
TCP-Friendly Tra�c Conditioners for Di�erentiated Services

Feroz Azeem, Amit Rao, Shivkumar Kalyanaraman
Contact email: shivkuma@ecse.rpi.edu

Department of ECSE, Rensselaer Polytechnic Institute,
Troy NY 12180-3590

Abstract

This paper examines the performance problems associated with TCP ows running over assured
service with one bit drop preference (one of the proposed services in the di�erentiated services ar-
chitecture). The use of TCP-friendly di�erentiated services building blocks (speci�cally tra�c con-
ditioners) are investigated to alleviate these problems. The paper examines test con�gurations and
evaluates the behaviour and performance of TCP ows with and without the proposed conditioners.

1 Introduction

There is a distinct need to move towards providing service di�erentiation (di�-serv) in the Internet.
Today's best-e�ort service model is not geared to support various levels of service to di�erent
users and the pricing of such services. The di�erentiated services architecture being developed in
the IETF [2, 3] provides a framework within IPv4 to enable development of these features. The
architecture distinguishes boundary nodes from interior nodes. Boundary nodes perform control
plane functions such as policy, contracting, accounting and tra�c conditioning (including metering,
shaping, marking) whereas interior nodes need only implement a set of forwarding behaviors known
as \per-hop behaviors" (PHBs). The PHBs at interior nodes are applied to tra�c aggregates which
are created at the boundary nodes and labeled using the DS �eld in IPv4 or IPv6 headers [4].
Observe that per-ow state information is no longer needed at interior routers to provide service
di�erentiation { it can be (partially) inferred from the DS-�eld (or labels in MPLS [16]) which is
used as an index to a table of PHBs.

A small set of PHBs are being standardized at the IETF to allow development of end-to-end
di�erentiated services. One such PHB is the assured forwarding [1] (AF) PHB which is used to
build the \assured service" (AS) which is roughly an emulation of the frame-relay CIR service.
In this paper we look at TCP performance over a simpli�ed form of the assured service (which
corresponds to the original model suggested by Clark and Fang [5]). In particular, we assume that
the interior routers have a single queue (class) and there are two levels of drop precedence within
that class. The two levels are distinguished by two codepoints in the DS-�eld and we refer to packets
as being either \in-pro�le" or \out-of-pro�le." The two-level drop precedence is implemented at
interior nodes using the RIO (RED with In/Out) algorithm also proposed by Clark and Fang. This
algorithm simply uses the RED drop scheme, albeit with di�erent parameters for IN and OUT
tra�c.

Our focus in this paper is to examine the performance of TCP over this service and propose design
of TCP-friendly building blocks as a generic technique to boost performance. The rest of the paper
is organized as follows: Section 2 discusses issues involving TCP performance over the assured

1

service. Section 3 contains descriptions of some proposed TCP-friendly building blocks. Sections 4
and 5 present performance analyses using these proposed building blocks. Section 6 presents a
summary and conclusion.

2 Performance problems of TCP over assured service

It is well known that TCP Reno (the large installed base of TCP implementations) has serious
performance problems if it encounters \per-connection burst drop" of packets, i.e., if a connection
sees a number of packet drops with nearby sequence numbers. Even three consecutive packets
dropped can lead to a timeout plus multiple SSTHRESH reductions [7, 12]. Also the de�nition of
\burst" varies depending upon per-connection window size. For example a new connection with a
small window may be hurt with a single packet drop itself [7].

At bottlenecks, packets may be dropped in bursts during congestion events. We distinguish these
drops by calling them \aggregate burst drops" since they may span a number of connections. The
number of packets dropped in a burst in such cases depends upon the time-scale of the congestion
event at the bottleneck. Many congestion events last for a short time-scale. But even this results in
unfairness (as measured by variance in per-connection goodput) because the aggregate burst drop
is not spread fairly over all the congestion-causing connections. Such behavior is observable even
in symmetric con�gurations where RTT does not vary [12]. The unfairness problem is exacerbated
for high speed links, large number of sources and heterogeneous RTT cases [10, 11, 12].

