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Abstract

One of the key issues for implementing congestion pricing is the pricing granularity
(i.e. pricing interval or time-scale). The Internet traffic is highly variant and hard to
control without a mechanism that operates on very low time-scales, i.e. on the order
of round-trip-times (RT'Ts). However, pricing naturally operates on very large time-
scales because of human involvement. Moreover, structure of wide-area networks
does not allow frequent price updates for many reasons, such as RTTs are very
large for some cases. In this paper, we investigate the issue of pricing granularity
and identify problems.

We first focus on how much level of control over congestion can be achieved by
congestion pricing. To represent the level of control over congestion, we use correla-
tion between prices and congestion measures. We develop analytical and statistical
models for the correlation. In order to validate the correlation model, we develop
packet-based simulation of our congestion pricing scheme Dynamic Capacity Con-
tracting. We then present the fit between simulation results of the pricing scheme
and the correlation model. The correlation model reveals that the correlation de-
grades at most inversely proportional to an increase in the pricing interval. It also
reveals that the correlation degrades with an increase in mean or variance of the
traffic.

Secondly, we discuss implications of the correlation model. According to the model
and simulation results, we find that control of congestion by pricing degrades sig-
nificantly as pricing granularity increases.
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Introduction

One proposed method for controlling congestion in wide area networks is to
apply congestion-sensitive pricing [1], [2], which is a form of dynamic pricing.
Many proposals have been made to implement dynamic pricing over wide
area networks and the Internet [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14]. Most of these schemes aimed to employ congestion pricing. The
main idea of congestion-sensitive pricing is to update price of the network
service dynamically over time such that it increases during congestion epochs
and causes users to reduce their demand. So, implementation of congestion-
sensitive pricing protocols (or any other dynamic pricing protocol) makes it
necessary to change the price after some time interval, what we call pricing
interval.

Clark’s Expected Capacity [3] scheme proposes long-term contracts as the
pricing intervals. Kelly’s packet marking scheme [5] proposes shadow prices to
be fed back from network routers which has to happen over some time interval.
MacKie-Mason and Varian’s Smart Market scheme [6] proposes price updates
at interior routers which cannot happen continuously and have to happen over
some time interval. Wang and Schulzrinne’s RNAP [8] framework proposes to
update the price at each service level agreement which has to happen over some
time interval. Hence, congestion-sensitive pricing can only be implemented by
updating prices over some time interval, i.e. pricing interval.

It has been realized that there are numerous implementation problems for
dynamic or congestion-sensitive pricing schemes, which can be traced into
pricing intervals. We can list some of the important ones as follows:

e Users do not like price fluctuations: Currently, most ISPs employ flat-rate
pricing which makes individual users happy. Naturally, most users do not
want to have a network service with a price changing dynamically. In [15],
Edell and Varaiya proved that there is a certain level of desire for quality-of-
service. However, in [16] and [17], Odlyzko provides evidence that most users
want simple pricing plans and they easily get irritated by complex pricing
plans with frequent price changes. So, it is important that price updates
should happen as less as possible. In other words, users like a service with
larger pricing intervals.

e Control of congestion degrades with larger pricing intervals: Congestion level
of the network changes dynamically over time. So, the more frequent the
price is updated, the better the congestion control. From the provider’s
side, it is easier to achieve better congestion control with smaller pricing
intervals.
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Fig. 1. A sample customer-provider network.

e Users want prior pricing: It is also desired by the users that price of the
service must be communicated to them before it is charged. This makes it
necessary to inform the users of the network service before applying any
price update. So, the provider has to handle the overhead of that price
communication. The important thing is to keep this overhead as less as
possible, which can be done with larger pricing intervals.

Hence, length of pricing intervals is a key issue for the implementation of
congestion-sensitive and adaptive pricing protocols. In this paper, we focus on
modeling and analysis of pricing intervals to come up with a maximum value
for it such that the level of congestion control remains in an acceptable range.
Beyond this range, pricing could be used to regulate demand, but it becomes
less useful as a tool for congestion management.

