
**

ATM Forum Document Number: ATM_Forum/98-0152R1

**

Title: Explicit rate control of TCP applications

**

Abstract

This contribution examines di�erent methods of controlling the rate of TCP applications to

achieve the goals of fairness, delay control and throughput. The key idea is to use an ATM ABR

algorithm like ERICA+ to calculate rate feedback and use new techniques to control TCP sources

using the feedback calculated. Speci�cally we propose two rate-to-window translation schemes for

explicit window feedback to TCP and one variant of an acknowledgment bucket scheme (which
controls TCP rate by controlling the rate of acknowledgements). These techniques can be applied

in ATM edge devices or in Internet routers. We explore the dynamics of TCP tra�c under di�erent

methods of rate control and show through simulations that our techniques can considerably improve

fairness, throughput and end-to-end delay properties of TCP applications.

**

Source:

Ramakrishna Satyavolu, Ketan Duvedi, Shivkumar Kalyanaraman

Department of ECSE,

Rensselaer Polytechnic Institute,

110, 8th Street, Troy, NY 12180-3590

Phone: 518-276-8979, Fax: 518-276-2433, Email: shivkuma@ecse.rpi.edu

The presentation of this contribution at the ATM Forum is sponsored by

NASA Lewis Research Center.

The research was supported in part by DARPA contract number:

F30602-97-C-0274.

**

Date: February 1998

**

1

Distribution: ATM Forum Technical Working Group Members (AF-TM)

**

Notice:

This contribution has been prepared to assist the ATM Forum. It is

offered to the Forum as a basis for discussion and is not a binding

proposal on the part of any of the contributing organizations. The

statements are subject to change in form and content after further

study. Specifically, the contributors reserve the right to add to,

amend or modify the statements contained herein.

**

A postscript version of this contribution including all figures and

tables has been uploaded to the ATM Forum ftp server in the incoming

directory. The postscript version is also available through our web

page:

http://www.ecse.rpi.edu/Homepages/shivkuma

**

1 Introduction

There has been considerable interest in studying the dynamics of legacy TCP/IP applications over
ATM (see [1, 2, 3, 4, 5] and references therein). These studies have indicated that an ABR service
implementation can provide low-delay, fairness, and high throughput inside the ATM network for ftp-
like applications, but the TCP/IP queues build up at the edge of the ATM network. In contrast,
the UBR and GFR service implementations allow tra�c into the ATM network, and if bu�ering is
insu�cient, tackle the issues of throughput, and fairness through intelligent bu�ering, scheduling and
drop policies.

The natural question which arises out of this is how one can carry the bene�ts of ABR end-to-end, i.e.,
provide better control of delay, throughput and fairness of TCP connections. An innovative approach
suggested recently [4, 5] involves maintaining an \acknowledgment bucket" (also called \ack-bucket")
at the edge device (or router) and releasing the acknowledgments (which in turn controls the rate of
TCP) based upon the ACR of the VC carrying the TCP connection.

In this contribution, we �rst study a more direct mechanism to control TCP sources, which is to control
its maximum window size based upon the explicit rate calculated by the ERICA+ algorithm. As
described later in this contribution, this mechanism can be used independently or in conjunction with
the \acknowledgment bucket" mechanism. In this contribution we study the feasibility and bene�ts of
this mechanism (in terms of throughput, delay and fairness), and its impact on TCP tra�c dynamics.

We also identify a variant of the acknowledgement bucket idea whereby the acks are simply clocked
out at the rate calculated by our ERICA+ algorithm. References [4, 5] also use a rate to control the

2

ack bucket. The ack-bucket algorithm used in [4] attempts to model the TCP source's behavior in
the router, and use the model to decide when to release the acknowledgements. This method may
be restricted by the accuracy and complexity of the TCP source model used. Reference [5] uses the
VC's ACR at an end-system, and a simple queue-threshold based scheme to decide when to release
the acknowledgements. The queue-threshold based scheme is needed to compensate for the end-system
queues which may accumulate. The fairness of the scheme is not clear and the choice of the thresholds
should be done carefully to avoid bu�er overows. Our approach is di�erent in that it simply clocks out
the acks at the explicit rate calculated by the ERICA+ scheme [3, 16]. The ERICA+ scheme controls
the queueing delay and calculates a fair allocation for the contending sources. The ack bucket simply
enforces the fair allocations. We also study the combination of this scheme with the one of the TCP
explicit feedback mechanisms.

In the public Internet where writing to TCP headers may not be a viable option, it may be possible
to use rate-based techniques to control mechanisms scheduling, bu�ering and drop policies. These
combinations will be studied in the future.

2 TCP congestion control evolution

The TCP congestion control algorithm [6] is used to provide a reliable end-to-end transport service. The
TCP congestion control protocol is extremely robust and has been shown to work under pathological
conditions. However it has certain well-known drawbacks relating to its performance, some of which
are enumerated below:

� Unfairness (a connection which sends more gets a larger window)

� Little control over end-to-end delay characteristics

� Late congestion detection (due to the implicit packet-loss-based detection technique)

� Degraded throughput due to bursty loss of packets (due to triggering of the long TCP timeout)

� Tra�c synchronization e�ects

� Burstiness of tra�c depending upon reverse-path congestion

� Long ramp up times in long-delay bandwidth paths

The Internet Engineering Task Force (IETF) and independent researchers have proposed several im-
provements to TCP/IP-based control at the transport and network layers. Proposed transport layer
enhancements include the fast retransmit and recovery (FRR) algorithms [7], selective acknowledgments
(SACK) [8] and Explicit Congestion Noti�cation (ECN, one bit explicit feedback) [9]. The former en-
hancements (FRR, SACK) aim at improved throughput, timeout avoidance and quick recovery from
burst losses, while ECN aims to improve fairness and delay characteristics experienced by connections.
Recently, proposals to improve the startup dynamics of TCP (esp. for satellite links) have been seen
[10]. Network layer enhancements are aimed at improving fairness and throughput. These include
mechanisms like scheduling [11] and packet discard policies [12, 13].