We also �nd that the probability of aggregate burst drop is high when a majority of TCP connections
are in the slow start phase (due to the super-linear nature of window increase). This is likely for
sources performing short transfers (as in WWW applications). Further, the probability of per-
connection burst drop increases since packets from each source tend to arrive in batches rather
than being interleaved with other connection packets. Finally we �nd that optimization of what
we call \service provider metrics" (utilization, queue length, drop rate) does not necessarily lead
to optimization of \user metrics" (average goodput and variance in per-connection goodput).

Ibanez et al [11] observe similar problems when TCP runs over the assured service. Kim et al [15] use
an improved version of TCP and see fewer problems. Feng et al propose an adaptive marker, TCP
modi�cations and an improved PHB implementation using the ERED algorithm [8]. In contrast,
we postulate that one important reason for these performance problems is the lack of TCP-friendly
building blocks (droppers, markers, shapers, PHBs) in the network. By \TCP-friendly" we mean
the capability of these building blocks to:

� provide for packet interleaving,

� protect small-window connections from drop,

� convert aggregate burst drop into interleaved non-bursty per-connection drop and

� reduce packet burstiness created by TCP.

We present results of our preliminary work on developing such components and �nd that TCP-
friendly components allow a marked improvement in performance. Though there is room for im-

2

provement in several of our components, we �nd that the single most critical component is the
shaper which directly provides packet interleaving and reduces TCP burstiness.

3 TCP-Friendly Building Blocks

In general each and every building block along the connection path could be made TCP-friendly
or the TCP friendly functions can be aggregated at the edge (as done in a product by Packeteer
Inc. [12] currently for best-e�ort tra�c). We identify some components which particularly relate
to di�-serv.

3.1 Packet Marker

A packet marker is one of the components of the tra�c conditioner. The general problem in a marker
is to optimally allocate a currently available pool of tokens (which depends upon contracted rate
and burstiness parameters) to a set of incoming packets in a given interval of time. Packets which
are allocated tokens are said to be marked \IN" and those which do not get tokens are said to be
marked \OUT" in our service.

Our simple TCP-friendly marker is an extension to a token bucket marker. The idea is to try to
avoid marking packets as \OUT"in a bunch because these packets will then have a high probability
of (burst) drop. Given a set of tokens in an interval, it marks consecutive packets in the beginning
of the interval as \IN pro�le" until it hits either the middle of the interval or �nishes half the
available tokens. In the latter case, it marks every other subsequent packet as \OUT of pro�le".
Excess tokens (upto a limit) are transferred to the shaper (or to the next interval if a shaper is not
available) so that it can re-mark some OUT packets as IN if necessary. If we run out of tokens,
we mark new packets as OUT . The rough pseudo code is given below.

num tokens = number of tokens handed out so far. Set to zero at the beginning of each interval.
max tokens =maximum number of tokens that can be handed out in any interval. This corresponds
to the contracted rate (pro�le).

Marker Implementation

On packet arrival
if num tokens < max tokens=2 then

Mark packet as IN
else if num tokens �max tokens=2 before middle of interval is crossed then

Mark alternate packets IN or OUT fthreshold crossedg
else if num tokens < max tokens then

if threshold crossed in the �rst half interval then
Mark alternate packets IN or OUT

else

Mark packet as IN
end if

else

3

Mark packet OUT f No More Tokens Leftg
end if

While the goal is to convert an \aggregate burst drop" into an \interleaved per-connection drop,"
the scheme su�ers from the fact that packets with nearby sequence numbers can be marked \OUT"
and hence dropped with high probability. It also does not provide complete protection for small
window connections. There is room for signi�cant improvement of this scheme and we are working
on several variants. Accordingly, our performance analysis indicated that the marking strategy did
not signi�cantly explain variation in metrics, except for the fact that the total number of packets
dropped was usually smaller when this marker was used.