The rest of the paper is organized as follows: In Section 1, we first explore
steady-state dynamics of congestion-sensitive pricing with a detailed look at
the behavior of prices and congestion relative to each other. We then develop
and discuss an approximate model for the correlation of prices and congestion
measures in Section 2. In Section 3, we validate the model by simulation exper-
iments and present the results. Finally, in Section 4 we discuss the implications
of the work and possible future work.

1 Dynamics of Congestion-Sensitive Pricing

This section explains the behavior of congestion-sensitive prices and congestion
measures relative to each other in a steady-state system. A sample scenario
is described in Figure 1. The provider employs a pricing interval of T to
implement congestion-sensitive pricing for its service. The customer uses that
service to send traffic to the destination through the provider’s network. The
provider observes the congestion level, ¢, in the network core and adjusts its
advertised price, p, according to it. Note that ¢ and p are in fact functions
of time (i.e. ¢(t) and p(t) where t is time), but we use ¢ and p throughout
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Fig. 2. Congestion measure relative to congestion-sensitive prices in a steady-state
network being priced.

the paper for simplicity of notation. It is a realistic assumption to say that
the provider can observe the network core over small time intervals, i.e. a few
round-trip-times (RTTs). To understand the effect of pricing interval on the
dynamics of congestion-sensitive pricing, we look at the relationship between
c and p over time.

Assuming that we have continuous knowledge of congestion level, ¢, we can
represent the dynamics of congestion-sensitive pricing as in Figure 2. Figure
2 represents the relationship between ¢ and p for two different pricing interval
lengths, 77 > T5. For both lengths, the steady-state behavior of congestion-
sensitive pricing is represented. The advertised price, p, varies around an op-
timum price, p*.

When the provider sees that the congestion level has been decreasing, it de-
creases the advertised price such that the network resources are not under-
utilized. Then the customer starts sending more traffic in response to the
decrease in price, and congestion level in the core starts increasing accord-
ingly. The congestion level continues to increase until the price is increased by
the provider at the beginning of the next pricing interval. When the provider
increases price because of the increased congestion in the last pricing inter-
val, the customer starts sending less traffic than before. Then congestion level
starts decreasing. This behavior continues on in steady-state. This explains
how congestion-sensitive prices can control the congestion in a network. The
important difference is that with a larger pricing interval the congestion level
oscillates larger as represented in Figure 2.

Another important characteristic of congestion-sensitive pricing is that the
price must be oscillating around an optimum price, p*, to guarantee both
congestion control and high utilization of network resources. In other words,
the average of advertised prices must be equal to the optimum price value.
Notice that the customer will send less traffic which will under-utilize network
resources when p > p*, and the customer will send excessive traffic than the
network can handle which will cause uncontrolled congestion when p < p*.
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Fig. 3. Prices and congestion measures for subsequent observation intervals.

So the provider needs to satisfy the condition that the average of advertised
prices equals to the optimum price.

The important issue to realize is that congestion control becomes better if
the similarity between the advertised price and congestion level is higher.
Because of the above explained implementation constraints, the advertised
price cannot be updated continuously. This results in dissimilarity between the
price and congestion level. Intuitively, if the correlation between the advertised
prices and the congestion measures is higher, fidelity of control over congestion
becomes higher. Again by intuition, the correlation becomes smaller if the
pricing interval is larger.

Another important issue is the price oscillation caused by the discontinuous
price updates. As the pricing intervals get larger, the oscillation in price also
gets larger. This in effect leads to oscillation in user demand (i.e. traffic)
correspondingly. So, larger oscillations in price are expected to cause larger
oscillation and higher variance in incoming traffic. Then, more oscillated traffic
causes more oscillated congestion level. This behavior is represented in Figure
2 with the case that Ac; > Acy and Ap; > Aps.