3

These enhancements have been found to improve TCP throughput, avoid the expensive TCP timeout,
and react well during burst loss of packets. However, providing some form of fairness and delay control
still remain fairly open problems, though the ECN [9] proposal seeks to partially address it. Delay and
fairness are two important user-perceived metrics in WWW performance which would justify current
interest in these metrics. Since the release of the ATM Tra�c management speci�cation 4.0 [14] it has
been realized that some of the ideas from ABR ow control could be applied to improve the delay and
fairness characteristics of TCP. Speci�cally, ABR switch algorithms like ERICA+ have demonstrated
fairness and controlled delay characteristics using explicit rate feedback.

In this contribution, we study the feasibility of achieving similar goals in TCP (high throughput, fairness
and low delay) by using rate control. The �rst technique we use involves calculating rate feedback just
as in an ABR switch algorithm, but translating the rate into a window value to give feedback. This
is a direct method of controlling the rate of the TCP source. We also consider another method of
controlling TCP rate which is a variant of recent proposals [4, 5] called the \acknowledgment bucket"
(ack-bucket) scheme. This method exploits the fact that TCP rate is controlled by the rate of receipt
of its acknowledgments. More accurately, when the TCP's window size is �xed or slowly varying (eg:
congestion avoidance phase), the rate of packets sent into the network is equal to the rate of receipt of
acknowledgments. The ack bucket method can slow down but not prevent the increase of TCP window
values. The TCP window controls the sum of unacknowledged segments in the forward path and the
acknowledgements in the reverse path. We note that our explicit method of controlling TCP window
can be used in conjunction with the ack bucket method. We study this issue further in section 4.1.1.

3 Procedure to Control TCP rate

Given a rate r calculated by a max-min fair scheme at a switch/router/atm end system, our goal is to
make TCP send data at rate r. Our approach is to convert r into a window value W by multiplying it
by a time quantity representative of the round trip time, T.

W = r*T

We will see later (section 4.1.1) that there are several possible ways of choosing T. The rate r can
be calculated using a switch algorithm like ERICA+ [16], or can be gotten by simply using ACR (of
an ABR VC). This window value W is then used to limit the TCP congestion window variable. The
feedback is given via the receiver window �eld (Wr) in the TCP header [15]:

Wrnew = Min (Wrold, W)

Further, the TCP checksum needs to be adjusted as follows:

Delta = Wrnew �Wrold (one's complement subtraction)

TCP checksum = TCP checksum + Delta (one's complement addition)

4

Note that the header modi�cation does not violate the TCP protocol and as a result requires no
standardization. Also note that even if the TCP packet is fragmented across several IP datagrams, the
window update and checksum adjustment needs to be made only in those fragments where the TCP
header is available. Also this adjustment must be applied to every acknowledgment seen (including
piggybacked acknowledgments), though the rate, r (if it is computed at the node) need not be computed
on a per-packet basis. Though we maintain some per-ow state in our method of rate computation,
one could expect to build algorithms in the future with very little or no per-ow state. It may also be
possible for routers/edge devices to control several TCP ows as a single unit (for example, all ows from
some particular domain can be rate controlled as a single unit, albeit at the loss of accuracy of control).
However, note that there are some situations where the technique cannot be directly applied, eg, if the
IP payload is encrypted (eg. using IPSEC), or authenticated. Also, since every acknowledgement needs
to be marked, route aps (due to instability in routing algorithms) can result in undesirable oscillations.

4 TCP Dynamics with Rate Control

TCP uses window control to send packets into the network. In general if X(t) packets are sent into the
network in time interval t, the rate of the connection is dX(t)/dt. In the case of window control with
a �xed size window, W, the rate of the connection in the steady state is equal to the rate of receipt of
acknowledgments (acks). In the case of TCP, the window size increases by either 1 (or 1/W(t) during
congestion avoidance) for the receipt of every non-duplicate ack. As a result, the rate of the TCP
connection in every round trip time (RTT) is either 2*W/T (W/T + 1) in every round trip time T,
where W is the window size at the end of the previous RTT. At the end of the current RTT, the new
window size is 2*W (or W+1).

In other words, the TCP rate in the worst case may grow exponentially in successive RTTs. Also note
that, when the TCP source is in its startup phase, its window size is small, and as a result does not
receive acknowledgments regularly - they are received in bursts. The rate of TCP as calculated above
is the average rate over a period of RTT. The startup TCP rate measured over small intervals (e.g. at
the router) could be much higher (during the burst) or lower (during idle periods) but should equal the
average rate once the acknowledgments are received regularly (the \pipe" is �lled). Once the pipe is
�lled, the ack rate could still be irregular depending upon the queueing dynamics inside the network,
and use of delay ack timer at the destination. However, for our discussion, we shall not involve the
e�ect of these latter factors.

In the following sections we will considering two ways of controlling the TCP rate: a) by limiting the
maximum window size of the TCP source, and b) by controlling the rate of acknowledgments (without
explicitly writing to the window �eld). We will also consider combinations of these two methods.

5

4.1 TCP Dynamics with Explicit Feedback Control

Firstly, we recall that our the window adjustment technique described in section 3 controls only the
maximum receiver window (Wr), which acts as an upper bound on the TCP congestion window (CWND)
variable at the source. The method would not have any e�ect if a) CWND <Wr, or b) Wr<W (feedback
value larger than receiver's max window itself). Note that while case b) is a permanent condition where
the feedback calculated is ine�ective, case a) can be assumed to be a transient condition.

