BANANAS: A New Connectionless Traffic Engineering
Framework for the Internet”

Shiv Kalyanaraman, Hema Tahilramani Kaur, Satish Raghunath,
Jayasri Akella, Hemang Nagar, Kartikeya Chandrayana
ECSE Department
Rensselaer Polytechnic Institute
{shivkuma, hema, rsatish, kartikc}@networks.ecse.rpi.edu, {akellj, nagarh}Qrpi.edu

ABSTRACT

We propose BANANAS, a connectionless framework for both
intra-domain and inter-domain traffic engineering (TE) in
the Internet. The key contributions of this framework are:
a) it allows the source to discover multiple paths and decide
on how to split traffic among paths (assuming simple for-
warding extensions in a subset of routers).

b) it does not require signaling, or high per-packet overhead.
c) it enables an incremental upgrade strategy for both intra-
domain (OSPF) and inter-domain (BGP) routing to support
TE capabilities.

d) in a fully upgraded network, every source can control how
traffic is mapped to paths and therefore network-wide traffic
engineering objectives can be achieved.

A path to a destination address is parsimoniously speci-
fied in a fixed-length “PathID” field in the packet header.
“PathID” is the sum of link weights on the path (or the
sum of Autonomous System (AS) numbers for inter-domain
paths). This encoding allows efficient connectionless for-
warding without using a signaling protocol. We describe
extensions to OSPF, and BGP to support the proposed
framework. We propose a simple multi-path computation
algorithm under partial upgrade assumptions, discuss traf-
fic splitting techniques and forwarding extensions. An ns-2
based simulation is used to demonstrate the framework and
performance improvements.

1. INTRODUCTION

Traffic engineering (TE) is defined as “.that aspect of In-
ternet network engineering dealing with the issue of perfor-
mance evaluation and performance optimization of opera-
tional IP networks...” [2]. The goal of enhancing perfor-

*In loving memory of Herbie goes Bananas and great rac-
ing movie comedies, where inspite of impulsive multi-path
choices and hop-by-hop misadventures, the racers never fail
to reach the destination for a grand finale.

mance is accomplished by routing traffic in a way to utilize
network resources efficiently and reliably. The term “traffic
engineering” has been used to imply a range of objectives, in-
cluding but not limited to, load-balancing, constraint-based
routing, multi-path routing, fast re-routing and protection
switching. Most work in the area of TE has focussed on
solving one or more of the above problems within a single,
flat routing domain (or area).

In this paper we develop a framework, called BANANAS,
that would allow the incremental deployment of TE capabil-
ities for both intra-domain and inter-domain settings within
the hop-by-hop (or connectionless) routing model on the In-
ternet. We focus on the TE objective of efficient utiliza-
tion of network resources by using multi-path routing. The
solution comsists of multi-path computation and forward-
ing (at intermediate nodes) and multi-path computation (or
discovery) and traffic-splitting (at the source) '. With par-
tial upgrades, a subset of sources can benefit from these
capabilities. With a fully upgraded network, every source
can control how traffic is mapped to paths and therefore
network-wide TE objectives can be achieved.

1.1 Hop-by-Hop vs Signaled Routing M odels

Two broad classes of routing models dominate the current
debate on next-generation routing and traffic engineering:
hop-by-hop model ? (distance-vector (DV), path-vector (PV)
and link-state (LS)) and signaled model (implemented in
technologies like MPLS [27] ATM and frame-relay).

In the hop-by-hop model, local knowledge is distributed
to immediate neighbors, and ultimately reaches all nodes.
Every node infers routes based upon this information. A
consistency criterion ensures that the independent decisions
made by nodes lead to valid, loop-free routes. The forward-
ing algorithm in this model is related to the control-plane
algorithm because both use the same global identifiers (e.g.
addresses, prefixes, link metrics, AS numbers). This rela-
tionship has, in the past, required changes in the forwarding
algorithm whenever the control-plane algorithm was signifi-

!By “source” we refer to some node in the data-path that
takes multi-path computation (or discovery) and traffic-
splitting decisions on behalf of the traffic originator (i.e.
source host). Upgraded intermediate nodes provide next-
hop forwarding to implement the source’s path selection de-
cision.

Za.k.a the connectionless model in this paper

cantly changed (e.g. subnet masking, CIDR). However, hop-
by-hop routing protocols dominate the control-plane of the
Internet (e.g. RIP, EIGRP, OSPF, IS-IS, BGP) for three
important reasons; they support connectionless forwarding,
they can be inter-networked easily, and they scale reason-
ably well. Traffic engineering capabilities in the hop-by-hop
model, though attempted [24, 30, 5], have not found wide
adoption in the Internet. Source routing in this model has
typically meant that the entire path is enumerated in the
packet — an undesirable overhead (e.g. IP, IPv6 options for
strict/loose source route [16]). Multi-path algorithms for
this model (e.g. [5]) have usually required the cooperation
and upgrade of all routers in the network; and the decision
of traffic-splitting is typically done in an ad-hoc manner at
intermediate nodes without source control.

In the signaled model, local knowledge may be sent to all

nodes through an approach similar to hop-by-hop algorithms.

However, it is the source node or some central entity that,
a) computes the desired paths and, b) decides what traffic is
mapped to those paths. The intermediate nodes (switches)
then set up local path identifiers (called “labels” in MPLS)
for the paths. The signaling protocol allows autonomy in
the choice of labels at switches, but ensures the consistency
between label assignments at adjacent switches in the path.
This leads to a label-switching forwarding algorithm where
labels are switched at every hop. The forwarding algorithm
in the signaled model is de-coupled from the control algo-
rithms. This is because the forwarding algorithm uses [o-
cal identifiers (labels), whereas the control algorithms use
global identifiers (addresses). The signaling protocol maps
and ensures consistency between local and global identifiers.
This de-coupling between forwarding and control-planes al-
lows the introduction of new TE capabilities by modifying
the control plane alone. However, signaled approaches have
historically been hard to inter-network (e.g. IP over ATM
[22], Non-Broadcast Multiple Access(NBMA) routing [23] or
multi-domain signaled TE), and hence have been limited to
intra-domain or intra-area deployments (e.g. MPLS, ATM).

We conjecture that the key reasons for the lag in adoption
of connectionless TE capabilities include the need for com-
plete network upgrades, lack of source-based or explicit op-
erator control over TE decisions, lack of a common reference
framework that allows long-term evolution of TE capabili-
ties. This paper proposes to fill these needs. The contribu-
tions in this paper include:

e A framework, called BANANAS, which allows sources to
compute (or discover) multiple paths within the connection-
less routing model and decide on how to split traffic among
these paths.

e Allowing a subset of nodes to participate in the TE pro-
cess, i.e., with partial upgrades.

e Developing a simple and efficient path encoding to spec-
ify the path as a short, fixed-length field in a packet; and a
corresponding forwarding algorithm.

e Mapping the BANANAS framework to current intra-
and inter-domain protocols (e.g. OSPF, BGP).

e Examining preliminary options for various sub-blocks of
this framework (e.g. multi-path and traffic splitting algo-
rithms for partially upgraded networks)

The BANANAS framework is not intended to replace MPLS-
based TE within a routing domain, but it may provide an
alternative to non-MPLS routing domains which currently
deploy OSPF or IS-IS. To the best of our knowledge, the
BANANAS framework is the first attempt to provide an
incremental upgrade strategy for connectionless TE, and to
support a broad set of TE capabilities for the inter-domain
case in the Internet. Indeed, MPLS-TE within an AS (or
area) can be complemented with BANANAS-TE across au-
tonomous systems.

2. BANANASFRAMEWORK:BASICIDEAS

The BANANAS framework allows partial upgrade of inter-
mediate nodes to support multi-path computation and multi-
path forwarding; and partial upgrade of sources to support
multi-path computation (or discovery) and traffic-splitting
strategies. Recall that “source” is a node in the data-path
that takes multi-path computation /traffic-splitting decisions
on behalf of the traffic originator (i.e. source host) and
has some visibility into the available paths in the network.
The following sub-sections define paths, path suffixes and
path identifiers, develop a forwarding algorithm and com-
pare these concepts to labels in the signaled routing model.

2.1 BANANAS Forwarding Concepts

Consider a network modeled as a graph with links and nodes,
where links are given weights (not necessarily unique). Con-
sider a path from node i to node j, which passes through
links of weights w1, ws, ..., wn. This is illustrated in Fig-
ure 1. Define the PathID(i, j, w1, ..., wm) = (w1 +w2+... +
wrm) mod 2°, where b bits are used to encode PathID, which
we propose to include as a new field (or option) in packet
header. Note that the PathID could alternatively be defined
as the sum of node identifiers instead of link weights. We
use this definition to map the framework to BGP-4, wherein
we define PathID as the sum of autonomous system num-
bers (ASNs). Observe that the tuple (destination address,
PathID(i,j, w1, ...,wm)) at node ¢ defines the path to the
destination. We refer to this tuple henceforth as the forward-
ing tuple, and use the shorthand (Destination, PathID).