3.2 Packet Shaper

A packet shaper is a component of the tra�c conditioner which delays some or all of the packets
in a tra�c stream to force compliance with its tra�c pro�le. We develop a simple TCP-friendly
shaper which shapes output rate to be a scaled factor of the measured, smoothed input rate. The
shaper calculates the average inpute rate (the number of packets that arrive into the node) using
a low-pass �lter with an exponential weighted moving average. The output rate is set to twice
the average input rate. Excess tokens received from the packet marker are used to re-mark some
OUT packets as IN when the packet is being transmitted. However, to avoid in�nite overow
of tokens from the marker to the shaper (and the resulting bustiness on the network in terms of
marked packets), the total number of tokens which can be carried over is limited by a con�gurable
parameter.

Observe that the shaper described above is di�erent from conventional token bucket shapers (which
are based upon a peak/average rate and a burstiness parameter). This shaper requires just a
measurement interval and an exponential averaging parameter to be con�gured. This shaping can
be done at a per-ow or per-behavior aggregate level.

The idea in this TCP-friendly shaper is to reduce packet burstiness by smoothing out the input
burst while roughly preserving the input rate. If done at a per-ow level or over an aggregate
of a small number of ows (which we call \hierarchical shaping"), the shaping mechanism also
e�ectively interleaves packets of multiple ows. The cost of shaping is delay at the shaper. We
�nd that even this simple shaping mechanism provides a substantial improvement in performance
and we are working on new versions of the shaper which counter the delay penalty using adaptive
parameter settings.

3.3 TCP Rate Increase Damper

One reason for overload, burstiness and packet drop is the rate of increase of TCP window itself.
Therefore one possible way to counter this issue is through limiting the rate of increase of TCP
windows. This can be achieved at an edge node by limiting the rate of release of acks [12]. For
our simulation purposes, we approximate this functionality by implementing it in the source TCP
simulation code as described below.

4

Normally, in TCP slow start phase, when each ack is received, the congestion window is increased
by one segment. The sender can transmit upto the minimum of the congestion window (cwnd) and
the advertised window [9]. The congestion window thus increases exponentially as a function of
round trip time. In our modi�ed TCP simulation code, we allow cwnd to increase by 1 segment
for every 2 acks received. This is achieved through the use of a single bit control variable which is
ipped and tested each time an ack is received. The rise of cwnd is thus limited to a factor of 1:5
rather than 2. Since a long-lived TCP connection may reside only temporarily in the slow-start
phase, we use same rate-increase-damping policy during congestion avoidance, i.e., we limit window
increase to 1=cwnd for every two acks received. To avoid negative interactions with small window
connections, we trigger these policies only when the window size is at least 8 segments.

We �nd that the damping of TCP rate increase is most e�ective in smaller RTT con�gurations
(small WANs or MANs) which also have high bandwidth and a large number of ows. In such
con�gurations, the TCP window-increase cycles (which are proportional to RTT) are very small.
This leads to faster TCP window increases, leading to overload and bursty packet losses at the
bottleneck. The damper is useful here because it slows down TCP's window increase and allows
better bu�er management at the bottleneck (because of the reduced average overload).

Note that the TCP rate-increase damper outlined above is an example of a crude TCP rate damper.
Packeteer Inc. [12] builds sophisticated TCP rate-control components. These components can
control TCP performance more tightly and over a wider range of RTTs through control of the left,
right edges of the TCP window in addition to control of the ack rate as suggested here.

3.4 Drop policies and Edge-to-edge feedback control

Drop policies are part of the per-hop behavior (PHB). RED is the �rst example of a TCP-friendly
building block (as compared to drop-tail). Examples of even more TCP-friendly drop policies are
FRED and ERED [7, 8] which can allocate loss probabilities during a congestion event in a more
controlled manner. While we have work-in-progress in this area, we do not present results about
this dimension in this paper.