Speci�cally, in case a), CWND is initially small (slow-start increase). But, once CWND > Wr, the
window available to the source is Wr. In this state, sudden increases in Wr (due to uctuations in the
available rate r) may result in a sudden burst of packets in the network. Similarly a sudden decrease in
Wr may result in an extended idle period (because the source is waiting for the acknowledgments for
excess packets sent when the window was higher). Even if Wr is constant (r is in the steady state), the
rate of packets sent into the network depends upon the rate at which the acknowledgments are received.
The rate of acknowledgments depends upon factors such as the TCP source rate, the queue lengths
(which may uctuate), and delay ack timer at the TCP destination (we ignore ack bucket control for
this discussion). As a result the e�ective rate of TCP depends both upon the changes in the maximum
receiver window Wr (a�ected by our scheme), and the rate of acknowledgments received (dependent
upon queueing dynamics, also partially dependent upon our scheme).

We describe two methods of controlling the receiver window Wr based upon a rate r.

4.1.1 Two methods for Translating Rate Feedback into Window Feedback

In this section, we consider two ways of choosing T, the time value used to translate r to W. One
approach is to treat the advertised rate value as an average allocation over the period of the ow's
round-trip delay, Ti, and calculate the window as the product of the rate, r, and the ow's round trip
delay, Ti. The second approach is advertise a window value based upon a single time estimate T.

The �rst approach, called \translation using individual source RTT" requires the round trip delays of
individual sources. The window value given as feedback indicates the ideal delay-bandwidth product
per connection, where the delay is Ti, and the bandwidth is r. Once the sources' congestion window
values reach r*Ti, and the ow of acks back to the source is regular, the allocation is fair and e�cient.
Note however that the rate uctuations in r, would result in magni�ed window changes in larger RTT
connections. So, as described in section 5 we use a conservative increase technique to avoid such
burstiness. We show using simulations in section 6 that this scheme can achieve fair and e�cient
allocations, with minimal bu�er requirements and queueing delays. As a �nal point, note that one way
of determining round trip time of a connection is to send an ICMP echo message to both source and
destination.

The second approach, called \translation using a �xed-RTT," is to advertise a single window value
based upon a time estimate T. The simplest approach is to choose a constant T. Our simulations in
section 6 show that while this method can control delay to small values, it does not eliminate unfairness.
However its worst case performance in terms of fairness is better than vanilla TCP in that it allows
every connection to get a non-trivial share of the bandwidth (though not necessarily the fair share).

6

The reason for the unfairness in the �xed-RTT translation is explained as follows. We are choosing a
single value T to translate the rate feedback for heterogeneous RTT connections. If T < Max RTT, the
largest RTT source i is limited to a window of r*T which is less than r* (Max RTT). As a result, source
i cannot send at a rate r continuously since the acks cannot be sustained at a rate r over a round trip
time of Max RTT. If T � Max RTT, the above problem can be overcome, i.e., it is possible to achieve
a state where the largest RTT connection i �nally gets acks back at a rate r. However, the distribution
can still be unfair because of the following situation. All sources now get a �xed window size r*T, but a
smaller RTT connection j could transmit its entire window (r*T) within its RTT (RTTj), i.e. it sends
tra�c at a rate r*T/RTTj. However, the largest RTT connection i in this state can achieve a maximum
rate of only r*T/RTTi = r*T/(Max RTT), which is smaller than the rate of connection i, an unfair
situation.

We note that for this latter case i.e., T � Max RTT, a simple ack bucket scheme can be used in
conjunction with the explicit feedback scheme to achieve fairness. Speci�cally, consider an ack bucket
scheme enforces the rate of acks to be equal to r which augments the feedback scheme and the window
values of sources Wi, Wj are greater than r*Max RTT. We now have a condition where the ack bucket
scheme is working with �xed window sources, and regular ack ow. As explained later in section 4.2,
this can lead to a fair distribution of rates. As a �nal point, note that the bu�er requirements for
this method (Bu�er = Sum (r*Max Ti)) will be larger than that for the �rst method, where we use
individual RTT values Ti or feedback calculation (Bu�er = Sum (r*Ti)). Now the fairness achieved by
using the acknowledgement bucket in addition to explicit feedback leads us to investigate the former in
its own right.

4.2 TCP Dynamics with Ack Bucket Control

The TCP dynamics under ack-bucket control can be understood by using a simple ack-bucket which,
when given a rate r, releases (\clocks out") the acks at a rate r. Assume that there are two connections
passing through the router which each get a rate r, and that one connection has a small RTT (RTT1)
and the other a large RTT (RTT2). Further, assume that both connections currently have the same
window size W such that r*RTT2 � W � r*RTT1. In this state, connection 2 is idle most of the
time, whereas connection 1 is receiving acks continuously. If both connections are in the exponential
increase phase, connection 1 would increase its window at rate r continuously, whereas connection 2
would increase its window at a rate r for a period W/r for every round trip (RTT2). Hence connection
1 sends more packets through than connection 2 during this transient phase (temporary unfairness).

Now once the long RTT pipe is �lled (i.e. connection 2's window grows to r*RTT2), it gets acks regularly
and increases its window at a rate r (like connection 1). Since both connections are increasing their rate
of transmission exponentially, the queue increases at rate 2r. An additional mechanism is necessary
to quell the queue growth. In general, controlling the rate of acks to the ACR at the end system is
insu�cient, because it does not take into account the source queueing point. A separate algorithm is
necessary to take that into account.