For simplicity of exposition, assume that the forwarding tu-
ples (Destination, PathID) are unique. If the link weights
vary between a sufficiently large range (i.e. take diverse val-
ues), the forwarding tuples (Destination, PathID) can be ex-
pected to be unique with a high probability. Since both link
weight and AS number are 16-bit fields, any reasonably di-
verse assignment of link weights would suffice. The unique-
ness probability also depends on the size of the network
and connectivity, and we leave rigorous analysis of this issue
for future work. However, note that if the forwarding tuple
(Destination, PathID) is non-unique, i.e. tuple collision does
occur, the router can apply a local heuristic (e.g. hashing) to
map this traffic to the paths with the same forwarding tuple.
In Figure 1, if k is an intermediate node on a path from i to
j, we refer to the residual path from £ to j as the path suffiz.
At any intermediate node k, a list of path suffixes to a des-
tination prefix can be condensed as a list of forwarding table
entries (destination prefiz, next-hop, PathSuffizID), where
PathSuffixID is simply the PathID computed for the path
suffix as shown in Figure 1. The forwarding table entry is
indexed by processing the destination address and PathID

PathID(i,jWy,..., Wp) = { Wy + Wo+ .+ Wi+ Wi,y .. + W, } mod 2P

PathSuffixID(k,] Wi, Wy)
= PathID(k,j W.q,.., W) = { Wy, .. + w,} mod 2b

Figure 1: Path Suffix and PathID in BANANAS

fields in incoming packet headers. The PathID field in pack-
ets is initialized at the “source,” which reflects source-based
control of traffic splitting to paths on a packet-by-packet
basis. Intermediate nodes merely honor the path selection
choice of the source in a best-effort manner.

2.2 BANANAS: Abstract ForwardingAlgorithm

The abstract packet-forwarding algorithm 2 in the BANANAS
framework is as follows. Intermediate nodes find the longest
destination address prefix match first, and then the nearest
PathID match among paths to that destination. Nearest
PathID matches the largest PathSuffixID less than or equal
to the PathID on the packet, or the PathID of the default
path. Once this match is found, nodes update the header
PathID field by subtracting the next-hop link weight from
it (modulo 2°), and forward the packet. If the PathID field
is smaller than the smallest PathSuffixID, then the PathID
field is set to the value of the smallest PathSuffixID minus
the next-hop weight before forwarding. Routers that do not
support multiple paths ignore the PathID field; they simply
look at the destination address field and apply the regular
longest-prefix-match forwarding algorithm.

In a network where all nodes support multi-path forwarding,
assuming that:

a) there exists a loop-free path from 7 to j through k, whose
PathSuffixID at k is PathID(k,j, wk+1, ..., W), and next-
hop is k + 1;

b) the source has chosen an initial PathID W, and

c) the packet has crossed k links with weights w1, ws..., wg,
and we find a nearest PathID match PathID(k, j, wg+1, ...
then we have one of the following conditions satisfied:

C1: W > {wi4wz+...4wp+PathI D(k, j, wir1, ..., wm) }ymod2®

and PathID(k,j, wi+1,..., wm) is the largest PathSuffixID
that satisfies the inequality, or

3We will map this abstract algorithm with some minor
changes to the intra-domain case, and extend it for the inter-
domain case.

,’U)m),

C2: W < {wiHwas+...4+wi+PathID(k, j, we+t1, ...,wm)}mode

and PathID(k,j, wk+1,..., W) is the PathSuffixID of the
default path suffix (i.e. smallest PathSuffixID value).

e If condition C1 is satisfied, w41 is subtracted from the
PathID field (modulo 2°) before forwarding.

e If condition C2 is satisfied, the PathID field is set to
PathSuf fixI D(k, j, wk+1, ..., Wm) — wr4+1 before forward-
ing. Note that condition C2 maps packets with errant PathIDs
to the shortest path.

e The packet is forwarded to node k + 1.

Given the uniqueness assumption of PathIDs between any
pair of nodes, the above observations represent the new con-
sistency criterion in our framework and guarantee a for-
warding match. We choose to allow the inequality (rather
than the equality) because we assume that sources choose
the path autonomously; and at intermediate nodes traffic
to non-existent paths can be distributed among the set of
available paths (and certainly mapped to the default path in
the worst case). In BGP we shall see that the default path
need not be the shortest path.

2.3 BANANASPathIDsvsMPLS Labels

It is interesting to compare the notion of PathID to the
notion of “label” used in the signaled models such as ATM
and MPLS:

e The forwarding tuple (destination address, PathID)
can be thought of as a globally significant path iden-
tifier, just like an IP address is a globally significant
interface ID and an IP prefix is a globally significant
network ID. In contrast, the MPLS label has only a
local meaning, requiring a signaling protocol to map
labels to global addresses. The signaling requirement
makes it hard to map a label-swapped routing sys-
tem to OSPF and BGP. A caveat is that unlike ad-
dresses, non-unique forwarding tuples are possible with
low probability.

e The PathID field by itself does not designate the path;
it needs to be interpreted along with the destination
address. In contrast, the label is a stand-alone field.

e Both PathID and labels are updated at every (up-
graded) hop. But PathID is updated through a compu-
tation (subtract operation) whereas a label is swapped
with a completely new label based upon a label-table.

e Since PathID can be defined in terms of link weights
(or ASNS), it can be mapped to intra- and inter-domain
protocols with minor modifications as discussed in later
sections. In contrast, the label-swapping and the sig-
naled model are hard to map to current inter-domain
protocols (BGP).

e Though the use of the (Destination address, PathID)
tuple still relates the forwarding and control planes
due to the use of global IDs, it gives a valuable handle
(global path identifier) for TE functions. Given this
handle, a range of future TE control-plane functions
may be deployed without any further forwarding-plane
support at intermediate nodes. Recall that in MPLS,

the use of local IDs (labels) for forwarding and global
IDs (addresses) for control de-couples the two planes,
and allows deployment of new TE control functions
without affecting the forwarding plane.

3. BANANAS: INTRA-DOMAIN MAPPING

To understand the mapping issues of the BANANAS frame-
work in an inter-domain context, let us consider a single-area
OSPF network, with point-to-point links (i.e. no hierarchy).
We assume that each upgraded node knows all other nodes
which support multi-path capabilities. This knowledge can
be achieved through a single-bit (“multi-path capable” or
MPC bit) in the link-state advertisement (LSA), that is zero
by default. Multi-path capable routers set the MPC bit to
1 in every LSA they originate. In section 6.1 we describe
a multi-path computation algorithm that finds all possible
loop-free paths to any destination given that it knows the
subset of nodes that also support multi-path capabilities.

Mapping to other link-state protocols like IS-IS is very sim-
ilar to OSPF. Path-vector issues are considered for BGP
in Section 4. We do not consider RIP because it is de-
ployed in small networks, and allows only a simple hop-count
as a PathID. In other distance-vector (DV) protocols (e.g.
EIGRP), the PathID is simply the “distance” of the chosen
path. So, a similar forwarding strategy to OSPF can be used
if nodes are upgraded for multi-path forwarding.

The central problem in DV protocols, vis-a-vis multi-path
computation under partial upgrades is the lack of topology
visibility. This leads to two issues: a) multi-path enabled
nodes do not see which other nodes are multi-path capable,
and b) even if (a) were solved, nodes cannot figure out how
to concatenate loop-free path segments such that the entire
path is loop free. However, simple multi-path algorithms
which compute a partial set of multi-paths under partial
upgrades are proposed by Narvaez et al [24] and Vutukury et
al [30]. These depend upon the criterion that if a neighbor’s
distance to a destination is smaller than the current shortest
path, then it is safe (loop-free) to use a path through that
neighbor.

3.1 Intra-Domain Multi-Path Forwarding

We split this section into four parts. First, in section 3.1.1
we consider the simplest case with the following assump-
tions:

e Allnodes are multi-path capable.

e Multi-path capable nodes use the same multi-path com-
putation algorithm, and support forwarding to all available
routes to any destination.

e A single-area flat routing domain is used.

Under these assumptions, the views of multi-paths in the
steady state is same at any multi-path enabled node. Sec-
ond, in section 3.1.2 we consider the case where a subset
of nodes support multi-path capabilities. Third, in sec-
tion 3.1.3, we consider a case where the upgraded nodes
may use different multi-path computation algorithms and/or
may support forwarding to only a limited number of paths.
Fourth, in section 3.1.4 we consider hierarchical intra-domain
multi-path routing.

3.1.1 Fully Upgraded Network Case

In the case where all routers in the network support multi-
path capabilities, the forwarding model closely follows the
description in Section 2. In particular, for intra-domain op-
eration we propose to extend the IP packet header with a
32-bit field (or new routing option), called the “-PathID.”
A 32-bit field should be sufficient to assure no wrap-around
because OSPF link metrics are 16-bit fields*. The i-PathID
is initialized by the host or the first-hop router that partic-
ipates in multi-path routing and traffic splitting.