In the next section, we will develop approximate models of correlation between
the advertised prices and congestion measures, and find the largest value for
the pricing interval such that the system functions at a desired level of control
fidelity.

2 Model for Correlation of Prices and Congestion Measures

2.1 Assumptions and Model Development

Assume the length of pricing interval stays fixed at 7" over n intervals. Also
assume the provider can observe the congestion level at a smaller time scale
with fixed observation intervals, ¢. Assume that T" = rt holds, where r is the
number of observations the provider makes in a single pricing interval. Assume
that the queue backlog in the network core is an exact measure of congestion.
18]



We assume that the customer has a budget D for network service and he/she
sends traffic according to a counting process, which is a continuous time
stochastic process A(7),7 > 0 with first and second moments of A\;(p) and
Ao(p) respectively where p is the advertised price to the customer. So, in re-
ality, A1 (p) is not fixed, because the customer responds to price changes by
changing its sending rate A;(p). Let m;; be the number of packet arrivals from
the customer during the j th observation interval of 7th pricing interval, where
¢t = l.n and j = 1..r. So the total number of packet arrivals during the ith
pricing interval is

r
s=1

Also assume that the packets leave after the network service according to a
counting process, which is a continuous time stochastic process B(7),7 > 0
with first and second moments of j;(p) and po(p) respectively. Let k;; be the
number of packet departures during the jth observation interval of ¢th pricing
interval, where 2 = 1..n and j = 1..r. So the total number of packet departures
during the 7th pricing interval is

ki= > kis (2)
s=1

Assuming that no drop happens in the network core, the first moments of the
two processes are approximately equal in steady-state, i.e. A;(p) = u1(p), other
than a time delay between them. Because, whatever arrives comes into the
network will have to depart. However, the second moments are not equivalent.

As represented in Figure 3, let p; be the advertised price and ¢;; is the con-
gestion measure (queue backlog) at the end of the jth observation in the
1th pricing interval. In our model we need a generic way of representing the
relationship between prices and congestion. We assumed that the congestion-
sensitive pricing algorithm calculates the price for the ¢th pricing interval
according to the following formula*

pi = a(t,r) ¢y (3)

where a(t,r), pricing factor, is a function of pricing interval and observation
interval defined by the congestion pricing algorithm. We assume that a(t, ) is
only effected by the interval lengths, not by the congestion measures. Notice
that this assumption does not rule out the effect of congestion measures on

1 Note that this is a simplifying formula for tractability, and cannot capture all
aspects of congestion pricing.



price, but it splits the effect of congestion measures and interval lengths to
price. We will use a instead of a(t,r) for notation simplicity.

Within this context, the following equations hold:

i—1 7

Cz'j = Cor + Z(mu — ku) + Z(mzs — kw) (4)
u=1 s=1

Cir = Cor + Z(m] - k]) (5)
j=1

where 7 > 1. Reasoning behind (4) and (5) is that the queue backlog (which
is the congestion measure) at the end of an interval is equal to the number of
packet arrivals minus the number of packet departures during that interval.

Let the average price be p and the average queue backlog be ¢. By assuming
that the system is in steady-state we can conclude that the following equation
is satisfied

p=af(t,r)ec (6)

Since the system is assumed to be in steady-state, we can assume the ini-
tial (right before the first pricing interval) congestion measure equals to the
average queue backlog, i.e.

Cor =C (7)

We want to approximate the model of correlation between p and ¢ according
to the above assumptions. We can write the formula for correlation between
p and c over n pricing intervals as

Enl(c —2)(p — D) Im, k]

8
V Enl(c = 2)?[m, K]Ey[(p — P)?|m, k] ©

Corr, =

assuming that total of m packet arrivals and k£ packet departures happen
during the n rounds.