Reference [5] proposes a queue threshold based algorithm to control the ack release rate (basically a
simple ABR switch congestion control algorithm) which reacts upon queue length crossing a threshold
by cutting down the rate of acks by a constant factor, H. Observe that it is necessary that H � 2 to

7

guarantee stop of queue growth in the above scenario. In general, the correct rate under such conditions
can be better calculated by a explicit rate switch algorithm like ERICA+ [16]. Hence, our proposal is
to use a simple ack-bucket, where the acks are clocked out at the rate calculated by an explicit rate
algorithm like ERICA+. We demonstrate in section 6 that this method can result in fair allocations.

Observe, however, that the simple ack-bucket scheme (without ERICA+) can achieve fairness if the
TCP source windows are kept constant and the window of source i, Wi, is no less than r*RTT(i). Under
these conditions, acks return continuously to both sources (irrespective of RTT) at rate r, and since
the window Wi is constant, each ack simply clocks a new packet into the network. In other words, the
rate of both connections is now r, a fair distribution. The ack bucket scheme would also be near-fair
in the above situation if the TCP sources are in their congestion avoidance phase where the window
increases slowly. One of our proposals here involves showing how a simple explicit feedback scheme
(the �xed-RTT method described in section 4.1.1) can augment the ack-bucket scheme to maintain a
constant window at TCP sources (and as a result achieve fairness).

5 Simpli�ed ERICA algorithm for Explicit Rate Calculation

We use the ERICA+ algorithm as described in [16, 3] for our simulations. This is a well-known algorithm
in the ATM Tra�c Management community, which achieves the goals of fairness, high utilization, and
low delay using rate-based control. The key change we make to the algorithm is to limit rate increases
to 10previous value. This step, which is similar to the limit imposed by the RIF parameter, is done to
prevent burstiness which can result due to corresponding window changes at the source (see section 4.1).
Rate decreases are not limited. The source rate of each connection is measured at the end of an averaging
interval and the new feedback rate is calculated at that time. All of the calculations are done at the end
of the averaging interval; no rate updates are made in the middle of averaging intervals. The resulting
algorithm is:

Initialization:

FairShare = 0;
MaxAllocPrevious = MaxAllocCurrent = FairShare;

End of Interval:

Measure Total Available Capacity
Measure Input Rate
Target Capacity f(Q)* Total Available Capacity
z Input Rate/Target Capacity
Measure number of active sources
FairShare = Target Capacity/Number of active sources
FOR each session i DO

Rate[i] = Num Packets In Interval [i]/Interval Length
VCShare Rate[i]/z
IF (z > 1+ delta) ER[i] = Min(Max(VCShare, FairShare), 1.1*ER[i])

8

ELSE ER[i] = Min(Max (MaxAllocPrevious, VCShare), 1.1*ER[i])
MaxAllocCurrent = Max (MaxAllocCurrent,ER[i])
IF (ER[i] > FairShare AND Rate[i] < FairShare)
THEN ER FairShare

ENDFOR
MaxAllocPrevious = MaxAllocCurrent
MaxAllocCurrent = FairShare

TCP Acknowledgement Processing:

Wrnew Min(Wrold, ER[i]*T[i]) // T[i] is either a �xed common value or a per-connection value
Delta = Wrnew �Wrold // one's complement subtraction
TCP checksum = TCP checksum + Delta //one's complement addition

Note that other simpli�cations to ERICA+ are possible, especially for multicast con�gurations where
it is undesirable to measure N [17].

6 Simulation Results

The simulations were run using the following parameters. For an explanation of ERICA+ parameter
values, please refer [16]

Parameter Value

Simulation time 5 s
Switch Avging Interval (ERICA+) 5 ms
Target Queueing Delay (ERICA+: T0) 1.5 ms
Queue Drain Limit Factor (ERICA+: QDLF) 0.5
a (ERICA+) 1.15
b (ERICA+) 1
Switch RTT estimate 30 ms
Link speed 155.52 Mbps
Maximum Segment Size (TCP: MSS) 1024 bytes
SSThresh (TCP) 600000 bytes

6.1 Simulation Results with a Heterogeneous RTT Con�guration

We use the con�guration shown in Figure 1 for studying heterogeneous RTT cases. The TCP sources
named STCP #1..15 are the sources for packets and the TCP connection objects names DTCP #1..15
are the corresponding sinks for the TCP sources. There are three groups of 5 sources each. The �rst
group has access links of 3 km each (or an RTT of 2012 km = 10 ms). The second group has access
links of 300 km each (or an RTT of 3200km = 16ms). The third group has access links of 3000km (or
an RTT of 14000 km = 70 ms).

9

STCP #1..5

 STCP #6..10

 STCP #11..15

DTCP #1..5

 DTCP #6..10

 DTCP #10..15

 ROUTER #1 ROUTER #2

3 Km 3 Km

300 Km 300 Km

3000 Km
3000 Km

1000 Km

Figure 1: The NxN Heterogeneous RTT Con�guration

We conduct �ve experiments with this con�guration:

� In the �rst experiment (Figure 2) routers do not use explicit feedback (also called vanilla TCP).

� In the second experiment (Figure 3), the routers use the �xed-RTT translation method to calculate
the window feedback from the rate feedback for all sources. The �xed value chosen is 70 ms, which
is the maximum RTT of any connection in this con�guration.

� In the third experiment (Figure 4) we use the translation using individual source RTTs. We
assume that the routers have knowledge of the round trip delays, Ti for each of the sources and
use that value to translate rate feedback to window feedback.

� In the fourth experiment (Figure 5) we use the ack-bucket scheme which simply clocks out the
rate of acks based upon the rate calculated by ERICA+.

� In the �fth experiment (Figure 6) we combine the �xed-RTT translation with the ack-bucket
scheme.