The initialization value of i-PathID is the sum of weights of
links along the path modulo the field space (2°). The actual
choice of the path for every packet depends upon the traffic
splitting strategy (e.g. see Section 6.2). Every intermediate
router does a longest-prefix-match on destination address,
and a nearest PathID match (which turns out to be an ex-
act PathID match in steady state, under the assumptions
made) of i-PathID to determine the next-hop. The i-PathID
value in the packet header is decremented by the value of the
weight of the link to the next-hop before the packet is phys-
ically forwarded. When the packet reaches the destination,
it will have an i-PathID value of zero. Note that an i-PathID
value smaller than the smallest PathID will be re-mapped to
the shortest path, with a new i-PathID corresponding to the
shortest path. This way, it is guaranteed that even under
transient routing conditions, the packet ultimately defaults
to the shortest path.

3.1.2 Partially Upgraded Network Case

Next we consider the case of partial upgrades, i.e., not all
nodes support multi-path computation and forwarding. In
this case, the total number of paths to any destination is
likely to be smaller. Moreover, nodes which do not support
multi-path forwarding will ignore the i-PathID field, and
will not update it. If the originating node is not multi-
path enabled, the packet is sent in the default (shortest)
path and the routing option is not used. In this case, the
operator could configure a set of upgraded nodes to make
multi-path decisions on behalf of hosts if packets from those
hosts flow through them. Else, the forwarding is the default
IP forwarding.

If the originating node (“source”) is multi-path enabled, it
first chooses a path for a packet. Then it uses a slight vari-
ant in the forwarding process. Before forwarding the packet,
it decrements i-PathID by the sum of link weights of con-
secutive links until a multi-path or destination is reached.
Essentially, the series of hops across non-upgraded nodes is
viewed as a single “virtual-hop” for the purposes of the i-
PathID decrementing function. Note that due to the lack
of topology or path visibility, the virtual-hop feature cannot
be implemented in DV protocols (e.g. RIP, EIGRP), but
can be achieved in PV protocols like BGP.

For example in the Figure 2, nodes A, C and D are multi-
path enabled, and node A is the originating node for a packet
destined to node F. The shortest path from intermediate

It would require the sum of at least 64K 16-bit numbers
(> 64K-hop paths) to wrap-around a 32-bit field! Smaller
fields have a risk of wrap-around and larger tuple collision
probability.

Figure 2: Multi-Path Forwarding with Partial Up-
grades

node B to node F is B-D-F (with path weight of 4). Observe
that the path A-B-C-F is not available for forwarding. Node
B (which is not upgraded) cannot honor the path choice
since the only possible next hop from B to destination F is
node D. However, paths such as A-B-D-C-F, A-D-E-F, A-
D-C-E-F are available because nodes A, C and D are multi-
path capable.

If the path A-B-D-E-F is chosen, then the i-PathID is ini-
tially 7. But since B does not support multi-path forwarding
(and i-PathID update) capability, A sets i-PathID to 3. In
other words, A views the pair of hops A-B and B-D as a sin-
gle virtual-hop for the purposes of i-PathID update. Node
b ignores the i-PathID field and forwards it on its perceived
shortest-path (i.e. to D). Node D is multi-path enabled, and
realizes that the next-hop should be E. But since E is not
multi-path capable, node D sets the i-Path ID to zero. Node
E forwards the packet to F without looking at the i-PathID.

If path A-D-C-E is chosen, all nodes in the path are multi-
path capable, and hence the i-PathID value transmitted to
D is 8. Node D updates i-PathID to 5 and sends it to node C.
Node C updates i-PathID to 0, and forwards to node F. This
case is similar to the forwarding behavior in fully-upgraded
networks explained in Section 3.1.1.

To enable this forwarding and update operation, we assume
that the forwarding table entries at upgraded nodes con-
sist of tuples: (Destination prefiz, PathSuffizrID, Next-Hop,
VirtualHop Weight). The first two entries of the tuple are
matched as described earlier to determine the next-hop, and
the VirtualHopWeight is subtracted from the i-PathID. The
VirtualHopWeight is the link-weight of the outgoing link
if the next-hop is multi-path enabled. Otherwise it is the
sum of the link-weights of each link in the path till a multi-
path enabled router or destination is hit. This value is also
entered in the forwarding table as part of the multi-path
computation algorithm (see Section 6.1).

3.1.3 Heterogeneous Multi-Path Capabilities

In this section, we assume that different multi-path com-
putation approaches may be used at different nodes, and
forwarding at a multi-path node may be supported only to
a finite and arbitrary number of multi-paths per-destination.
We still assume the use of the MPC-bit in LSAs, which al-
lows multi-path enabled nodes know the subset of nodes that
support multi-path capabilities.

For the purpose of multi-path computation, each node as-
sumes that other multi-path enabled nodes compute all pos-
sible multi-paths as before. However, it makes an autonomous
local decision on: a) how many multi-paths it computes and,
b) how many it stores in its forwarding table (a filtering de-
cision). Now, the problem is that a node may assume the
existence of a path which in fact does not exist due to the
autonomous filtering decisions of other multi-path enabled
nodes. If packets are sent to this path, a remote multi-path
node will re-map the packet to a different path (and in the
worst case to the shortest path).

We refer to this kind of capability as “best-effort” traffic
engineering support. In other words, the network makes a
best-effort to send the packet on the chosen path, and re-
maps it to another potential path if the chosen path is not
available. Optionally, sources can autonomously check for
route existence (e.g. through traceroutes carrying PathIDs).

For example, consider a slight modification of the case shown
in Figure 2. As shown, nodes A, C and D are multi-path
enabled, and node A is the originating node for a packet
destined to node F. However, in this case, assume that D
autonomously decides not to store routes D-C-F and D-E-
F. When a packet specifying D-C-F (i.e. destination F, i-
PathID = 8) arrives, it will be mapped to the nearest match:
D-C-E-F (i.e. i-PathID = 6). The packet will be forwarded
to node C, with i-PathID=3. Node C then matches the
packet to the default (shortest path), and observes that E
is not upgraded. Hence node C sets i-PathID to zero and
forwards it to E. Node E ignores the i-PathID (since it is
not upgraded) and forwards the packet to node F.

3.1.4 Hierarchical Routing Case

The final assumption we will relax is that of a single-area
link-state routed network. Large OSPF and IS-IS networks
support hierarchical routing with up to two levels of hierar-
chy, with the root area called area 0. We consider “normal”
and “totally stubby” areas [23]. In normal areas, summary
LSAs (inter-area) and external LSAs (inter-AS) routes are
flooded by Area Border Routers(ABRs). This allows inter-
nal nodes to choose an exit ABR, based upon advertised dis-
tances to remote areas. In “totally stubby areas” summary-
LSAs and external-LSAs are not flooded within the area. In
both cases, intra-area nodes cannot see the topology of area
0, or that of other areas. ABRs can see the topology of area
0, but cannot see the topology of other areas.

Our approach to handling both these cases is to view each
area as a flat routing domain for purposes of multi-path
computation. Multi-paths are found locally within areas,
and crossing areas is viewed as like crossing to a new multi-
path routing domain. In the case of normal areas, internal

nodes can choose an ABR and then decide on multi-paths to
that ABR. In the case of totally stubby areas, internal nodes
do not have a choice of ABRs since they forward to 0.0.0.0/0
(default route). However, they still can choose multi-paths
within the area to address “0.0.0.0,” resulting in multi-paths
to the default exit ABR.

For inter-area multi-path forwarding, we propose to re-use
the i-PathID field after crossing area boundaries. Note that
this operation is different from inter-domain multi-path for-
warding where we propose to use a new field (e-PathID, de-
fined in Section 4.2). For example, if a source needs to send
a packet outside an area, it chooses one of the multi-paths
to the (default or chosen) area border router (ABR). Then,
the ABR may choose among has several multi-paths within
area 0 to other ABRs. The i-PathID field is re-initialized by
the first ABR at the area-boundary.

Area 1

Area 2

Figure 3: Hierarchical Multi-Path Forwarding

Consider the hierarchical routing scenario in Figure 3 which
is an extension of Figure 2 (albeit, with some link-weight
changes). As before in area 1, nodes A, C and D are multi-
path enabled, and node A is the originating node. Assume
that A wants to send packets to node I in area 2. ABRI1
and ABR2 are the area border routers for area 1. Assume
areas 1 and 2 are “normal” areas [23], i.e., summary-LSAs
(and external-LSAs) are flooded into the area. ABR3 and
ABRA flood summary-LSAs into area 0 (advertising reach-
ability to area 2) with costs 7 and 9 respectively (i.e. cost
of longest path from the ABR to any node within area 2).
ABRI1 and ABR2 add their shortest inter-area costs to area
2 and advertise costs of 10 and 8 respectively within area 1.
Therefore, normally nodes A and D would choose ABR2 as
their exit ABR, whereas nodes B and C would choose ABR1
as their exit ABR to reach area 2 destinations. However,
multi-path enabled nodes A, C, D can choose either exit
ABR. For example, A can choose any of the paths: A-B-C-
ABRI1-area2, A-B-C-ABR2-area2, A-D-ABR1-area2, A-D-
ABR2-area2, A-D-B-C-ABR1-area2 etc. As before the path
prefix [A-B-D-...] is not available since B does not support

multi-path forwarding and sends packets with destinations
in area2 to node C. The i-PathID for A-B-C-ABR1-area?2 is
initially 4 (intra-area) + 10 (inter-area) = 14. As before, the
two hops A-B-C is considered as a virtual hop with weight
3 for forwarding purposes.

