not needed, such as
a hypercube. In these topologies the next hop can be inferred
based on current router and the destination.

Next, we assume that routers implement a drop-tail queu-
ing policy. Because of this, routers need not keep a queue of
packets to be sent. Instead, the routers schedule packets based
on the service rate based on bytes per seconds and the times-
tamp of last sent packet. As an example of how this works,
let assume we have a buffer size of 2 packets, a service time
of 2.0 time units per packet and 4 packets arrive at the follow-
ing times: 1.0, 2.0, 3.0 and 3.0. Clearly, the last packet will
be dropped, but lets see how we can implement this without
queuing them. If we keep track of the last send time, we see
that the packet at 1.0 will be scheduled at 3.0, following 5.0
and 7.0. Thus, when the last packet arrives, the last sent time
is 7.0. If we subtract arrival time of last packet, 3.0 from the
last sent time of 7.0, this says there are 4.0 time units worth of
data to be sent, which dividing by the service time, yields there
are currently 2 packets in the queue. Thus, this packet will be
dropped. We are currently examining how this approach could
be extended to other queuing policies as well as correct oper-
ation under dynamic routing scenarios.

2.6 Reverse Computation
The TCP model uses both reverse computation and incremen-
tal state saving. However, as opposed to using a logging struc-
ture [10], we reuse data space contained within the event that
is currently be processed. This not only reduces the complex-
ity of our simulation engine by not having to perform complex
memory management on logs, but also increasing data local-
ity. Because we know that the page of memory a message
is located will be accessed as a consequence of normal event
process. Thus, memory overheads (space and time) will not
increase by having to swap data between an LP and existing
message data.

As an example of how the swap operation is used in our
TCP model, consider the processing of an acknowledgment
event, as shown in Figure 1.

A swap operation is performed between the message’s ac-
knowledgment value

� ��� ����� and the unacknowledged
sequence number contained within the LP’s state �	� �
��� ����� . This is done to effectively state-save the unacknowl-



Forward:

M->dest = SV->cwnd;
SV->cwnd = 1;

Reverse:

SV->cwnd = M->dest;

Figure 2: Swap of the congestion window in a timeout.

Forward:

while(SV->out_of_order[cur_var]){
M->RC.dup_count++;
SV->out_of_order[cur_var] = 0;
cur_var++;

}

Reverse:

for(i = M->RC.dup_count; i > 0 ; i--) {
SV->out_of_order[cur_var] = 1;
cur_var--;

}

Figure 3: Forward and reverse code for the out-of-order buffer.

edged sequence number prior to is being overwritten with new
acknowledge sequence number. The message acknowledg-
ment value can be recreated by subtracting g mss from un-
acknowledged sequence number. We also use the message
destination to swap congestion window cwnd since the packet
is already at the destination. Figure 2 shows the forward and
reverse code for this swap.

Moreover, the receiver’s state and the out of order buffer
could take a lot of space to state save. The reason for this is
that the whole window worth of packets could be acknowl-
edged with the correct sequence number. This would mean
that the buffer would be completely emptied, so the whole
buffer state would need to be saved. In our implementation
the buffer has a one or a zero depending if the packet is in
the buffer. The buffer is circular starting with the next ex-
pected sequence number. The only time the buffer changes
state dramatically is when a sequence number fills in a gap.
The acknowledgment is sent for next missing sequence num-
ber. All buffer locations would be set to zero up to the next
gap. Because the buffer locations are all consecutive, we are
able count how many were set to zero and record that number
as seen in Figure 3. The reverse event handling code uses the
packet which was acknowledged and the count to revert the
previous values from zero back to one.
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Figure 4: Comparison of SSFNet and ROSSNet TCP models
based on sequence number for TCP Tahoe fast retransmission
behavior. Top panel is ROSSNet and bottom panel is SSFNet.

2.7 ROSSNet TCP Model Validation
SSFNet [7] has a set of validation test which shows the basic
behavior of TCP. Because of space limitations, we are only
showing TCP Tahoe’s behavior with congestion avoidance and
fast retransmission.

As can be seen from Figures 4 our implementation with
respect to sequence number behavior performs very similar to
SSFNet. The packet drop happens at similar times and so does
the fast retransmission.