6.1.1 Performance of rate-to-window translation techniques

Figure 2(a) shows the TCP source's \actual window size" which is the minimum of the TCP congestion
window (CWND), and the receiver window (Wr). Since the receiver window is constant at its initial
value of 600000 (no TCP rate control), this graph is no di�erent from a graph of CWND vs time. The
window sizes increase exponentially (each increase spurt is twice the size of the previous one). However,
between each increase spurt, there is a time gap which indicates that the source is waiting for new
acknowledgments after sending the current spurt of tra�c. This time the gap increases exponentially

10

ICR: / XRM: / Graph: 0

tcp15conf1_05/swtimer=5000/option=10371/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N=0.9/l

inkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:01/24/98

0

100000

200000

300000

400000

500000

600000

700000

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

cn
_a

ct
_w

nd
(b

yt
es

)

Time in milliseconds

Actual Window Size

 Actual Window Size (3 km)
Actual Window Size (300 km)

Actual Window Size (3000 km)

(a) TCP Actual Window Size

ICR: / XRM: / Graph: 0

tcp15conf1_05/swtimer=5000/option=10371/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N=0.9/l

inkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:01/24/98

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

Q
ue

ue
s

(p
ac

ke
ts

)

Time in milliseconds

Bottleneck Queue Length

 Bottleneck Queue Length

(b) Bottleneck Queue Length

ICR: / XRM: / Graph: 0

tcp15conf1_05/swtimer=5000/option=10371/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N=0.9/l

inkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:01/24/98

0

20

40

60

80

100

120

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

U
ti

liz
at

io
n

Time in milliseconds

Link Utilization

 Bottleneck Utilization

(c) Bottleneck Link Utilization

ICR: / XRM: / Graph: 0

tcp15conf1_05/swtimer=5000/option=10371/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N=0.9/l

inkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:01/24/98

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

Se
nd

er
 s

eq
ue

nc
e

nu
m

be
r

Time in milliseconds

Sender sequence number

 (3 Km)
(300 Km)

(30000 Km)

(d) TCP Send Sequence Numbers

Figure 2: Simulation Results with NxN Heterogeneous Con�guration without Explicit Feedback

11

ICR: / XRM: / Graph: 0

tcp15conf1_71/swtimer=5000/ction=1.1/option=276643/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N

=0.9/linkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:02/04/98

0

20000

40000

60000

80000

100000

120000

140000

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

cn
_a

ct
_w

nd
(b

yt
es

)

Time in milliseconds

Actual Window Size

 Actual Window Size (3 km)
Actual Window Size (300 km)

Actual Window Size (3000 km)

(a) TCP Actual Window Size

ICR: / XRM: / Graph: 0

tcp15conf1_71/swtimer=5000/ction=1.1/option=276643/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N

=0.9/linkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:02/04/98

0

100

200

300

400

500

600

700

800

900

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

Q
ue

ue
s

(p
ac

ke
ts

)

Time in milliseconds

Bottleneck Queue Length

 Bottleneck Queue Length

(b) Bottleneck Queue Length

ICR: / XRM: / Graph: 0

tcp15conf1_71/swtimer=5000/ction=1.1/option=276643/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N

=0.9/linkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:02/04/98

0

20

40

60

80

100

120

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

U
ti

liz
at

io
n

Time in milliseconds

Link Utilization

 Bottleneck Utilization

(c) Bottleneck Link Utilization

ICR: / XRM: / Graph: 0

tcp15conf1_71/swtimer=5000/ction=1.1/option=276643/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N

=0.9/linkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:02/04/98

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

Se
nd

er
 s

eq
ue

nc
e

nu
m

be
r

Time in milliseconds

Sender sequence number

 (3 Km)
(300 Km)

(30000 Km)

(d) TCP Send Sequence Numbers

Figure 3: Simulation Results with NxN Heterogeneous Con�guration with Explicit Feedback using
Fixed RTT = 70 ms for Translation

as well because the �rst packet of the new spurt needs to travel though a larger queue to reach its
destination.

Figure 2(b) and 2(c) show the queue length, and link utilization respectively, while �gure 2(d) shows
sender sequence numbers of the various TCP sources. The round trip times measured at the source (not
shown) increase (due to queue buildup in the network) and correspondingly slow the window increase
by reducing the rate of acknowledgments returned to the sender. The queue lengths reach a maximum
of about 8000 packets and round trip times measured at the source (not shown) went up to 600ms.
These quantities stabilized at this point as the sources reached the SSTHRESH (and receiver window)
value of 600000 bytes and the congestion window increases no further.

Figure 3 shows a simulation of the same con�guration where explicit feedback control is used. Notably,
�gure 3(b) shows queue lengths which oscillate between about 600 and 750 packets (an earlier experiment

12

with �xed RTT = 30 ms showed even lower queues). The actual window size shown in �gure 3(a)
is now limited by the receiver window value (feedback) and not the actual congestion window value.
Observe that the actual window size oscillates between 60000 and 80000 bytes (with RTT = 30ms, the
values were 30000 and 40000 bytes).

The queue length oscillation and the actual window size oscillation are related due to two reasons:
a) ERICA+ is sensitive to queueing delays above the T0 parameter [16] (1.5 ms), and b) the rate of
acknowledgments which determines rate of change of window size and introduction of new packets is
controlled by current queue levels. The queue oscillations indicate that the rate-to-window translation
mechanism cannot fully control the rate of the TCP sources (other factors like the rate of acks also
play a role). However the delay performance (and bu�er requirements) of the system display a marked
improvement with rate feedback. Also note that the sequence number increase in �gure 3(d) is much
more smoother, which means that the burstiness of tra�c is reduced.

The graphs in Figure 3 show that the distribution of rate is unfair (see slopes of curves in �gure
3(d)). We show in a later experiment that fairness can be achieved by adding ack-bucket control to this
method. Note however, that if a smaller RTT were used for the translation (eg �xed RTT = 30 ms),
even the addition of ack-bucket control does not achieve fairness because the long RTT sources cannot
sustain the desired rate in an interval of length max RTT = 70 ms).