Edge-to-edge feedback control introduced in an earlier work by our group [13] involves a simple pro-
tocol between ingress and egress conditioners. Though our initial work in the mentioned reference
involves participation of interior router, our current work involves only the two edge conditioners.
In this sense, edge-to-edge control is very similar to end-to-end control and it does not require stan-
dardization or interior router participation. Edge-to-edge control is TCP-friendly in the sense that
it allows better use of distributed bu�er resources in the network to reduce packet drop rate and
probability of burst drops. It also provides limited protection against denial of service attacks and
improves fairness in resource allocation. We are developing it to provide a basis for some forms of
tra�c engineering and congestion-sensitive pricing. The key issue is the control overhead required
for achieving the di�erent goals just mentioned. This is work-in-progress and simulation results are
not reported in this paper. Our focus in this paper is on TCP-friendly tra�c conditioners alone.

Observe that these solutions can work at di�erent levels of granularity: from per-microow to
per-behavior-aggregate. The former solutions tradeo� increased complexity for tighter control over
performance. These are just examples of components which can be adapted to accomodate TCP

5

especially and non-TCP type of ows.

4 Simulation and Performance Analysis

Parameters MetricsSystem

Figure 1: Model for performance evaluation

We use the high level model shown in Figure 1 to guide our evaluation. Speci�cally, we consider
the system (of TCP ows in this case) as a black box to which is input a set of parameters and
workloads (parameters include the choice of the scheme, con�gurations etc) and the output is a
set of metrics which evaluate the tradeo� among various resource constraints in the system. The
following sections explain the choice of metrics and parameter dimensions explored in this study.

4.1 Parameters and con�gurations

The con�gurations for the simulations involve changes to one or more of the following parameters:

� TCP-friendly component (or combination of components) used

� Granularity of shaping and marking (per-ow or hierarchical). For eg, in \hierarchical"
shaping, the shaper deals with an aggregate of a set of ows.

� Bottleneck link speed: 1.5 Mbps or 150 Mbps

� Round trip time: 10 ms or 30 ms

� Number of connections: 10 or 100 ows

� Staggered connection start times

4.2 Base Con�guration

Figure 2 shows our base con�guration { later con�gurations are derived based upon this. We have
10 sources which are divided into groups of �ve each. R0 and R1 incorporate the shaper and marker
building blocks building blocks and handle tra�c from �ve ows each. R2 is the bottleneck router

6

6

7

10

R 1

1

2

9

 1

 2

5
 BOTTLENECK

10

SHAPING + MARKING

SHAPING + MARKING

R 2 R3

R 0

SOURCES DESTINATIONS

DATA
ACKS

10 Mbps

10 Mbps

1.5 Mbps

ALL LINKS 1.5 Mbps, 1000km (unless otherwise mentioned)

Figure 2: Base Con�guration

and both R0 and R1 feed into R2. The R2-R3 link is the bottleneck. R3 connects the tra�c to the
respective destinations.

Each source is connected to its respective shaper/marker through links of 1.5 Mbps. The shaper/marker
feeds this into the bottleneck through 10 Mbps links. The bottleneck link has a 1.5 Mbps capacity.
All the destination links have 1.5 Mbps capacity. All links have a length of 1000 km.

4.3 Metrics

We classify metrics into two major categories: user metrics and operator metrics. Although the
two are related, an end user is typically concerned about response (which is measured as average
and variance in per-user goodput), and the provider is interested in optimally utilizing his costly
resources.

4.3.1 Operator metrics

The operator's key resources are bandwidth and bu�ers, and is willing to tradeo� (cheaper) bu�er
resources to ensure high utilization of bandwidth. But high queueing delays or drop rates are
undesired for supporting customers' interactive applications such as telnet or WWW. The metrics

7

which measure the tradeo�s among these resources are:

1. Average link Utilization: Low link utilization, given adequate load is unacceptable. [We
use the average goodput metric as a partial proxy for this metric]

2. Average Queue Length: Low average queue lengths imply lower average queueing delay
experienced by participating connections. The operator prefers low queue lengths combined
with high utilization.