We can calculate the numerator term in (8) as follows:

E [(C_ C)(p p ‘m k _ZZ Czy E) (9)

lel



By applying (3), (6) and (7) into (9) we can get

E,[(c=9%)(p—Dp)|m, k] = — Z Z acg—1yr — acor)(Cij — Cor) (10)

1191

Then by applying (4) and (5) into (10), we get the following

En [(C—E)(p—z_?)\m k] =

_ Z Z (COT -+ Z my — k‘g — Cor> (ZZ(mu — ku) + Ejj(mw — kzs)(>1)

i=1j= u=1 s=1
After going through the derivation, we can put (11) into the following form

J

Eul(c—2)(p - p)|m, k] = —zz(fmzme 2<mis—kis>><m>

i=1j s=1

where Hy = 3, (my — ku)? + 20 Sou 2(mu, — k) (my — ky), u = 1.4 — 1 and
v=1.1—1.

We can calculate the variance of congestion measures similarly as follows:

E,[(c—2)%m, k] = —ZZ Cij — (13)

21]1

By applying (4) and (7) into (13) we can get

En[(c - 5)2‘ma k] . Z Z (ZZ My — ku) + il(mzs - kw)) (14)

21]1 u=1

After going through the derivation, we can put (14) into the following form

Zl]l

E,[(c —2)?m, k] = —ZZ (H1+H2+2Z i (ms — k ) (15)

where HQ = Es(mis—kis)Q—i-Zs Zz;és 2(mis—kis)(m,~z—kiz), s = 1], z = 1]

We finally can calculate the variance of price as follows:

E,[(p —p)*m, k] = —ZZ (16)

Zl]l



By using (3), (5) and (6) into (16) we can get the following

Enl(p = D)*|m, k] = %Qi (Zi(mj - kj)) (17)

i=2 \j=1

Similarly after going through derivation, we can put (17) into the following
form

Eu[(p — p)*|m, k] = ZHI (18)

Now we can relax the condition on m and £ by summing out conditional prob-
abilities on (12), (15), and (18). Specifically, we need to apply the operation

o0

En[x] = Z Z Ey [x‘m k] mjikig (19)

my; =0 ki;=0

for all i = 1.n and j = 1.7, where Py, .. is P{A(t) = my; B(t) = ki;}-.
This operation is non-trivial because of the dependency between the processes
A(r) and B(7), and it is not possible to reach a closed-form solution without
simplifying assumptions. After this point, we develop two approzrimate models
by making simplifying assumptions.

2.1.1 Model-1

Although the arrival and departure processes are correlated, there might also
be cases where the correlation is negligible. For example, if the distance be-
tween arrival and departure points is more, then the lag between the arrival
and departure processes also becomes more which lowers the correlation be-
tween them. So, for simplicity, we assume independence between the arrival
and departure processes and derive an approrimate model. The independence
assumption makes it very easy to relax the condition on m and k, since the
joint probability of having A(t) = m;; and B(t) = k;; becomes product of prob-
ability of the two events. After the relaxation, we then substitute u(p) = A1 (p)
because of the steady-state condition, and get the followings:

atr

— (0= 1) Aa(p) + p2(p) = 2tr (M (p))*) (20)

Exl(c—2)(p—p) =

En[(c—72)"] = %(Az(p) + p2(p)) (rn + 1) — (M (p)* (L + 7 — r* + 77n)(21)

Blp =17 = 2 (0= 1) 0alo) + pa(p) — 2r (0 (p))) 2



Let 0% be the variance of the arrival process and o% be the variance of the
departure process. By substituting (20), (22), and (21) into (8) we get the
correlation model for the first n rounds as follows:

B r(n— (0% + 0% + 200 () — 2r((@))?)
cormn = J @8 0%+ 20n)D) (m + 1) — 2P+ 7 — 21 7))

2.1.2 Model-1I

To make a more realistic model, we try to develop a model where the arrival
and departure processes are not considered independent. We consider the sys-
tem as an M/M/1 queueing system with a service rate of u. Notice that u
is different from the parameters u;(p) and po(p) which are first and second
moments of B(7). We now try to derive the joint probability as follows:

P, sz‘j * Pkij\mij (24)

ijiki; —

where Pmij = P{A(t) = mz-]-} and Pk'ij|mij = P{B(t) = km‘A(t) = m”} Notice
that P, is probability of having m;; events for the Poisson distribution with
mean \;(p)t. However, it is not that easy to calculate Py, m;; » since probability
of having k;; departures depends not only on the number of arrivals m;; but
also the number already available in the system which is ¢;;;_1). Let N be
the random variable that represents the number of packets available in the

system, then we can rewrite Py, m,; as follows:
o
Phijlm; = > Prislmigseag -1y * Peiggon (25)

Ci(j—1)=k;j —mij

where P, ,, = P{N = cij;-1)}. Observe that the minimum value of c;(;_1)
can be m;; —kij, because the condition k;; < my; —c;;—1) must be satisfied for
all time intervals. In (25), P, ;_,, is known for a steady-state M/M/1 system.
Let p = A\i(p)/p, then P, |, = (1 — p)p“G-1. [19] However, calculation of
Pkij‘mijECi(j—l) is not simple, because the m;; arrivals may arrive such that there
is none waiting for the service. Fortunately, this is a very rare case for a loaded
system. So, we can formulate Pkij|m”;ci(j_1) for the usual case as if all the m;;
arrivals happened at the beginning of the interval ¢. Within this context, we
now derive Py jm, e, 1)
Let E(u) be an Exponential random variable with mean 1/u, and E,(k, u)
be an Erlangian random variable with mean k/u. Then, we can formulate the

10



probability of having k¥ > 0 departures in time ¢ as follows:

Prisoint = / P{E,(k,u) <2} [1 — P{E(4) <t — 2} dz (26)

Now, we can formulate the CDF of Pkij|mijici(j—1) as follows:

kis

ij
P{B(t) < kijlmij;cig-1} = Point + Y Pesoint (27)
k=1

Notice that Py, = 1 — P[E(u) < t]. We used Maple to derive the CDF
formula in (27), and got the following result:

1 kij 4 £)J
P{B(t) < kijlmij; cig-n} = e + 1 (kij —etY Y %) )

i=1j=0
By using the CDF formula in (28) in Maple, we then find pmf as:

=P{B(t) < kijlmis; ci—1} — P{B(t) < kij = 1[miz; cigi-1)}
-1 (1 s % )
Afterwards, we apply the operation in (25), i.e.:

Pom,= > (1 - e—”tg(“i—?i> . (1 - Al(p)) (Al(p)>%(30)

Ci(j—l):kij —mij

Pkij Imijicii—1)

Again by using Maple, we finally derive Py, |m,; as:
(kij—mij) kij '
1 [ M(p i J B J 1)t
Pejimiy; = — (L) 1—e Y @ (31)
AN = il

Even though we have found a nice solution to Py, |m,; in (31), it does not allow
us to get a closed-form model for the correlation after the relaxation operation
in (19). In order to get a closed-form correlation model, we approximated
the term with summation in (31). Notice that the term with summation is
equivalent to ratio of two Gamma [20] functions, i.e.:

it ZJ (pt) _ Dlki+1, pt)
e P(kij +1)

11



In Appendix, we approximated the ratio I'(z,y)/T'(z) and used that method
to approximate the term with summation in (31). After the approximation,
we did get a closed-form correlation model. But, it is not possible to provide
it in hardcopy format ? because it is a very large expression. However, we will
provide numerical results of the model later in Section 3.

2.2 Model Discussion

Since Model-II is a very large expression, we only discuss Model-I. Assuming
that the other factors stay fixed, the correlation model in (23) implies three
important results:

(1) The correlation degrades at most inversely proportional to an increase
in pricing intervals (T ): For the smallest n value (i.e. 1), denominator
of (23) will have r + 1 as a factor which implies linear decrease in the
correlation value while the pricing interval, 7' = rt, increases linearly.
Notice that its effect will be less when n is larger.