Now when the packet reaches ABR1, the i-PathID field has
a value 10 (which refers to path ABR1-ABR4-area2). How-
ever, since ABR1 may choose one of many area 0 paths to
area 2, the i-PathID field set by A may be ignored and re-
initialized by ABR1. For example, ABR1 may choose the
paths ABR1-ABR5-ABR3-area2, ABR1-ABR3-area2 etc. As-
suming it chooses ABR1-ABR5-ABR3-area2, the initial i-
PathID is 24247 = 11, and next-hop ABR5. When the
packet reaches area2, ABR3 may choose only of many paths
to reach I (eg: ABR3-H-I, ABR3-J-I, ABR3-H-G-I etc) and
forward packets as described in Section 3.1.2. Note that if
the areas were “totally stubby” areas, the only difference is
that all intra-area nodes (multi-path or not) would have a
default-exit-ABR (i.e. no choice of exit ABR). Multi-paths
can be chosen within each area however, as described above.

4. BANANAS: INTER-DOMAIN MAPPING

BGP-4 is the inter-domain routing protocol in the Internet.
It is a path vector protocol which announces paths to a
destination prefix if the AS is actively using those paths.
Our inter-domain TE goal in the BANANAS framework is
to enable multi-AS-paths from the source to the destination.
Within each transit AS, multi-paths may be chosen under
the control of the entry border router (entry AS-BR). An
AS may be structured internally as a hierarchical OSPF or
IS-IS network, and the internal forwarding then follows the
discussion of earlier sections.

Our first observation is that BGP as-is does not disallow
multiple AS-path advertisements to any destination prefix.
A quick scripting check on a number of recent routing ta-
bles from RIPE/NCC indicates that such multi-AS-path an-
nouncements do not happen today, consistent with single
path inter-domain forwarding assumptions. So, if we ex-
tend a single AS to autonomously support multi-AS-path
forwarding, then it can leverage BGP to advertise multiple
AS paths (to any destination prefix) to its neighbor ASs.
Therefore any AS can infer that its neighbor AS has multi-
AS-path capabilities merely from the fact that it is adver-
tising multiple AS-paths (and that the neighbor AS is the
forking point for the multi-AS-paths) to the destination pre-
fix of interest.

Moreover, since BGP-4 is a path-vector protocol, the multi-
path computation algorithm extension at any BGP router
is trivial. Today, BGP-4 applies policies as a series of tie-
breaker rules to choose one route to a prefix. A multi-path
computation extension would allow multiple paths to be cho-
sen after they are pre-qualified by a set of filtering rules.
But, upgrading a single BGP router in an AS is not suffi-
cient. BGP expects synchronization between all i-BGP and
e-BGP routers in an AS before routes can be advertised
outside the AS. Also, because of the DV-nature of BGP,
the multi-AS-path information may not be propagated be-
yond the immediate neighbors of a multi-AS-path enabled
AS. This is because such neighbor ASs may not support

multi-path forwarding. We propose simple extensions BGP
to address these issues in the following subsection.

4.1 Re-advertisement & Synchronization

In this section, we make a distinction between multi-path
re-advertisement within an AS (which determines the com-
plexity of upgrades of i-BGP and e-BGP nodes), and re-
advertisement across AS-boundaries. Across ASs the cen-
tral issue is that, if neighbor ASs do not relay (re-advertise)
at least a subset of the multi-AS-paths available from an
AS, remote ASs will not be able to take advantage of such
multi-AS-paths. This is a direct result of the path-vector
(i.e. extended distance vector) routing paradigm used by
BGP-4. Within an AS, the central issue is that BGP ex-
pects synchronization between e-BGP and i-BGP nodes be-
fore information is advertised to other AS’s.

Moreover, we distinguish between multi-AS-path
re-advertisement and multi-AS-path forwarding capabilities
at an AS. In particular, we allow selective multi-AS-path
re-advertisement even when the AS itself does not support
multi-path inter-domain forwarding internally. By this, we
mean that i-BGP and e-BGP routers may store multiple
AS-paths to a prefix in their Routing Information Bases
(RIBs), and re-advertise them under certain conditions, but
they need not support multi-path forwarding entries in their
Forwarding Information Bases (FIBs) and need not possess
any multi-path data-plane forwarding capabilities (see sec-
tion 4.2).

41.1 BGP Multi-AS-Path Re-advertisement

Consider an example where ASO supports and advertises
multiple AS paths {p1,p2,...,pn} to destination prefix d.
Observe that if neighbor AS1 chooses ASO as its next-AS-
hop for prefiz d (eg: on the basis of AS-path p;) it can safely
re-advertise all the AS-paths : {(AS1 p1), (AS1 p2),...... ,
(AS1 pn)} even if it does not support multi-AS-path for-
warding within AS1. This is possible because, irrespective
of the source path choice, all traffic to prefix d in AS 1 would
be forwarded to ASO anyway. The particular AS-path choice
would be made only at AS0. AS1 hence would act as a relay
for multi-path traffic, even though it does not possess multi-
path forwarding capabilities itself. Note that currently the
e-BGP protocol in AS1 would announce only the AS-path
(AS1 pi).

A concrete example is shown in Figure 4. ASO has three
AS-paths to destination prefix “d” that is in AS4. These AS
paths are represented as (0 4), (03 4) and (05 4). Now, ASO
can be simply configured to announce this to AS1. Assume
AS1 chooses the AS-path (0 4) as its choice for forwarding
packets to destination d. Normally, BGP will only announce
the AS path (1 0 4) to AS2. However, we propose in this
case that, since AS1 has a forwarding path through ASO, it
is safe for AS1 re-advertise the other AS-paths to AS2, i.e.
it would advertise { (1 04), (1034),(1054) } to AS2.

Let us look closely at the proposal to re-advertise the set
of AS paths {(AS1 p1), (AS1 p2), ..., (AS1 p,)}. To avoid a
host of ambiguities, we propose that this re-advertisement
be tagged with a new BGP “re-advertisement” attribute
which lists the ASNs of the AS’s that are merely re-advertising

3 AS-paths to "d"
(04)(034)(05 4)

1 AS-path of
3 AS-paths
to "d"?? N BG-1

Figure 4: Re-advertisement of Multi-Paths by BGP

AS-paths, and do not support multi-path forwarding. When
re-advertising routes without supporting multi-path forward-
ing, the AS will append its ASN to the list of re-advertising
ASNs. This will allow a remote AS to unambiguously iden-
tify the AS’s which support multi-path forwarding. Observe
that a neighbor of AS1 (say AS2) will now parse and inter-
pret these re-advertisements to mean that the remote au-
tonomous system, ASO supports multi-AS-paths (because it
is the forking point for the AS-paths). Furthermore, it will
know that AS1 is merely re-advertising these AS-paths.

4.1.2 BGP Synchronization Issues

Under current BGP-4 semantics the re-advertisement capa-
bility must be supported by both the i-BGP and e-BGP
routers before the entire AS can be declared to have this
re-advertisement capability. In particular, both i-BGP and
e-BGP routers store multiple AS-paths for prefixes in the
RIBs; but not necessarily in the FIBs. An alternative would
be to weaken BGP’s synchronization assumption between
i-BGP and e-BGP, and require only the e-BGP nodes to
synchronize on these re-advertisements. This method would
work only if inter-domain multi-path packets are tunneled
through the AS from the entry AS-BR to the exit AS-BR
(see Section 4.2).

In either of these alternatives, observe that the first e-BGP
AS-BR (that sees multi-path advertisements from neighbor
AS’s) alone can make a decision on a prefix-by-prefix basis
whether to re-advertise AS-paths. In other words, the first
AS-BR could decide to re-advertise a subset of the AS-paths
{(AS1 p1), (AS1 p2), ..., (AS1 p,,)} once it accepts p;. It can
also decide to re-advertise only a subset of the AS-paths.
Other BGP routers in the AS then merely relay such re-
advertisements and populate their RIBs.

Note that this selective re-advertisement concept is simi-
lar in spirit to the link-state idea of propagating informa-
tion from originating node throughout the network, albeit,
only for a filtered subset of the information. Therefore,

once AS’s support multi-AS-path readvertisement capabili-
ties, even though BGP does not have full AS-topology in-
formation (unlike link-state algorithms), because of its path-
vector nature it has full information about a subset of multi-
AS-paths available to any destination prefix. This informa-
tion is what allows multi-AS-path forwarding with source-
control in the BANANAS framework.