However note that this distribution, though unfair is an improvement over the TCP worse case where a
connection can be almost completely starved. The overall utilization (�gure 3(c)) is high because the
smaller RTT connection grabs the available capacity. Queue sizes (�gure 3(b)) are controlled due to
the queue control feature of ERICA+ [3, 16] and the fact that window sizes are limited. The oscillations
in actual window sizes (�gure 3(a)) and queue lengths (�gure 3(b)) which are interrelated by the rate
of ACKs returning to the sources. We will examine combinations of ack bucket and single time value
based translation in future contributions, which can help smooth these oscillations and improve fairness.

Figure 4 shows results with the translation scheme where the individual RTT (Ti) is used instead of
a single value T. As expected the allocations are fair (see �gure 4(d)), and the actual window sizes
(�gure 4(a)) are proportional to their RTTs. Queue sizes are also small (�gure 4(b)), and utilization
is not compromised much (�gure 4(c)).

6.1.2 Performance of the Ack-bucket techniques

Figure 5 shows results where the ERICA+ algorithm calculates the explicit rates, but the acks are
clocked out at the rate calculated by ERICA+, bypassing the rate-to-window translation. The perfor-
mance is excellent, as expected from the discussion in section 4.2. The ERICA+ algorithm calculates
the rate based upon not only the available capacity, but also the input rates and queue lengths. As
discussed in section 4.2, this allows the ack-bucket scheme to be fair, e�cient and control queues. Specif-
ically, the queue lengths in �gure 5(b) are controlled to a low value of 50 packets, while the sequence
number plot in �gure 5(d) show the fair distribution. Note however that the window sizes are not
controlled i.e., the congestion window is the same as the actual window, and they rise to a maximum
of 600000 bytes.

Observe that the congestion window size is the sum of the packets in the forward direction (controlled

13

ICR: / XRM: / Graph: 0

tcp15conf1sch2/swtimer=5000/ction=1.1/option=276643/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N=0.9/ex

p_avg_ol=0.5/linkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:01/23/98

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

cn
_a

ct
_w

nd
(b

yt
es

)

Time in milliseconds

Actual Window Size

 Actual Window Size (3 km)
Actual Window Size (300 km)

Actual Window Size (3000 km)

(a) TCP Actual Window Size

ICR: / XRM: / Graph: 0

tcp15conf1sch2/swtimer=5000/ction=1.1/option=276643/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N=0.9/ex

p_avg_ol=0.5/linkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:01/23/98

0

50

100

150

200

250

300

350

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

Q
ue

ue
s

(p
ac

ke
ts

)

Time in milliseconds

Bottleneck Queue Length

 Bottleneck Queue Length

(b) Bottleneck Queue Length

ICR: / XRM: / Graph: 0

tcp15conf1sch2/swtimer=5000/ction=1.1/option=276643/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N=0.9/ex

p_avg_ol=0.5/linkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:01/23/98

0

20

40

60

80

100

120

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

U
ti

liz
at

io
n

Time in milliseconds

Link Utilization

 Bottleneck Utilization

(c) Bottleneck Link Utilization

ICR: / XRM: / Graph: 0

tcp15conf1sch2/swtimer=5000/ction=1.1/option=276643/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N=0.9/ex

p_avg_ol=0.5/linkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:01/23/98

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

Se
nd

er
 s

eq
ue

nc
e

nu
m

be
r

Time in milliseconds

Sender sequence number

 (3 Km)
(300 Km)

(30000 Km)

(d) TCP Send Sequence Numbers

Figure 4: Simulation Results with NxN Heterogeneous Con�guration and translation using individual
source RTT

14

ICR: / XRM: / Graph: 0

tcp15conf1_30/swtimer=5000/ction=1.1/option=1063075/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N

=0.9/linkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:02/01/98

0

100000

200000

300000

400000

500000

600000

700000

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

cn
_a

ct
_w

nd
(b

yt
es

)

Time in milliseconds

Actual Window Size

 Actual Window Size (3 km)
Actual Window Size (300 km)

Actual Window Size (3000 km)

(a) TCP Actual Window Size

ICR: / XRM: / Graph: 0

tcp15conf1_30/swtimer=5000/ction=1.1/option=1063075/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N

=0.9/linkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:02/01/98

0

50

100

150

200

250

300

350

400

450

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

Q
ue

ue
s

(p
ac

ke
ts

)

Time in milliseconds

Bottleneck Queue Length

 Bottleneck Queue Length

(b) Bottleneck Queue Length

ICR: / XRM: / Graph: 0

tcp15conf1_30/swtimer=5000/ction=1.1/option=1063075/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N

=0.9/linkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:02/01/98

0

20

40

60

80

100

120

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

U
ti

liz
at

io
n

Time in milliseconds

Link Utilization

 Bottleneck Utilization

(c) Bottleneck Link Utilization

ICR: / XRM: / Graph: 0

tcp15conf1_30/swtimer=5000/ction=1.1/option=1063075/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N

=0.9/linkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:02/01/98

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

Se
nd

er
 s

eq
ue

nc
e

nu
m

be
r

Time in milliseconds

Sender sequence number

 (3 Km)
(300 Km)

(30000 Km)

(d) TCP Send Sequence Numbers

Figure 5: Simulation Results with NxN Heterogeneous Con�guration and Ack-Bucket Control

15

to small values by the ack-bucket method with ERICA+), and the acknowledgements in the reverse
direction (which is large, but is stored e�ciently at the intermediate router - only the ack numbers
are stored in an array [4, 5]). Note that piggybacked acknowledgements cannot be stored (because
the entire packet needs to be stored). In this case, the latest acknowledgement number is read from
the packet into the array (the ack-bucket), and the last acknowledgement number sent to the source is
overwrites the acknowledgement number �eld. The checksum needs to be recalculated in this case as
described in section 3. Note that a duplicate piggybacked acknowledgement is not considered by TCP
as a duplicate acknowledgement and will not trigger the fast retransmit/fast recovery algorithms. Note
this this method would share some of the problems of explicitly writing the window �eld, viz., cannot
work with IPSEC or authentication, requires all acks to ow in the same path as the forward data ow.