(2) Increase in traffic variances (0% and 0%) degrades the correlation: From
(23), we can observe that the correlation decreases when the variance of
the incoming or outgoing traffic increases.

(3) Increase in traffic mean (Ai(p)) degrades the correlation: Again from (23),
we can see that the correlation decreases while the mean of the incoming
traffic increases.

These above results imply that lower pricing intervals must be employed when
variance and/or mean of the traffic starts increasing. We validate these three
results in Section 3 by experiments. Also, observe that the model incorporates
not only the effect of pricing intervals on the correlation, but also the effects
of statistical parameters (e.g. traffic mean and variance).

Interestingly, the model reveals non-intuitive effect of traffic mean on the cor-
relation. The reason behind such an effect is that a traffic flow with higher rate
will make larger oscillations than the one with smaller rate when encountered
by destabilizing effects such as larger pricing intervals. This can be seen in the
discussion made in Section 1, where Ac for the higher rate flow will be larger
than the one with smaller rate.

As previously mentioned, the correlation between prices and congestion mea-
sures is a representation of the achieved control over congestion. Congestion-
sensitive pricing protocols can use such a model to maintain the control at
a predefined level by solving the inequality Corr, > Corry, for r, which
defines the length of the pricing interval. If feedback from the other end (i.e.

2 Tt is available at http://networks.ecse.rpi.edu/” yuksem /intervals/the_model. mws.
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Fig. 4. Topology of the experimental network.

egress node in DiffServ [21] terminology) is provided, then such a model can
be implemented in real-time. 0% can be calculated by using the feedbacks from
the other end, and 0% and A;(p) can be calculated by observing the incoming
traffic.

3 Experimental Results and Model Validation

3.1 Experimental Configuration

We use Dynamic Capacity Contracting (DCC) [22], [23], [24] as the congestion
pricing protocol in our simulations. DCC provides a contracting framework
over DiffServ [21] architecture. The provider places its stations at edges of the
DiffServ domain. The customers can get network service through these stations
by making short-term contracts with them. The stations provide a variety of
short-term contracts and customers select the contracts based on their utility.
During the contracts, the station observes congestion in network core. The
station uses that congestion information to update the price at the beginning
of each contract. The short-term contracts corresponds to the pricing intervals
in our modeling.

Figure 4 represents the topology of network in our experiments in ns [25].
There are 5 customers trying to send traffic to the same destination over the
same bottleneck with a capacity of 1Mbps. Customers have equal budgets
and their total budget is 150 units. We observe the bottleneck queue length
and use it as congestion measure. The observation interval is fixed at ¢ =
80ms and RTT for a customer is 20ms. We increase the pricing interval by
incrementing the number of observations (i.e. r) per contract. We run several
simulations and calculate correlation between the advertised prices and the
observed bottleneck queue lengths during the simulations.

Customers send their traffic with a fixed variance but changing mean according

13
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to the advertised prices for the contracts. We assume that the customers have
fixed budgets per contract with additional leftover from the previous contract.
The customers adjust their rate of CBR UDP traffic source according to the
ratio B/p where B is the customer’s budget and p is the advertised price for
the contract 3. Also, customers’ traffic is composed of 1000B packets of fixed
size.

3.2 Results

In this section, we present several simulation results for validation of the model
and the three results it implies. The simulation results presented here are
average of more than 20 runs of the configuration described in the previous
section.

Figures 5-a and 5-b show mean and variance of the bottleneck queue length
respectively. We observe steady increase in mean and variance of bottleneck
queue as the pricing interval increases. Furthermore, Figure 5-c shows the

3 Note that z = B/p maximizes surplus for a customer with utility u(z) = B log(z).
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change in the coefficient of variation for the bottleneck queue length as the
pricing interval increases. Note that an increase in the coefficient of variation
means a decrease in the level of control. We observe that coefficient of varia-
tion increases as the pricing interval increases until 107, and stays fixed there
after. This is because the congestion pricing protocol looses control over con-
gestion after a certain length of pricing interval, which is 107 in this particular
experiment. These results in Figures 5-a to 5-c validate our claim about the
degradation of control when pricing interval increases. Furthermore, they also
show that dynamic pricing does not help congestion control when the pricing
interval is longer than a certain length.