3 Performance Study

3.1 Hyper-Threaded Computing Platform

Our experiments were conducted on a dual Hyper-Threaded
Pentium-4 Xeon processor system running at 2.8 GHz. Hyper-
threading is Intel’s name for a simultaneous multithreaded ar-
chitecture (SMT) [16]. SMT supports the co-scheduling of
many threads or processes to fill-up unused instruction slots
in the pipeline caused by control or data hazards. Because
the system knows that there can be no control or data hazards
between threads, all threads or processes that are ready to ex-
ecute can be simultaneously scheduled. In the case of threads
that share data, mutual exclusion is guarded by locks. Con-
sequently, the underlying architecture need not know about
shared variables or how they are used at the program level.
Additionally, because the threads assigned to the same physi-
cal processor share the same cache, there is no additional hard-
ware needed to support a cache-coherency mechanism.

Intel’s Hyper-Threaded architecture supports two instruc-
tion streams per processor core [13]. From the OS scheduling
point-of-view, each physical processor appears as if there are
two distinct processors. Under this mode of operation, an ap-
plication must be threaded to take advantage of the additional
instruction streams. The dual-processor configuration behaves
as if it was a quad processor system. Because of multiple in-
struction streams per processor, we denote instruction stream
(IS) count instead of processor count in our performance study
to avoid confusing the issue between physical processor counts
and virtual processors or separate instruction streams.

The total amount of physical RAM is 6 GB. The operat-
ing system is Linux, version 2.4.18 configured with the 64 GB
RAM patch. Here, each process or group of threads (globally
sharing data) is limited to a 32 bit address space, where the
upper 1 GB is reserved for the Linux kernel. Thus, an appli-
cation is limited to 3 GB for all code and data (both heap and
stack space and thread control data structures).

3.2 TCP Configuration
For all experiments, each TCP connection maintain a consis-
tent configuration. The transfer size was infinite, leading to
the transfers running for the duration of the simulation. The
maximum segment size was set to 960 bytes and the total size
of all headers was 40 bytes. The packet size was 1,000 bytes
which was consistent with the size used in SSFnet’s validation
tests. The Initial sequence number was initialized to zero and
the slow start thresh was 65,536.

We did, however, have a window size of 16 for the one
million host case which differed from the default window size
was 32. We set the window to 16, hoping to cut down on
the number of packets in the system. Later we found out that
changing the window size did not have an impact due to the
limits on the bandwidth in the system. The congested links
force the TCP window to shrink so that the slow-start thresh-
old became small and the upper bounds on the window size is
never encountered. A similar behavior has been recently noted
in [20].

All clients and servers were connected in the way that the
first half of hosts randomly connected to the second half of
hosts. There was a distinct client-server pair for each TCP

connection in the simulation. Because of the random nature of
connections, there was a high percentage of “long-haul” links
that result in a large the number of remote events scheduled
between threads.

3.3 Synthetic Topology Experiments

The synthetic topography was fully connected at the top and
had 4 levels. A router at one level had N lower level routers
or hosts connected. The number of nodes was equal to ��� �
��� ����� ��� . N was varied between, 4, 8, 16, and 32. The
nodes were numbered in such a way that the next hop can be
calculated based on the destination at each hop.

The bandwidth, delay and buffer size for the synthetic topol-
ogy is as follows:

� 2.48 Gb/sec, a delay of 30 ms, and 3 MB buffer,

� 620 Mb/sec, a delay between 10 ms to 30 ms, and 750
KB buffer,

� 155 Mb/sec, a delay of 5 ms, 10ms and 30ms, and 200
KB buffer,

� 45 Mb/sec, a delay of 5 ms, and 60 KB buffer,
� 1.5 Mb/sec, a delay of 5 ms, and 20 KB buffer,

� 500 Kb per second, a delay of 5 ms, and 15 KB buffer

Here, we considered 3 bandwidth scenarios: (i) high, which
has 2.48 Gb/sec for the top-level router link bandwidths, and
each lower level in the network topology uses the next lower
bandwidth yielding a host bandwidth of 45 Mb/sec, (ii) medium,
which starts with 620 Mb/sec and goes down to 1.5 Mb/sec at
the end host, and (iii) low, which starts with 155 Mb/sec and
goes down to 500 Kb/sec at the end host. We note that these
bandwidths and link delays are realistic relative to networks in
practice.