4.2 Inter-domain Multi-Path Forwarding

Recall that the BANANAS framework concept of inter-domain

multi-path is to allow the source AS control over the choice
of the particular AS-level path. Intra-AS paths in transit
AS’s are decided locally by the entry AS-BR. To illustrate
the issues in multi-path forwarding across transit AS’s, con-
sider the scenario in Figure 5. AS0 is a customer AS, which
buys transit from AS1 and has traffic to destination d in
AS4.

We propose that the exit AS-BR (AS border router) of
ASO initializes a new packet header field, the inter-domain
PathID (or e-PathID for shorthand) to specify its AS-path
choice for destination d. Recall that intra-domain PathIDs
are called “-PathIDs.” The e-PathID for BGP is defined
to be the sum of the AS numbers (ASNs) of the AS’s on
the path modulo 2° where b is the e-PathID field length in
bits. Observe that, from a graph-theoretic viewpoint, the
e-PathID is a sum of node IDs as opposed to the i-PathID
which is a sum of link weights. This change in semantics
implies that all intermediate AS’s compute PathSuffixIDs
as sum of ASNs of AS-path-suffixes, and subtract their own
ASN (or next-virtual-AS-hop ASN sum) from the e-PathID
during the inter-domain forwarding process (i.e. at the entry
AS-BR).

We recommend that the e-PathID field size be 32 bits, be-
cause current ASNs use a 16-bit space, and only the lower
portion of the ASN space is allocated. Even though an ASN-
space extension to 32-bits is proposed at the IETF, we do not
expect this to be a problem because only the lower portions
of the ASN space will be assigned in the foreseeable future.
Moreover, unlike link-weights, ASNs are guaranteed to be
unique since they are identifiers for autonomous systems.
Hence the e-PathID (which is the sum of unique ASNs) and
the inter-AS forwarding tuple (destination, e-PathID) has
a much higher probability of being unique, even in the re-
mote future possibility of e-PathID wraparound with 32-bit
ASNs.

In Figure 5, the entry AS-BR (ASBR1) of the transit provider
(AS1) uses the inter-domain forwarding tuple (destination,
e-PathID) to determine the next AS-hop, i.e., the next AS to
which the packet has to be transmitted. Assume that AS1
is multi-path forwarding enabled and has two AS-paths to
destination d (or its prefix): one path through peer AS2 and
another path through peer AS3. If ASO chooses the path (0
13 4), it will initialize e-PathID to 8 to imply a next-AS-hop
of AS3 at ASBR1. Moreover, assume that AS1 has two AS-
BRs (ASBR2 and ASBR3) peering with AS3. This poses
three forwarding problems for ASBRI1:

1. How to ensure the packet forwarding within AS1 so
that the packet reaches AS3, as specified by the source

Figure 5: BGP Multipath Forwarding Scenario

AS0 ? What forwarding enhancements in internal iBGP
routers are needed ? Can the packet-forwarding be
done if intermediate iBGP routers do not support these
enhancements (partial upgrade scenario)?

2. How to choose the exit AS-BR to reach AS3 (ASBR2
or ASBR3)? How to ensure that the packet is for-
warded to the chosen exit AS-BR ?

3. If multiple paths are available to the chosen AS-BR,
can it be specified in a manner similar to the intra-
domain multi-path case?

First, we observe that the entry ASBR (ASBR1) is the
only node that processes and updates the e-PathID field
by subtracting its own ASN of the next-AS-hop. Similar
to the discussion in Section 3.1.2, the entry-ASBR can up-
date the e-PathID by subtracting the sum of ASNs of AS-
hops which are known not to support multi-path forwarding
(i.e. Virtual-AS-Hop ASN). The conceptual inter-domain
forwarding table at the entry AS-BR would have a list of
tuples: (Destination prefiz, AS-PathSuffizID, Next-AS-Hop,
Virtual-AS-Hop-ASN). A minor difference in e-PathID pro-
cessing is that packets with errant e-PathIDs are mapped
to a default AS-path which may or may not be the short-
est AS-path available (i.e. chosen by policy like in today’s
BGP).

Next, we note that the above inter-domain decision does
not resolve the intra-AS transit forwarding issues raised.
The simplest solution for these issues is to encapsulate (tun-
nel) the packets across the AS, with the chosen exit AS-BR
address as the destination address, and the chosen intra-
domain PathID in the outer header. The exit AS-BR is
obtained by resolving the Next-AS-Hop field in the tuples
mentioned above. Without loss of generality, we can con-
sider the inter-domain forwarding tuples at entry-ASBR’s to
be of the form: (Destination prefiz, AS-PathSuffizID, exit
AS-BR, Virtual-AS-Hop-ASN).

The exit AS-BR then de-capsulates the tunneled packet
and performs e-PathID processing as mentioned earlier. No
new forwarding plane support is needed from internal iBGP
routers in the path (over-and-above optional intra-domain
multi-path support discussed in previous sections). This so-
lution runs into the usual tunneling/encapsulation issues:
per-packet overhead, potential configuration of tunnel end-
points, and implementation of encapsulation in the slow-
path of current routers (AS-BRs only). We believe these
issues could be addressed due to growth in aggregate ISP
bandwidth, automated configuration tools and potential im-
plementation of encapsulation in fast-path of future routers.

The alternative transit forwarding strategy is to add a new
field for the exit AS-BR address in the routing option. This
field would be in addition to the previously proposed i-
PathID and e-PathID fields. Internal iBGP routers of AS1
will be configured to ignore the destination address and sim-
ply use the exit AS-BR field as the destination; and i-PathID
to specify the particular path to the exit AS-BR. This so-
lution is in fact similar to the encapsulation approach, ex-
cept for the fact that the AS-BR address and is put into
the routing option, and the overhead of the remaining outer
IP header fields is avoided. The downside is that all inter-
nal iBGP routers should support this enhanced forwarding
plane before this alternative can be enabled. The exit-ASBR
field can be 32-bits for both IPv4 and IPv6. The field would
hold the exit AS-BR IPv4 address (for IPv4), and a con-
densed (or locally mapped) version of the IPv6 address (for
IPv6).

In summary, the partial upgrade strategy in BGP is start
with a re-advertisement capability (only at e-BGPs, or in
both e-BGP and i-BGP). Then forwarding capabilities either
are provided only at e-BGP routers (tunneled case) or all the
routers are upgraded (exit AS-BR case).

5. PUTTINGIT TOGETHER

The BANANAS framework proposes to support both intra-
domain and inter-domain paths, parsimoniously encoded in
just three 32-bit fields in packet headers. Observe that
the proposed per-packet overhead is smaller than a 128-bit
IPv6 address. The i-PathID is used for intra-AS multi-path
forwarding, and is re-initialized after crossing area or AS
boundaries. The i-PathID is the sum of link weights on the
path suffix. The e-PathID is the sum of ASNs on the AS-
path-suffix, and is processed only at AS-boundaries. The
exit-ASBR field is used for transit forwarding within an AS.
This field is not required if packets will be tunneled across
AS’s from entry ASBR to exit AS-BR.

The intra-domain forwarding tables at upgraded routers would

have tuples (Destination prefiz, PathSuffizID, Next-Hop, Vir-
tualHop Weight), which are indexed after processing the for-
warding tuple (Destination, i-PathID) for longest prefix des-
tination match and nearest-PathID match. The value Vir-
tualHopWeight is subtracted from the i-PathID packet field.
Packets with errant i-PathIDs will be mapped to the shortest
path, and their i-PathID appropriately re-initialized. The
OSPF LSA’s [23] can be extended with one bit to indicate
whether the router is multi-path capable (MPC). Note that
this bit is required only on LSAs, and not on data-packets.

In distance-vector protocols, the lack of topology visibility
allows only simple multi-path algorithms under partial up-
grades which may not compute all available multi-paths [24,
30].

The inter-domain forwarding at entry AS-BRs (i.e. e-BGP
routers) would have tuples (Destination prefiz, AS-PathSuf-
fizID, exit AS-BR, Virtual-AS-Hop-ASN), which are indexed
by processing the inter-domain forwarding tuple (Destina-
tion, e-PathID) for longest-prefix destination match and
nearest-PathID match. The value Virtual-AS-Hop-ASN is
subtracted from the e-PathID packet field. A minor dif-
ference compared to the intra-domain routing is that pack-
ets with errant e-PathIDs are mapped to a default AS-path
which may or may not be the shortest AS-path available
(i.e. is chosen by policy). The exit AS-BR value is either
used to initialize the the tunnel header destination or in
the proposed exit-ASBR field. The i-PathID field may be
re-initialized to specify a transit intra-domain path through
the AS.