3. Maximum Queue Length: Very high maximum queue lengths indicate high bu�er require-
ments.

4. Packet drop rate: Packets dropped represent wasted bandwidth and bu�er resources on
upstream links.

4.3.2 User Metrics

The user is interested in response (per-ow) which can be approximated using the following metrics:

1. Average (per-ow) Goodput: This quantity which excludes retransmitted packets should
be as high as possible.

2. Standard deviation in (per-ow) goodput: This quantity is a rough measure of fairness.
Ideally, for a single bottleneck with in�nite transfers, this metric should be close to zero.

We conduct a full factorial simulation and use linear regression modeling as described in [14]. In
this study, we have not examined the e�ects of dimensions such as:

� Multiple classes

� Multiple drop levels

� Variable capacity bottlenecks

� Heterogeneous RTT bottlenecks

� Sharing of assured service class by TCP and non-TCP tra�c

5 Simulation Results

In the following sub-sections we present key results from our simulations. The TCP-friendly shaper
used accounted for the variation in a majority of metrics in a majority of the parameter dimen-
sions explored. The user metrics (average and standard deviation in goodput) could be reasonably
optimized. The cost of this optimization was an increased average queue length and drop rate in
certain cases. The preliminary TCP-friendly marker design reduced the total number of dropped

8

packets (a provider metric), but did not signi�cantly a�ect user metrics indicating room for further
re�nement. The TCP rate damper positively a�ected user metrics namely average goodput, stan-
dard deviation in goodput in small and medium RTT con�gurations. However with higher RTT
con�gurations TCP rate damping did not show a perceptible improvement.

Each of the following subsections has a table wherein the numbers represent the percentage of
variation in the metric (the columns). These numbers are generated by a linear regression model
�t to the results obtained [14]. Speci�cally, a larger percentage denotes profound dependency of
the metric on that parameter. A \-" denotes no perceptible dependency.

5.1 Base con�guration: low speed, large RTT, hierarchical conditioners

Operator Metrics User Metrics

Parameters Avg Q length Max Q length Timeouts Drops Avg Goodput SD in Goodput

percent percent percent percent percent percent

T - - - - - -

S 62 63 - - - 26

M 16 - - 39 8 -

U - 9 7 - 7 10

MU - - 32 - 7 -

TS - - - - 7 11

SM 18 8 - 48 7 7

TMU - - 21 - 8 -

TSMU - - 8 - 7 7

Table 1: 10 Sources ; Hierarchical shaping/marking, 1.5 Mbps link speeds
LEGENDS T = TCP Rate Damper S = Shaper M= Marker U = Staggered sources

Scanning through the rows of Table 1, we observe that shaping has the maximum e�ect on metrics
such as queue lengths and standard deviation in goodput (observe the larger numbers in the high-
lighted row). The larger numbers simply mean that the particular parameter (in this case, shaping)
has a profound e�ect (possibly good or bad) on that single metric { we desire good performance in
terms of a number of metrics.

Speci�cally, we observed that we could not simultaneously achieve good performance in user metrics
and optimize queue lengths. So, we note that with shaping we can tradeo� queue lengths for better
average and standard deviation in per-user goodput. For example, the larger queue sizes were
the result of shaping parameters. The reason for this performance is that shaping reduces the
probability of TCP synchronization by spreading out bursts in time (and also introducing some
interleaving). So a single congestion event does not result in burst drop for a single connection (or
a small subset of connections). Also, the smoothing of bursts meant that the �rst packet dropped
occurs at a higher window value. This in conjunction to the fact that average queues are high
means that the ows get higher average throughput.

We also observed that the TCP-friendly marker typically reduces the number of drops, though its

9

inuence on user metrics (average and standard deviation in goodput) is minimal.

5.2 Simulation results with Small RTTs

In these simulations, we use the base con�guration, but make all links as 1km. Table 2 summarizes
the results. Again scanning through the rows of Table 2, we observe that shaping still has a
signi�cant e�ect (larger numbers in the rows). However, the e�ect TCP rate increase damping
has increased signi�cantly in this situation. Speci�cally, TCP rate increase damping accounts for
nearly 94 percent of variation in fairness.