Our test were run on 1, 2 and 4 instructions streams (IS).
The synthetic topography was mapped with each core router
and all its children mapped to the same processor.

Table 1 show the performance results for all synthetic topol-
ogy scenarios across varying numbers of available instruction
streams on the Hyper-Threaded system. For all configurations,
we report an extremely high degree of efficiency. The low-
est efficiency is 97.4% and to our surprise we observe a large
number of zero rollback cases for 2 and 4 instruction streams
resulting in 100% simulator efficiency. We observe that the
amount of available work per instruction stream (IS) retards
the rate of forward progress of the simulation, particularly as
� grows and the bandwidth increases. Thus, remote messages
arrive ahead of when they need to be processed resulting al-
most perfect simulator efficiency. This result holds despite in-
herently small lookahead which is a consequence of link delay
and relatively large amount of remote schedule work, which
ranges from 7% to 15%. Recall, our link delays range from as
small as 5 ms at the low network levels to only about 30 ms at
the top router level.

The observed speedup ranges between 1.2 and 1.6 on the
dual Hyper-Threaded processor system. These speedups are
very much in line with what one would expect, particularly
given the memory size of the models at hand relative to the



�
Bandwidth IS EvRate Effic % Remote SU

4 500 Kb 1 441692 NA NA NA
4 500 Kb 2 535093 99.388 7.273 1.211
4 500 Kb 4 660693 97.411 14.308 1.495
4 1.5 Mb 1 386416 NA NA NA
4 1.5 Mb 2 440591 99.972 7.125 1.140
4 1.5 Mb 4 585270 99.408 14.195 1.516
4 45 Mb 1 402734 NA NA NA
4 45 Mb 2 440802 99.445 7.087 1.094
4 45 Mb 4 586010 99.508 14.312 1.612

8 500 Kb 1 210338 NA NA NA
8 500 Kb 2 270249 100 7.273 1.284
8 500 Kb 4 331451 99.793 10.746 1.575
8 1.5 Mb 1 177311 NA NA NA
8 1.5 Mb 2 237496 100 7.313 1.339
8 1.5 Mb 4 287240 99.993 10.823 1.619
8 45 Mb 1 176405 NA NA NA
8 45 Mb 2 221182 99.999 7.259 1.253
8 45 Mb 4 257677 99.996 10.758 1.460

16 500 Kb 1 128509 NA NA NA
16 500 Kb 2 172542 100 7.091 1.342
16 500 Kb 4 199282 99.987 10.600 1.550
16 1.5 Mb 1 100980 NA NA NA
16 1.5 Mb 2 137493 100 7.092 1.361
16 1.5 Mb 4 153454 99.998 10.626 1.519
16 45 Mb 1 99162 NA NA NA
16 45 Mb 2 117312 100 7.102 1.183
16 45 Mb 4 145628 99.999 10.648 1.468

32 500 Kb 1 80210 NA NA NA
32 500 Kb 2 108592 100 7.058 1.353
32 500 Kb 4 126284 100 10.586 1.57
32 1.5 Mb 1 75733 NA NA NA
32 1.5 Mb 2 90526 100 7.052 1.20

Table 1: Performance results measured in speedup (SU) for
� ���������	��
����� synthetic topology network for low (500
Kb), medium (1.5 Mb) and high (45 Mb) bandwidth scenar-
ios on 1, 2 and 4 instruction streams (IS) on a dual Hyper-
Threaded 2.8 GHz Pentium-4 Xeon. Efficiency is the net
events processed (i.e., excludes rolled events) divided by the
total number of events. Remote is the percentage of the to-
tal events processed sent between LPs mapped to different
threads/instruction streams.

small level-2 cache. We note that we were unable to execute
the � ���� , 45 Mb bandwidth case. This aspect and memory
overheads are discussed in the paragraphs below.