Since BGP is a path-vector protocol, re-advertisement of
multi-paths is critical for remote AS’s to discover the avail-
able multi-AS-paths. BANANAS allows filtered re-advertis-
ement capability of AS-paths through a neighbor, if the AS
indeed forwards packets via through the particular neigh-
bor AS. BANANAS allows a partial upgrade strategy of e-
BGP routers alone, provided BGP synchronization seman-
tics can be weakened, and tunneling of packets between e-
BGP routers is possible. Unlike the intra-domain case, com-
putation of multi-paths is trivial because paths are explicitly
advertised in BGP. Forwarding from the entry-ASBR to the
exit-ASBR can be either through tunneling or through spe-
cial forwarding capabilities (using exit-ASBR field as desti-
nation) at all i-BGP routers.

Note also that while BANANAS allows “source” control over
routing, this does not mean that end-systems see full rout-
ing tables. Instead, the BANANAS framework facilitates
progressive decision making by nodes along the path that
can take on the role of a “source” on behalf of the originat-
ing host (eg: source host, first-hop router, ABR, AS-BR in
source AS, entry AS-BR in transit domains). Such sources
would have the visibility into paths, and can make decisions
on behalf of the original source within the level of abstrac-
tion in which they operate.

6. MULTI-PATH COMPUTATION AND TRAF-

FIC SPLITTING ALGORITHMS

In this section, we develop simple algorithms for multi-path
computation in a partially upgraded network and explore
simple heuristics for traffic splitting primarily for illustra-
tive purposes. The framework is general enough to support
heterogeneity and evolution of such algorithms and splitting
heuristics without requiring major changes in the abstract
forwarding plane operation.

6.1 Multi-Path Computation with Partial Up-
grades

In this section we present a simple link-state algorithm to
compute all paths to a destination under the constraint that

a known subset of nodes in the network have been upgraded
to support multi-path routing. Narvaez et al [24] and Vu-
tukury et al [30] propose multi-path algorithms applicable
to distance vector or link state protocols, and may operate
with partial upgrades. But, their discover only a (potentially
small) subset of available paths that may depend upon the
particular nodes upgraded.

Our link state algorithm (Algorithm 1) at upgraded node
i uses the network map (graph) and first runs an all-pairs
shortest path computation, i.e., the Floyd-Warshall Algo-
rithm [7]. For any chosen node k and destination j, the
Floyd-Warshall algorithm sets up the next-hop node [in
the shortest path in node k’s routing table. Given these
routing tables, we do a depth-first search (DFS) rooted at
node ¢ to discover multiple paths from ¢ to each destination
j. We use a per-node variable wvisited_nodes, within each
DFS pass, to mark the nodes visited by the DFS algorithm.
By only picking nodes which have not been visited earlier to
construct our paths, we ensure loop-free paths. If the DFS
algorithm has arrived at node k (and appended k to relevant
paths), it considers a subset of k’s neighbors. If node k is
known to be multi-path enabled, the DFS considers all its
neighbors. Otherwise, it just considers the next-hop node
on the shortest path from k to the destination. If the chosen
next-hop node of k£ has not been visited earlier, its appends
this node to the path, and repeats the above procedure re-
cursively, using k’s next-hop node as the source. Once the
DFS is complete at node k, then the visited_nodes[k] is reset
to zero. With minor extensions, Algorithm 1 can be used
to obtain the VirtualHopWeight using a variable flag (ini-
tialized as true) for each path. The link weights are added
to VirtualHop Weight if flag is set. The variable flag is re-
set if the next hop is a multi-path capable node and left
unchanged otherwise.

The computational complexity of simple sequential Floyd-
Warshall implementation is O(N?®) where N is the number
of nodes in the network. However, it has been shown that
this shortest path problem can be viewed as a matrix multi-
plication problem that can be solved in O(n*), (w < 2.5) [26,
6]. The best known upper bound today is O(n?3"°) [7]. Al-
ternatively, one may run Dijkstra (N-k) times where k is the
number of multi-path capable nodes. The Dijkstra’s algo-
rithm with adjacency lists has complexity of O(FElog(N)),
so varying over N — k source nodes gives a complexity of
O((N — k)Elog(N)). For multi-path nodes visit all the
next hops in DFS, hence we do not need the shortest path
next hop. This may be a better approach for large sparse
graphs. In future work, we plan to investigate optimal and
incremental multi-path algorithms under partial upgrade as-
sumptions.

6.2 Traffic Splitting Strategies

In this section we present results to illustrate that even sim-
ple traffic splitting techniques at the “source” can lead to
good load-balancing of traffic. Traffic splitting strategies
could vary from simple heuristics to more complex optimal
splitting (see for example, [13, 30]), There is no standard
performance metric used in the literature for load-balancing.
We use offered load to the heaviest loaded link in the net-
work as the comparison metric. More elaborate metrics may

10

Algorithm 1 Algorithm for computing all paths between
a source and destination with only some nodes supporting
multi-path forwarding

/* adjacency_matrix][i][j]=link_weight if 3 link from i to j,
else -1
partial_paths is the sum of link weights on the path, it is
initialized to zero
partial_paths nexthop is the next-hop node on the path
no_paths denotes the number of path currently being tra-
versed, at the end of the procedure it will denote the num-
ber of paths found between a source and destination
N denotes the number of nodes in the network
The array visited_nodes marks a node if it has appeared
in the currently traversed path. It is initialized to zero */
procedure ComputePartialPaths(src, dst, no_paths, par-
tial_paths, partial_paths_nexthop, level)
begin
visited_nodes[src] « 1
if src is a multi_path node then
fori=1to N do
save current value of partial_paths
if (3 link from src to i) && (visited-nodes[i]==0)
then
if level == 0 then
partial_paths nexthop[no_paths] < i;
end if
partial_paths[no_paths]+=adjacency_matrix[src][i]
if i==dst then
partial_paths_nexthop[no_paths+1] +
partial_paths nexthop[no_paths]
no_paths ++
else
ComputePartialPaths(i,dst,no_paths,
partial_paths,partial_paths_nexthop,level+1)
end if
end if
end for
else
/* shortest_paths and shortest_paths_nexthop is com-
puted by calling AllShortestPaths() */
i « shortest_paths_nexthop[src][dst]
if visited_nodes[i]==0 then
partial_paths[no_paths] += adjacency_matrix[src][i];
if level == 0 then
partial_paths nexthop[no_paths] « i;
end if
if i==dst then
partial_paths_nexthop[no_paths+1] <
partial_paths_nexthop[no_paths]
no_paths ++
ComputePartialPaths(i,dst,no_paths,partial_paths,
partial_paths nexthop, level+1)
end if
end if
end if
visited_nodes[src] < 0
end

be designed to compare the performance of various splitting
strategies. However, this is not the focus of this paper.

We compare the following traffic splitting strategies. It is
important to note here that a global knowledge of the de-
mand matrix is not assumed.

1. Shortest Path: (SP) All the traffic to a destination
is sent on the shortest path to the destination.

2. Proportional BW: (Prop-BW) A subset of paths to
a destination are computed and the minimum available
capacity on each path is computed. The traffic is split
proportional to the available capacity on the path. The
paths longer than the maximum number of hops are
not chosen.

3. Independent-Maxflow(I-Maxflow) The source picks
an arbitrary path to the destination and sends the
maximum it can on that path. This process is re-
peated until the entire traffic is assigned to paths. This
splitting will give the fraction of traffic being routed
on each of the paths. This is repeated independently
for demand between every non-zero source-destination
pair in the demand matrix.

4. Sequential-Maxflow (S-Maxflow) In this scheme, we
assume that the available bandwidth after assigning
one traffic demand is known before computing the split
for the next demand. Maxflow is used to assign traffic
to different paths.

We assume full-deployment of the BANANAS framework
with enough memory to store all paths (or a subset of paths
in case of Proportional BW) in the forwarding tables. ~ We

Figure 7: Topology 2: 19-node network topology

present results with two representative topologies shown in

11

Figures 6, 7. All the links have 10Mbps bandwidth and
1ms delay. In this section, the shortest path computation
assumes unit link weight for all the links.

We compare the offered load on the maximum utilized link
for different splitting schemes with randomly chosen de-
mands. For Topology 1, four demand matrices with 12,
9, 5 and 7 randomly chosen source-destination pairs was
constructed. Amongst these source-destination pairs, a to-
tal of 19, 20, 45 and 59Mbps traffic was sent respectively.
Similarly, for Topology 2, demand matrices with 19, 15, 28
and 25 randomly chosen source destination pairs sending
a total traffic of 31, 24, 36 and 45Mbps respectively were
constructed. The traffic was assumed to be Constant Bit
Rate (CBR). Comparative results are presented in Table 1
for Topology 1 and in Table 2 for Topology 2. Each row of
the Table refers to a demand matrix (in the order described
above).