The problem of storing large number of acknowledgement numbers in the router can be controlled by
combining the two schemes i.e, translation of rate-to-window using a �xed RTT, and controlling the acks
using the acknowledgement bucket with ERICA+. Figure 6 shows the result of our next experiment
which combines the �xed RTT translation scheme and the ack-bucket control with ERICA+.

Notably, the unfairness problem in the �xed-RTT translation-alone scheme is solved (�gure 6(d)).
Further, the drawback of ack-bucket, viz. the high congestion window values, is also taken care of
(�gure 6(a)). The queue lengths oscillate (�gure 6(b)), but are kept to low levels, while the average
utilization is high despite some drops (�gure 6(c)).

6.2 Simulation Results with a Generic Fairness Con�guration-2

Simulations were performed on the GFC-2 con�guration (Figure 7, see also [16]) to test the fairness of
the di�erent translation methods. The results are shown in �gure 8. Figure 8(a) shows the distribution
of sender sequence numbers for the case when no explicit feedback is used. While not much unfairness
is seen, the queues (not shown) grow to large levels. Figure 8(b) shows the situation using a �xed-RTT
translation (RTT = 130 ms, the largest RTT). The distribution is not fair, though the queue lengths
are low (not shown). Utilizations are also somewhat lower in this case (not shown). However, the case
where the translation is based on actual RTTs (�gure 8(c)) shows a near-fair distribution. Queue
lengths are low and utilizations are high too (not shown). Figure 8(d) shows the case for using the
acknowledgement bucket, and �gure 8(e) shows the combination of the �xed-RTT translation scheme
and the ack-bucket. These achieve the fair rates too.

7 Summary and Conclusions

We have proposed a new method of conveying rate feedback to TCP sources, by translating it into
a window value and writing the feedback in TCP header of acknowledgments. This method does not
require any changes to TCP header formats or the protocol, and can be implemented in both ATM
edge devices/switches, as well as in Internet routers. We have also considered a variant of a known
method for rate control, called the acknowledgement bucket which controls the rate of TCP connections
by controlling the rate of the acknowledgements.

16

ICR: / XRM: / Graph: 0

tcp15conf1_71/swtimer=5000/ction=1.1/option=1325219/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N

=0.9/linkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:02/04/98

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

cn
_a

ct
_w

nd
(b

yt
es

)

Time in milliseconds

Actual Window Size

 Actual Window Size (3 km)
Actual Window Size (300 km)

Actual Window Size (3000 km)

(a) TCP Actual Window Size

ICR: / XRM: / Graph: 0

tcp15conf1_71/swtimer=5000/ction=1.1/option=1325219/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N

=0.9/linkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:02/04/98

0

50

100

150

200

250

300

350

400

450

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

Q
ue

ue
s

(p
ac

ke
ts

)

Time in milliseconds

Bottleneck Queue Length

 Bottleneck Queue Length

(b) Bottleneck Queue Length

ICR: / XRM: / Graph: 0

tcp15conf1_71/swtimer=5000/ction=1.1/option=1325219/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N

=0.9/linkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:02/04/98

0

20

40

60

80

100

120

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

U
ti

liz
at

io
n

Time in milliseconds

Link Utilization

 Bottleneck Utilization

(c) Bottleneck Link Utilization

ICR: / XRM: / Graph: 0

tcp15conf1_71/swtimer=5000/ction=1.1/option=1325219/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_avg_N

=0.9/linkspeed=155.52/stoptime=5000000/exp_avg_N=0.9/icr=155/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:02/04/98

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

Se
nd

er
 s

eq
ue

nc
e

nu
m

be
r

Time in milliseconds

Sender sequence number

 (3 Km)
(300 Km)

(30000 Km)

(d) TCP Send Sequence Numbers

Figure 6: Simulation Results with NxN Heterogeneous Con�guration, translation using Fixed-RTT
combined with Ack-Bucket Control

17

Figure 7: The Generic Fairness Con�guration-2

Our key contributions in this work are to demonstrate that rate-controlled TCP sources can achieve
fairness and better delay characteristics in addition to high throughput performance. Further, we have
studied the dynamics of rate-controlled TCP extensively using both our method of explicit feedback and
the method of ack-bucket control. Future work in this direction will include simpler switch algorithms,
combination of simple rate-to-window translation schemes with ack bucket control schemes, and studies
with limited bu�er & drop policies such as RED, EPD etc. Translating the rate into a single bit feedback
through ECN will also be considered.

References

[1] Shiv Kalyanaraman, Raj Jain, Sonia Fahmy, Rohit Goyal, \Performance and Bu�ering Require-
ments of Internet Protocols over ATM ABR and UBR Services," to appear IEEE Communications
Magazine, March/April 1998.

[2] H. Li, K.Y. Siu, H.T. Tzeng, C.Ikeda and H. Suzuki, \A simulation study of TCP performance
over ABR and UBR service in ATM networks," Proceedings of INFOCOM'96.

[3] S. Kalyanaraman, \Tra�c Management for the Available Bit Rate (ABR) Service in Asynchronous
Transfer Mode (ATM) networks" Ph.D. Dissertation, Dept. of Computer and Information Sciences,
The Ohio State University, August 1997.