The memory footprint of each model is shown as a func-
tion of nodes and bandwidth in Table 2. We report a steady
increase in memory requirements and event-list size as band-
width and the number of nodes in the network increase. The
peak memory usage is almost 1.4 GB of RAM for the � ���� ,
1.5 Mb bandwidth scenario. The amount of additional mem-
ory allocated for optimistic processing is 7,000 event buffers
which is less than 1 MB. Thus, for 524,288 TCP connections,

�
Bandwidth Max Ev-list Size Mem Size

4 500 Kb 4,792 3 MB
4 1.5 Mb 5,376 3 MB
4 45 Mb 5,376 3 MB

8 500 Kb 45,759 11 MB
8 1.5 Mb 85,685 17 MB
8 45 Mb 86,016 17 MB

16 500 Kb 522,335 102 MB
16 1.5 Mb 1,217,929 202 MB
16 45 Mb 1,380,021 226 MB
32 500 Kb 5,273,847 1,132 MB
32 1.5 Mb 6,876,362 1,364 MB

Table 2: Memory requirements for � ������������
����� synthetic
topology network for low (500 Kb), medium (1.5 Mb) and
high (45 Mb) bandwidth scenarios on 1, 2 and 4 instruction
streams on a dual Hyper-Threaded 2.8 GHz Pentium-4 Xeon.
Optimistic processing only required 7,000 more event buffers
(140 bytes each) on average which is less 1 MB.

this model only consumes 2.6 KB per connection including
event data. By comparison, Nicol [20] reports that Ns con-
sumes 93 KB per connection, SSFNet (Java version) consumes
53 KB, JavaSim consumes 22 KB per connection and SSFNet
(C++ version) consumes 18 KB for the “dumbbell” model
which contains only two routers. Our topology is obviously
different from the dumbbell model and thus these memory us-
age statistics are only qualitatively comparable.

Last, we find that there is an interplay in how the event
population is effected by the network size, topology, band-
width and buffer space. In examining the memory utilization
results, we find that the maximum observed event population
differs by only a moderate amount for 1.5 Mb versus 45 Mb
case when � ����
 despite a rather significant change in net-
work buffer capacity. However, we were unable to execute the
45 Mb scenario when � ���� because it requires more than
17,000,000 events, which is the maximum we can allocate for
that scenario without exceeding operating system limits ( � 3
GB). This is because there are many more hosts at a high band-
width, resulting in a higher utilization of the available buffer
capacity. This case results in a 2.5 times increase in the amount
of required memory. Consequently, model designers will have
to perform some capacity analysis, since networks memory re-
quirements may explode after passing some size, bandwidth or
buffer capacity threshold, as happened here.

3.4 Hyper-Threaded vs. Multiprocessor System
In this series of experiments we compare a standard quad pro-
cessor system to our dual, Hyper-Threaded system in order to
better quantify our performance results relative to past proces-
sor technology. The network topology is the same as previous
described with � ��� , thus there are 4,680 LPs in this simu-
lation. We did however modify the TCP connections such that
they are more locally centered. So, in total 87% of all TCP
connections were within the same kernel process (KP).

We observe that the dual processor out performs the quad



SysConfig EvRate % Effic % Remote SU

1 IS, Hyper-Threaded 220098 NA NA NA
2 IS, Hyper-Threaded 313167 100 0.05 1.42
4 IS, Hyper-Threaded 375850 100 0.05 1.71

1 PE, Pentium-III 101333 NA NA NA
2 PE, Pentium-III 183778 100 0.05 1.81
4 PE, Pentium-III 324434 100 0.05 3.20

Table 3: Performance results measured in speedup (SU) for
� � � synthetic topology network medium bandwidth on 1,
2 and 4 instruction streams (dual Hyper-Threaded 2.8 GHz
Pentium-4 Xeon) vs. 1, 2 and 4 processors (quad, 500 MHz
Pentium-III

processor system by 16%. The respective speedups relative to
their own sequential performance are 3.2 for the quad proces-
sor and 1.7 for the dual Hyper-Threaded system.

Additionally, we observe 100% simulator efficiency for all
parallel runs. We attribute this phenomenon to the low remote
messages and large amount of work (event population) per unit
of simulation time.