D# | SP | Prop— BW | I — Maxflow | S — Max flow
1. | 0.90 0.34 0.90 0.90

2. 1075 0.40 0.70 0.70

3. | 1.80 0.87 2.70 1.00

4. | 0.60 0.27 1.70 1.00

Table 1: Table comparing the offered load on the
maximum utilized link for different traffic splitting
schemes for Topology 1

D# | SP | Prop— BW | I — Maxflow | S — Max flow
1. | 0.50 0.27 1.20 1.00
2. 1 0.50 0.25 1.00 1.00
3. 10.80 0.40 1.60 1.00
4. | 1.00 0.43 1.80 1.00

Table 2: Table comparing the offered load on

maximum utilized link for different traffic splitting
schemes for Topology 2

We expect the max-utilization for S-Maxflow to be 1.00 in
most cases, if the traffic can be carried by the network. In
this scheme, the maximum amount of traffic that can be sent
on a path without overloading the path is actually sent on
the path. However, as expected, if max-flow is done indepen-
dently (I-Maxflow) without taking into account the actual
residual bandwidth, some links will get overloaded quickly.
We observe that the Proportional BW heuristic consistently
outperforms the SP (shortest path with no traffic splitting)
by balancing traffic evenly across the network (lower max-
utilization). Although Tables 1,2 show results for only four
representative demand matrices, these conclusions are con-
sistent with the results that are not presented in this paper.

7. SIMULATIONS

In this section we illustrate the working of the framework
using the Network Simulator (ns-2). The implementation
allows network scenarios with partial upgrades to be sim-
ulated. Forwarding mechanism, routing tables and other
details of the framework are also illustrated. Finally, some
simple scenarios with both partial and full-upgrades are con-
sidered to illustrate possible gain in throughput by using the
framework. The topologies described in Section 6.2 are used
for the simulation (shown in Figures 7, 8).

Dest | PathID | NextHop | Virtual HopW eight
8 121 2 83
8 165 5 165
7 206 5 203

Table 3: Partial routing table at Node 1 for simula-
tion run on Topology 1

7.1 lllustration of the framework

Consider the topology shown in Figure 8 (Topology 1). All
links have 10Mbps bandwidth and 1ms delay with link weights
as shown in the figure. To explain the working of the frame-
work, we consider the paths taken by a packet from Node 1
to Node 8 (Path-I) and Node 1 to Node 7 (Path-II).

We consider a partial upgrade scenario where only nodes 1
and 2 (shown by dark circles) are multi-path capable. A
subset of the entries in the routing table at Node 1, during
a simulation run is presented in Table 3. The node com-
putes the shortest path to a destination along with other
available paths. Note that the table is indexed by two keys,
namely, the destination address and the PathID. When a

Path-11

Figure 8: Figure demonstrating operation of BA-
NANAS for Topology 1

packet arrives at node 1 with a valid PathID, the next hop
is obtained from the table using the destination address and
the PathID. The PathID on the packet is then decremented
by the distance till the next multi-path node (indicated by
VirtualHop Weight), before the packet is transmitted. So if
a packet enters Node 1 with PathID 121 and intended for
destination 8, it is forwarded to 2 with the PathID set to
(121 — 83) = 38. Note that in this case (indicated as Path-I
in the Figure 8) the next hop (node 2) is also a multi-path
node.

Consider Path-II in Figure 8. Suppose a packet arrives at
Node 1 with the PathID 206 (93+5+67+38+3) and des-
tined to Node 7. The next hop is 5, a node that does not
implement the multi-path algorithm. Node 1 subtracts the
VirtualHopWeight (in this case 203=93+5+67+38). The
packet reaches node 2 with a PathID 3 and is appropriately
forwarded.

7.2 Throughput Gainswith traffic splitting

With multiple paths available for routing traffic, a “source”
can split traffic among those paths to achieve load balancing
and gains in throughput. We use topologies shown in Fig-
ures 7, 8. The simulation consists of transmitting a 1 MB
file between two nodes using CBR sources. These simula-
tions assume the knowledge of residual capacity of a path.

12

Topology | Shortest | Two | Three
Path Paths | Paths
Topology 1 5.25 3.15 3.15
Topology 2 6.99 3.15 1.85
Table 4: Using multiple paths to obtain higher

end-to-end bandwidth: Time taken (in seconds) for

transfer of 1MB file

In an OSPF domain, this information can be obtained using
opaque LSAs.

In Figure 8, Node 1 is the source and Node 8 is the des-
tination. The nodes 1 and 2 are multi-path enabled. The
shortest path from Node 1 to Node 2 is the one connecting
nodes 1, 2 and 8, and is denoted as (1,2,8). Alternatives to
the shortest path are (1,5,10,8) and (1,4,5,10,8). The path
(5,10,8) has a constant background traffic of 4Mbps. The
path (4,1,2,7) has a constant background traffic of 2Mbps.
Thus the residual capacity on the paths would be 8Mbps
on (1,2,8), 6Mbps on (1,4,5,10,8) and (1,5,10,8). Using the
proportional BW heuristic discussed in Section 6.2, divide
the traffic among the paths proportional to the residual ca-
pacities.The ratio for the traffic split would then be 8:3:3.
Table 4 depicts the time taken to complete transmission of
the file. Since the alternate paths (1,4,5,10,8) and (1,5,10,8),
share the bottleneck link (10,8), the time to complete trans-
mission with two and three paths is the same (3.15s). Thus
increased number of paths may not necessarily mean an im-
provement in throughput.

For Topology 2 (10Mbps, lms links and link weights as
shown in Figure 7), the source node is 18 and destination
is 12. The multi-path nodes are 7 and 18. The shortest
path is (18,15,14). Two alternate paths are (18,2,3,5,14)
and (18,17,16,14). Note that the paths are independent.
There is a constant background traffic of 2Mbps on paths
(0,2,3,5), (15,14,12) and (15,14,13). Consequently the resid-
ual capacities on the paths are 10Mbps on (18,17,16,14),
8Mbps on (18,2,3,5,14) and 6Mbps on (18,15,14). Using the
same heuristic as above to split traffic, we see the results in
Table 4. Thus exploring alternative paths can yield higher
throughput if residual capacities are higher on them.

8. RELATED WORK

There has been much recent interest in the area of connec-
tionless traffic engineering intended for scenarios ranging
from intra-domain, inter-domain, end-to-end, and overlay
operation [31, 18, 8, 17, 10, 1].

In the intra-domain case, a large body of work centers around
using current shortest path routing (OSPF) as the basis,
and then achieving optimal routing by either managing link
metrics [31, 11, 12, 21], using equal-cost multi-path exten-
sions with static or dynamic local traffic splitting [15, 29],
or extending intra-domain routing algorithms for multi-path
support [24, 30, 5]. The problem of finding optimal OSPF
link weights for a given traffic demand is an NP-hard prob-
lem [11, 3]. Moreover, traffic demand must be assumed to
be characterized in a quasi-static manner, and there is an
overhead of changing link-weights. Fortz and Thorup [12]
use local-search algorithms, and optimize OSPF by chang-
ing weights of only few links. Wang et al [31] convert an

optimal routing problem in an overlay routing model (using
VCs mapped to physical network) to a shortest path prob-
lem with appropriate link weights set to reflect the traffic de-
mand. OSPF-ECMP [28, 15] allows traffic to be split equally
among the multiple next hops for paths with equal weights
to the destination. Weights have to be carefully engineered
to achieve load-balancing. OSPF-OMP [29] uses ECMP, but
instead of depending upon weight assignments, sample traf-
fic load information and floods it via opaque LSAs. The
information is used to tweak local load splitting decisions.

The performance of OSPF is limited by the underlying short-
est path forwarding (or ECMP). Lorenz et al [21] show that
OSPF routing performance can be as bad as O(IN) compared
to the explicit source-based routing (eg: MPLS-based [3]).
In [3, 11, 21] network topology and demand matrices have
been constructed for which the best OSPF /IS-IS routing is
worse than the best MPLS routing. Multi-path routing does
not have this limitation.

The SNA protocol of IBM had one of the earliest multi-path
routing algorithms [14]. Narvaez et al [24] and Vutukury et
al [30] propose simple multi-path algorithms that can op-
erate in DV or LS environments, but do not compute all
possible paths. Chen et al[5] propose an interesting frame-
work for multi-path forwarding and propose multi-path ex-
tensions to LS and DV routing. They develop a general
concept of suffix matched path ID, that is a mathematical
generalization of the i-PathID of the BANANAS framework.
However, they propose a label-switched realization (hard to
map to BGP), and expect all network routers to support
multi-path forwarding. Most of these references do not con-
sider the issue of source-based control over traffic splitting;
and expect fully upgraded network. All these authors only
consider a single, flat routing domain. These factors differ-
entiate the BANANAS framework.

MPLS and ATM are the key protocols in the signaled traf-
fic engineering protocols. MPLS-TE [3] offers signaled ex-
plicit label switched paths (LSPs) which can be set up us-
ing an arbitrary control algorithm. Traffic trunks can then
be instantiated and mapped onto LSPs. In particular, a
constraint-based routing problem can be defined (and solved
with heuristics) where LSPs are set up to meet constraints
in terms of both the traffic demands and the resources avail-
able. OSPF traffic engineering extensions [20] can be used to
collect the information needed to setup this problem. Varia-
tions of the max-flow technique [19] or adaptive traffic split-
ting [9] can be used to map traffic onto the LSPs.