The reason for the increased e�ect of the TCP rate damping is that smaller RTT's imply faster
window increases, which in turn leads to burstiness and variance in throughput. Now, with rate
increase damping, the aggregate rate increase (i.e. overload seen at the bottleneck) is reduced.
This reduces probability of bursty losses, leading to better fairness.

The marker in this case also leads to reduced packet drop rate, though the e�ect on user metrics is
not appreciable. The shaper a�ects timeouts signi�cantly due to increased queueing delays caused
by it.

Operator Metrics User Metrics

Parameters Avg Q length Max Q length Timeouts Drops Avg Goodput SD in Goodput

percent percent percent percent percent percent

T - - - - 94 6

S 49 39 37 27 - 8

M 8 - - 9 - 12

U - - 15 - - 22

SU - - 25 - - -

TM - - - - - 23

SM 9 9 - 10 - -

Table 2: 10 Sources ; Hierarchical shaping/marking, 1.5 Mbps link speeds, All links of 1km - small
RTT's

LEGENDS T = TCP Rate Damper S = Shaper M= Marker U = Staggered sources

5.3 Simulations with Per-ow tra�c conditioning

In this section, we examine results with tra�c conditioning (shaping and marking) done at a per-
ow granularity. We approximate it by assuming that the conditioning elements are implemented
in the source itself. The simulation results are summarized in Table 3. We note again that the
shaper has maximum e�ect on most of the metrics - it tends to increase the average and maximum
queue lengths, number of drops, average goodput and number of timeouts. The marker has a slight
e�ect on a few metrics.

The profound e�ect of shaping is due to the increased interleaving and control of burstiness possible
by doing shaping at a per-ow granularity. As explained in the earlier sections, shaping also results

10

in a stable larger average queue which in turn accounts for a higher drop rate (due to the RED
algorithm).

Operator Metrics User Metrics

Parameters Avg Q length Max Q length Timeouts Drops Avg Goodput SD in Goodput

percent percent percent percent percent percent

T - - - - - -

S 90 85 86 92 91 7

M 8 6 7 - - 12

U - - - - - 32

TM - - - - - 30

Table 3: 10 Sources ; Per-ow shaping/marking, 1.5 Mbps link speeds, All links of 1000km
LEGENDS T = TCP Rate Damper S = Shaper M= Marker U = Staggered sources

5.4 Simulation results with high speed links

In this section we consider simulation results of the base con�guration, with the change that all
links run at 150Mbps. The results are summarized in Table 4. We observe again that the shaper has
maximum e�ect on most of the metrics, achieving better user metric performance at the expense
of increased queue lengths and packet drop rate. E�ects of other parameters are nominal and
scattered in terms of metrics a�ected.

Operator Metrics User Metrics

Parameters Avg Q length Max Q length Timeouts Drops Avg Goodput SD in Goodput

percent percent percent percent percent percent

T - - - - - -

S 31 68 38 57 43 55

M - - - 15 7 -

U - - - - 28 -

MU 25 - - - - -

TS 8 9 - 10 - -

SM - - 5 7 - -

SMU 25 - - - - -

SU - - - - 28 14

Table 4: Con�guration E ; 10 Sources ; Hierarchical shaping/marking, 150 Mbps link speeds, All
links of 1000km

LEGENDS T = TCP Rate Damper S = Shaper M= Marker U = Staggered sources

11

5.5 Simulations with large number of sources

In this section, we modify the base con�guration to have 100 ows, hierarchical tra�c conditioning,
bottleneck speeds at 1.5 Mbps and link lengths 1000 km. The tra�c conditioning (shaping and
marking) is done for sets of 5 sources (just like in the base con�guration). The simulation results
are summarized in Table 5. Again we �nd that the shaper has the maximum e�ect on almost all
the metrics, with negative e�ects on queue lengths and packet drop rate (as observed earlier).