3.5 AT&T Topology

SysConfig EvRate % Effic % Remote SU

medium, 1 IS 138546 NA NA NA
medium, 2 IS 154989 99.947 52.030 1.12
medium, 4 IS 174400 99.005 78.205 1.25
large, 1 IS 127772 NA NA NA
large, 2 IS 143417 99.956 51.976 1.12
large, 4 IS 165197 99.697 78.008 1.29

Table 4: Performance results measured in speedup (SU) for
AT&T network topology for medium (96,500 LPs) and large
(266,160 LPs) on 1, 2 and 4 instruction streams (IS) on the
dual Hyper-Threaded system.

The U.S. AT&T network topology contains 13,173 nodes
(i.e., routers) and 38,164 links. What makes Internet topolo-
gies like the AT&T network both interesting and challenging
from a modeling prospective is the spareness and power-law
structure [28]. In the case of AT&T, there are less than 3 links
on average. However, at the super core there is a high-degree
connectivity. Typically, an Internet service provider’s super
core will be configured as a fully connected mesh. Conse-
quently, backbone routers will have up to 67 connections to
other routers, some of which are other backbone or super core
routers and other links to region core routers. Once at the re-
gion core level, the number of links per router reduces and thus
the connectivity between other region cores is spare. Most of
the connectivity is dedicated to connecting local points of pres-
ence (PoPs).

In performing a breath-first-search of the AT&T topology,
there are distinct eight levels. At the backbone, there are 414
routers. At each successive level yields the following router

count : 4861, 5021, 1117, 118, 58, 6 and at the final level
there are 5 nodes. There were a number of routers not directly
reachable from within this network. Those routers are most
likely transit routers going strictly between autonomous sys-
tems (AS). With the transit routers removed, our AT&T net-
work scenario has 11670 routers. Link weights are derived
based on the relative bandwidth of the link in comparison to
other available links. In this configuration, routing is keep
static, however we do have dynamic routing currently working
on a light-weight OSPF model in which we plan to integrate
with our TCP model in the very near future.

The bandwidth, delay, and buffer size for the AT&T topol-
ogy is as follows: Level 0 router: 9.92 Gb/sec with a de-
lay randomly selected between 10 ms to 30 ms, and 12.4 MB
buffer; Level 1 router: 2.48 Gb/sec, a delay selected ran-
domly between 10 ms to 30 ms, and 3 MB buffer; Level 2
router: 620 Mb/sec with a delay selected randomly between
10 ms to 30 ms, and 750 KB buffer; Level 3 router: 155 Mb
per second with a delay of 5 ms, and 200 KB buffer; Level
4 router: 45 Mb per second, a delay of 5 ms, and 60 KB
buffer; Level 5 router: 1.5 Mb/sec, a delay of 5 ms, and 20
KB buffer; Level 6 router: 1.5 Mb per second, a delay of 5
ms, and 20 KB buffer; Level 7 router: 500 Kb per second, a
delay of 5 ms, and 5 KB buffer; link to all hosts: 70 Kb per
second, a delay of 5 ms, and 5 KB buffer.

Hosts are connected in the network at PoP level routers.
These routers only have one link to another higher-level router.
In the medium size configuration there where 10 hosts per PoP
level router which totaled 96,500 nodes (hosts plus routers). In
the large configuration there where 30 hosts per PoP totaling
266,160 LPs. In each configuration, the half the host establish
a TCP session to a randomly selected receiving host. We ob-
serve this configuration is almost pathological for a paral-
lel network simulation because the amount of remote net-
work traffic will be much greater than is typical in prac-
tice. The amount of remote message traffic is much greater
than the synthetic network topology because of the networks
sparse structure. Our goal is to demonstrate simulator effi-
ciency under high-stress workloads for realistic topologies.

We observe over 99% efficiency for the 2 and 4 IS runs
as shown in Table 4, yet there is a substantial reduction in the
overall obtain speedup. Here, we report speedups for the 4
IS cases of 1.25 for the medium size network and 1.29 for
the large. We attribute this reduction to enormous amount of
remote messages sent between instruction streams/processors.
The AT&T network topology for a round-robin mapping re-
sults 50 to even almost 80% of the all processed events be-
ing remotely schedule. We hypothesize that behavior on the
part of the model reduce memory locality and results in much
higher cache miss rates. Consequently, all instruction streams
are spending more time stalled waiting for memory requests
to be satisfied. However, we note that more investigation is
required to full understand this behavior.