In the inter-domain area, the IRTF is considering require-
ments documents for a future inter-domain protocol, and
traffic engineering figures in both the key proposals [8, 17]
as an important problem. Inter-domain TE work has re-
volved around multi-homed AS’s, in-bound/out-bound load-
balancing between adjacent AS’s using BGP [17], provider-
selection and multi-homing issues considered with IPv6 de-
velopment [25, 16], or map-distribution based approaches
(NIMROD) [4].

Of these, only the NIMROD and IPv6/GSE proposals are
comparable to BANANAS. NIMROD [4] is a hierarchical,
map distribution-based architecture which allows explicit

13

source-based path choice, through a signaled or datagram
(i.e. IP source-route) method. NIMROD is incompati-
ble with current BGP routing, does not have an equiva-
lent of a PathID for forwarding, and may require signaling
to setup explicit paths. IPv6 provides a routing option for
provider selection, and elegant auto-configuration methods
which easily accommodate site multi-homing. The provider-
selection option was intended to allow choice of providers
(potentially remote) in the forwarding path; which is not
the same as a full route encoding. O’Dell’s 8+8/GSE [25]
proposes to break the IPv6 address into a locator (routing
group) and a end-system designator (ESD) part. The lo-
cator could change after crossing autonomous systems (eg:
providers). This would facilitate multi-homing, change of
providers and be a vehicle for TE capabilities like provider-
selection, path-selection. In contrast, BANANAS chooses
not to encode the PathID into the address field and have
a separate field which is interpreted along with the address
field.

9. SUMMARY AND FUTURE WORK

This paper focuses on the BANANAS-TE framework and
mapping aspects to contemporary routing protocols. The
core PathID notion of encoding a path as either a sum of
link-weights or a sum of ASNs (i.e. node IDs) is extremely
simple and easy to understand. Moreover, PathID is espe-
cially attractive for incremental upgrades because PathID is
a well-known global encoding for a network path in the con-
nectionless routing model used by both BGP and OSPF.
The nearest-PathID-match technique uses the global no-
tion of PathID and extends the traditional IP longest-prefix
match forwarding paradigm. This feature contrasts with the
label-swapping technique that is based upon the notion of
local IDs (labels), and requires either a signaling protocol
or the distribution of labels for global consistency. A sim-
ple multi-path algorithm developed using Floyd-Warshall
and DFS techniques allows the computation of all avail-
able multi-paths in partial upgraded networks. The BA-
NANAS framework allows heterogeneous multi-path com-
putation and forwarding capabilities at the upgraded nodes.
A viable strategy for mapping BANANAS to hierarchical
OSPF and BGP is discussed with several examples. It is
also possible to map the framework (with some limitations)
to distance vector protocols like RIP and EIGRP. Simula-
tions and simple traffic splitting algorithms illustrate the
potential of the framework. We believe BANANAS is an
attractive framework to migrate today’s Internet routing to
ultimately support multi-domain TE capabilities.

Development of optimal algorithms (or heuristics) for multi-
path computation, source-based path discovery and traffic
splitting etc. is not the focus of this paper. In this paper,
we do not consider incremental or asymptotically optimal
multi-path computation, adaptive path discovery, path per-
formance probing and load-splitting. We believe that the
BANANAS framework is flexible enough to allow hetero-
geneity and evolution of these capabilities. We plan to work
on such algorithms in future.

A key assumption in Section 2.1, is the uniqueness of the
PathID field. The BANANAS framework is safe (i.e no
loops) in the case of forwarding tuple collision, and pre-

scribes some diversity in assignment of link-weights to re-
duce tuple collision probability. The exact analysis of tuple-
collision probability given the length of the PathID field and
characteristics of the network graph is an interesting future
problem. Finally, the introduction of traffic engineering ca-
pabilities in general leads to increase in dynamic complexity
of routing (both in terms of control traffic and data traffic),
which is another interesting topic for future study.

10.

[1]

[2]

(3]

[4]

[5]

[6]

[7]

[14]

[15]

REFERENCES

D.G. Andersen et al, “Resilient Overlay Networks,”
ACM SOSP, October 2001.

D. Awaduche et al, “Overview and Principles of
Internet Traffic Engineering,” IETF Internet Draft
draft-ietf-tewg-principles-02.txt, Work-in-progress, Jan
2002.

D. Awduche, “MPLS and traffic engineering in IP
networks,” IEEE Communications Magazine, Vol. 37,
No. 12, pp. 42-47, 1999.

I. Castineyra, N. Chiappa, M. Steenstrup, “The
Nimrod Routing Architecture,” IETF RFC 1992,
August 1996.

J. Chen, P.Druschel, D.Subramanian, “An Efficient
Multipath Forwarding Method,” in INFOCOM’98,
March, 1998.

D. Coppersmith and and S. Winograd, “ Matrix
Multiplication via Arithmetic Progression,” ACM
Symp. on Theory of Computing (STOC), 1987, pp.1-6.

T.H. Cormen, et. al., “Introduction to Algorithms”,
The MIT Press, McGraw-Hill Book Company, Second
Edition, 2001.

E. Davies et al, “Future Domain Routing
Requirements,” IRTF Routing Research Draft
draft-davies-fdr-reqs-01.txt, Work-in-progress, July
2001.

A. Elwalid, et al, “MATE: MPLS Adaptive Traffic
Engineering,” INFOCOM’01, April, 2001

End-to-End Mailing List Thread, “Traffic engineering
considered harmful,” June 2001.

B. Fortz, M. Thorup, “Internet Traffic Engineering by
Optimizing OSPF Weights, in Proceedings of the
INFOCOM 2000, pp. 519-528, 2000.

B. Fortz, M. Thorup, “Optimizing OSPF /IS-IS
Weights in a Changing World,” IEEE JSAC, to
appear.

R. G. Gallager, “A Minimum Delay Routing
Algorithm Using Distributed Computation,” IEEE
Transactions on Communications, Vol COM-25, No.
1, January 1977. pp. 73-85.

J. Gray, T. McNeill, “SNA multiple-system
networking,” IBM systems Journal, Vol. 18, No. 2,
1979.

C. Hopps, “Analysis of an Equal-Cost Multi-Path
Algorithm,” IETF RFC 2992, 2000.

[31]

14

[16]

22]

23]

24]

[27]

[28]

C. Huitema, “IPv6: The New Internet Protocol,”
Prentice Hall, Second Edition, 1998.

G.Huston, “Commentary on Inter-Domain Routing in
the Internet,” IRTF Routing Research Draft
draft-iab-bgparch-02, Work-in-progress, Sept 2001.

V. Jacobson, SIGCOMM 2001 Keynote Address.

K. Kar, M. Kodialam, T. V. Lakshman, “Minimum
Interference Routing of Bandwidth Guaranteed
Tunnels with MPLS Traffic Engineering Applications,”
IEEE JSAC, Vol. 18, No. 12, December 2000.

D. Katz, J. Cheung, K. Kompella, “Traffic
Engineering Extensions to OSPF,” Internet draft
draft-katz-yeung-ospf-traffic-06.txt, Work-in-progress,
Jan 2002.

D.H. Lorenz, A.Orda, D.Raz, Y.Shavitt, “How good
can IP routing be?,” DIMACS Technical Report
2001-17, May 2001.

J. Luciani et al “NMBA Next Hop Resolution
Protocol (NHRP)”, IETF RFC 2332, April 1998.

J. Moy, “OSPF Version 2,” IETF RFC 2328, April
1998

P. Narvaez, K. Y. Siu, “Efficient Algorithms for
Multi-Path Link State Routing,” ISCOM’99,
Kaohsiung, Taiwan, 1999.

M. O’Dell, “GSE - an alternate addressing
architecture for IPv6,” Expired Internet Draft, 1997.

F. Roman, “Shortest Path Problem is Not Harder
than Matrix Multiplication,” Information Processing
Letters, Vol. 11, 1980, 134-136.

E. Rosen et al, “Multiprotocol Label Switching
Architecture,” IETF RFC 3031, January 2001

D. Thaler, C. Hopps, “Multipath Issues in Unicast
and Multicast Next-Hop Selection,” IETF RFC 2991,
2000.

C. Villamizar, “OSPF Optimized Multipath
(OSPF-OMP),” Ezpired Internet Draft, 1999.
Available: http://www.ietf.org/proceedings/99mar/I-
D/draft-ietf-ospf-omp-02.txt

S. Vutukury and J.J. Garcia-Luna-Aceves, “ A Simple
Approximation to Minimum-Delay Routing, “
SIGCOMM ’99, September, 1999.

Z. Wang, Y. Wang, L. Zhang, “Internet Traffic Engineering

without Full Mesh Overlaying,” INFOCOM’01, April 2001.