[4] Paolo Narvaez and Kai-Yeung Siu, \An Acknowledgment Bucket Scheme for Regulating TCP Flow
over ATM," to appear in Computer Networks and ISDN Systems Special issue on ATM Tra�c
Management, 1998.

[5] Arata Koike, \TCP ow control with ACR information," ATM Forum/97-0998, December 1997.

[6] V. Jacobson, \Congestion Avoidance and Control," Proceedings of the SIGCOMM'88 Symposium,
pp. 314-32, August 1988.

18

ICR: / XRM: / Graph: 0

gfc2sch2/swtimer=5000/option=10371/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_a

vg_N=0.9/stoptime=5000000/exp_avg_N=0.9/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:01/24/98

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

Se
nd

er
 s

eq
ue

nc
e

nu
m

be
r

Time in milliseconds

GFC2 : Sender seq numbers

 Seq 1
Seq 2
Seq 3
Seq 4
Seq 5
Seq 6
Seq 7
Seq 8

(a) No Explicit Feedback

ICR: / XRM: / Graph: 0

gfc2sch1_130/swtimer=5000/option=276643/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/ex

p_avg_N=0.9/stoptime=5000000/exp_avg_N=0.9/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:02/04/98

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

Se
nd

er
 s

eq
ue

nc
e

nu
m

be
r

Time in milliseconds

GFC2 : Sender seq numbers

 Seq 1
Seq 2
Seq 3
Seq 4
Seq 5
Seq 6
Seq 7
Seq 8

(b) Translation using �xed-
RTT = 130 ms

ICR: / XRM: / Graph: 0

gfc2sch2/swtimer=5000/option=276643/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/exp_

avg_N=0.9/stoptime=5000000/exp_avg_N=0.9/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:01/24/98

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

Se
nd

er
 s

eq
ue

nc
e

nu
m

be
r

Time in milliseconds

GFC2 : Sender seq numbers

 Seq 1
Seq 2
Seq 3
Seq 4
Seq 5
Seq 6
Seq 7
Seq 8

(c) Translation using Individ-
ual source RTT

ICR: / XRM: / Graph: 0

gfc2sch1_30/swtimer=5000/option=1063075/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/ex

p_avg_N=0.9/stoptime=5000000/exp_avg_N=0.9/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:02/01/98

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

Se
nd

er
 s

eq
ue

nc
e

nu
m

be
r

Time in milliseconds

GFC2 : Sender seq numbers

 Seq 1
Seq 2
Seq 3
Seq 4
Seq 5
Seq 6
Seq 7
Seq 8

(d) Ack Bucket with ERICA+

ICR: / XRM: / Graph: 0

gfc2sch1_130/swtimer=5000/option=1063075/optiona=1/optiont=6/rcv_wnd=37500/wnd_scale_factor_sat=4/ex

p_avg_N=0.9/stoptime=5000000/exp_avg_N=0.9/xdf=0/tdf=0/t0v=1500/a=1.15/b=1/qlt=0.5/ / Date:02/04/98

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

0 5000001e+061.5e+062e+062.5e+063e+063.5e+064e+064.5e+065e+06

Se
nd

er
 s

eq
ue

nc
e

nu
m

be
r

Time in milliseconds

GFC2 : Sender seq numbers

 Seq 1
Seq 2
Seq 3
Seq 4
Seq 5
Seq 6
Seq 7
Seq 8

(e) Combination of Fixed RTT
translation and Ack Bucket
with ERICA+

Figure 8: Simulation Results with GFC2 - Send Sequence Numbers

19

[7] Stevens, W. R., \TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery
Algorithms," January 1997.

[8] Mathis, M., J. Mahdavi, S. Floyd, A. Romanow, \TCP Selective Acknowledgement Options,"
Internet RFC 2018, October 1996.

[9] Ramakrishnan, K.K., Floyd, S., \A proposal to add Explicit Congestion Noti�cation (ECN) to IPv6
and to TCP," IETF Internet Draft, November 1997, Available as http://ds.internic.net/internet-
drafts/draft-kksjf-ecn-00.txt

[10] Floyd, S., Allman, M., and Partidge, C., \Increasing TCP's Initial Window," IETF Internet Draft,
July 1997, Available as http://ds.internic.net/internet-drafts/draft-oyd-incr-init-win-00.txt

[11] Demers, A., S. Keshav, and S. Shenker, \Analysis and Simulation of a Fair Queueing Algorithm,"
Internetworking: Research and Experience, Vol. 1, 1990, pp. 3-26.

[12] Romanow, A., and S. Floyd, \Dynamics of TCP Tra�c over ATM Networks," IEEE Journal on
Selected Areas in Communications, Vol. 13, No. 4, May 1996.

[13] Floyd, S., and V. Jacobson, \Random Early Detection Gateways for Congestion Avoidance,"
IEEE/ACM Transactions on Networking, Vol. 1, No. 4, August 1993, pp.397-413.

[14] ATM Forum Tra�c Management, \The ATM Forum Tra�c Management Speci�cation Version
4.0," April 1996. Available as ftp://ftp.atmforum.com/pub/approved-specs/af-tm-0056.000.ps

[15] W.R. Stevens, \TCP/IP Illustrated, Volume 1," Addison-Wesley, 1994.

[16] R. Jain, S. Kalyanaraman, R. Goyal, S. Fahmy, and R. Viswanathan, \The ERICA Switch Al-
gorithm for ABR Tra�c Management in ATM Networks" IEEE Transactions on Networking,
submitted, November 1997. 1

[17] Sonia Fahmy, Raj Jain, Rohit Goyal, Bobby Vandalore, \A switch algorithm for ABR multipoint-
to-point connections," ATM Forum/97-1085, December 1997,

1All our papers and ATM Forum contributions are available through http://www.cis.ohio-state.edu/~ jain

20