The memory requirements for the AT&T scenario were
269 MB for the medium size network and 328 MB for the
large size network, yielding a per TCP connection overhead of
2.8 KB and 1.3 KP respectively. The reason for the reduction
per connection in moving from medium to large configuration
is because the amount of network buffer space which effects
the peak event population did not change, yet the number of
connections went up by almost a factor of 3.



4 Related Work

Much of the current research in parallel simulation for net-
work models is largely based on conservative algorithms. For
example, PDNS [27] is parallel/distributed network simulator
that leverages HLA-like technology to create a federation of
Ns [21] simulators. GloMoSim [17], TaskKit [31] and SSFNet
[7], all use Critical Channel Traversing (CCT) [31] as the pri-
mary synchronization mechanism. DaSSF employs a hybrid
technique called Composite Synchronization [19], where both
the asynchronous CCT algorithm and a barrier synchroniza-
tion are combined to avoid channel scanning limitations asso-
ciated CCT while at the same time reducing the frequency a
global barrier must by applied.

Recent optimistic simulation systems for network mod-
els include TeD [22], which is a process-oriented framework
for constructing high-fidelity telecommunication system mod-
els. Premore and Nicol [24] implement a TCP model in TeD,
however no performance results are given. USSF [26] is an
optimistic simulation system that dramatically reduces model
runtime state by LP aggregation, and swapping LPs out of
core. Additionally, USSF proposes to execute simulation un-
synchronized using their NOTIME approach. Based on the re-
sults here, a NOTIME synchronization could prove beneficial
for large-scale TCP models. Unger et. al. simulate a large-
scale ATM network using an optimistic approach [29]. They
report speedups ranging from 2 to 7 on 16 processors and in-
dicate that optimistic outperforms a conservative protocol on
5 of the 7 tested ATM network scenarios.

5 Conclusions and Future Work

In this paper we present a new scalable TCP model. With the
use of optimistic parallel simulation techniques coupled with
reverse computation, speedups of 1.7 for a Hyper-Threaded
dual processor system and 3.2 for a quad processor system are
reported. These speedups were achieved with an insignificant
amount of additional memory for optimistic processing (i.e.,
about 1 megabyte in practice).

The parallel TCP model proved to be extremely efficient
with very few rollbacks observed. Parallel simulator efficiency
ranged between 97 to 100% (i.e., zero rollbacks). This sug-
gests that the model could be executed unsynchronized with a
negligible amount of error.

The model was implemented as lean as possible which al-
lowed for the million node topology to be executed. We ob-
served model memory requirements between 1.3 KB to 2.8 KB
per TCP connection depending on the network configuration
(size, topology, bandwidth and buffer capacity).

Last, the Hyper-Threaded system was able to provide a
low cost-performance ratio. What is even more interesting is
that these systems blur the lines in terms of sequential ver-
sus parallel processing. Here, to obtain higher rates of perfor-
mance from a single processor, one has to resort to executing
the model in parallel. As this technology matures to even high
clock rates, we anticipate single processors having many more
instruction streams, which will provide an even greater oppor-
tunity for parallel simulation tools and techniques.

In the future, we will be working on the implementation of
a faster event-list management to cut down on priority queue

overheads. Also the implementation of TCP functionality such
as delayed acknowledgment, ticks for round trip time calcula-
tion, and Reno capabilities are in the works. The concept of
creating a hierarchical address mapping scheme from a ran-
dom network topology as well as a better LP to processor map-
ping scheme to reduce remote events has also been a topic of
discussion.

Additionally, as more optimistic models are developed we
are learning how they interoperate and how network researchers
would like to utilize them. The outcome from this research
will be modular software architecture that does not add ei-
ther memory or computational overheads as compared with
its direct implementation counterpart. The architecture should
allow for the creation of different applications using the trans-
port protocol level (i.e., TCP), such as Border Gateway Proto-
col for both inter and intra domain routing and web traffic. In
the modular model there should be the ability to turn on and
off different layers within the overall protocol stack as well as
particular features, such as the need to have data represented
in the message. This flexibility will enable the model to be
tuned for optimum performance within the constraints placed
on its expected operating environment and required level of
accuracy.
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