Operator Metrics User Metrics

Parameters Avg Q length Max Q length Timeouts Drops Avg Goodput SD in Goodput

percent percent percent percent percent percent

T - - - - - -

S 74 68 91 97 - 77

M - - - - - -

U 7 11 - - 41 -

SM 7 - - - - -

SU - 10 - - 48 7

Table 5: Con�guration F ; 100 Sources ; Hierarchical shaping/marking, 1.50 Mbps link speeds, All
links of 1000km

LEGENDS T = TCP Rate Damper S = Shaper M= Marker U = Staggered sources

6 Conclusion And Future Work

In summary, we looked at generic TCP performance problems which remain in di�erentiated ser-
vices, and demonstrate that simple enhancements in some of the building blocks (tra�c condition-
ers, PHBs, closed loop edge-to-edge control) can lead to signi�cant performance enhancements.
Speci�cally, in this paper we look at tra�c conditioners and observe that even a simple TCP-
friendly shaper has the potential to change performance characteristics signi�cantly. While we
have presented crude initial versions of these building blocks, there is scope for work in improving
the design of such building blocks and hence TCP performance over di�-serv.

References

[1] J. Heinanen, et al., Assured Forwarding PHB Group. IETF Internet draft draft-ietf-di�serv-
af-05.txt, February 1999.

[2] S. Blake, et al., \An Architecture for Di�erentiated Services", Internet RFC 2475, December
1998.

[3] S. Blake, et al., \A Framework for Di�erentiated Services", IETF Internet Draft, draft-ietf-
di�serv-framework-01.txt, October 1998.

12

[4] K. Nichols, et al., \De�nition of the Di�erentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers", Internet RFC 2474, December 1998.

[5] D.D. Clark and W. Fang, \Explicit Allocation of Best-E�ort Packet Delivery Service",
IEEE/ACM Transactions on Networking, 6(4):362-373, Aug. 1998.

[6] S. Floyd, and V. Jacobson, \Random Early Detection Gateways for Congestion Avoidance,"
IEEE/ACM Transactions on Networking, Vol. 1, No. 4, August 1993, pp.397-413.

[7] Dong Lin and Robert Morris, \Dynamics of Random Early Detection", Proceedings of SIG-
COMM'97, August 1997.

[8] W. Feng, D. Kandlur, D. Saha, K. Shin, "Techniques for Eliminating Packet Loss in Congested
TCP/IP Networks," U. Michigan CSE-TR-349-97, November 1997.

[9] Stevens, W. R., \TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery
Algorithms", Internet RFC 2001, January 1997.

[10] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose, "Modeling TCP Throughput:
A Simple Model and its Empirical Validation," Proceedings of SIGCOMM'98, Vancouver,
August 1998.

[11] J. Ibanez, K. Nichols, "Preliminary Simulation Evaluation of an Assured Service", IETF In-
ternet Draft, draft-ibanez-di�serv-assured-eval-00.txt, August, 1998.

[12] Prasad Bagal, Shivkumar Kalyanaraman, Bob Packer, \Comparative study of RED,
ECN and TCP Rate Control," Technical Report, March 1999. Available from
http://www.ecse.rpi.edu/Homepages/shivkuma/research/papers-rpi.html

[13] S. Kalyanaraman, D. Harrison, S. Arora, K. Wanglee, G. Guarriello,
\One-bit Feedback Enhanced Di�erentiated Services Architecture,"
IETF Internet Draft, draft-shivkuma-ecn-di�serv-00.txt, March 1998. Available from:
http://www.ecse.rpi.edu/Homepages/shivkuma/research/papers-rpi.html

[14] Raj Jain, The Art of Computer Systems Performance Analysis, John Wiley and Sons Inc.,
1991.

[15] Hyogon Kim and Will E. Leland and Susan E. Thomson, \Evaluation of Bandwidth Assurance
Service using RED for Internet Service Di�erentiation," Submitted to INFOCOM'99, 1999.

[16] R. Callon et al, \A Framework for Multiprotocol Label Switching," IETF Internet Draft,
draft-ietf-mpls-framework-02.txt, November 1997.

13