To validate the model, we present the fit between our correlation models and
experimental results obtained from simulations. Figures 6-a and 6-b represent
the correlations obtained by inserting appropriate parameter values to the
model and corresponding experimental correlations, respectively for n = 15
and n = 25. We observe that Model-II fits better than Model-I, since Model-II
considers the dependency between arrival and departure processes. Notice that
the model is dependent on the experimental results because of the parameters
for incoming and outgoing traffic variances (i.e. 0% and ¢%), pricing factor
(i.e. a), and mean of the incoming traffic (i.e. A\;(p)). We first calculate the
parameters 0%, 0%, a (ratio of average price by average bottleneck queue
length) and A;(p) from the experimental results, and then use them in the
model.

We now validate the three results implied in Section 2.2. Figures 6-a and 6-b
show that the correlation decreases slower than 1/r when r increases linearly.
This validates the first result. Figure 7-b represents the effect of change in the
variance of incoming and outgoing traffic (i.e. 0% and 0%) on the correlation.
The horizontal axis shows the increase in variances of both the incoming and
outgoing traffic. The results in Figure 7-b obviously show that an increase in
traffic variances causes decrease in the correlation. This validates the second
result.

Finally, for validation of the third result, we increased the customers’ total
average sending rate from 125 packet/s to 1000 packet/s. For these set of ex-
periments only, we set the bottleneck capacity to 8Mbps. Figure 7-a represents
the effect of change in the mean of the incoming traffic (i.e. A\;(p)) on the cor-
relation. We can see that increase in A;(p) causes decrease in the correlation.
Another important realization is that the correlation is more sensitive to vari-
ance changes than mean changes as it can be seen by comparing Figures 7-a
and 7-b.

15
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Fig. 7. Effect of traffic patterns to the correlation (for 7' = 800ms and r = 10).

3.2.1 Is Correlation a Good Parameter?

Before concluding disscussion of the results, we would like to stress on the
relationship between the correlation and the level of congestion control. As
we previously stated, Figures 6-a and 6-b show the effect of increasing pricing
intervals on the correlation for different values of n. We can see that the
correlation value stays almost fixed after the pricing interval reaches to 10r.
Also, Figure 5-c shows the coefficient of variation for the bottleneck queue
length. Remember that coefficient of variation for the queue length represents
the level of congestion control being achieved. We observe in Figure 5-c¢ that
it reaches to its maximum value (approximately 1) when the pricing interval
reaches to 107, which is the same point where the correlation starts staying
fixed in Figures 6-a and 6-b. So, by comparing Figure 5-c with Figures 6-a and
6-b, we can observe that the correlation decreases when the level of congestion
control decreases, and also it stays fixed when the level of congestion control
stays fixed. This shows that the correlation can be used as a metric to represent
the level of congestion control.
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4 Summary

We investigated steady-state dynamics of congestion-sensitive pricing in a
customer-provider network. With the idea that correlation between prices and
congestion measures is a measurement for level of congestion control, we mod-
eled the correlation. We found that the correlation decreases at most inversely
proportional to an increase in pricing interval. We also found that the correla-
tion is inversely effected by the mean and variance of the incoming traffic. This
implies that congestion-sensitive pricing schemes need to employ very small
pricing intervals to maintain fidelity of congestion control for traffic with high
variance.

From the model and also from the simulation experiments we observed that
the correlation between prices and congestion measures drops to very small
values when pricing interval reaches to 40 RTTs * even for a low variance
incoming traffic. Currently, we usually have very small RTTs (measured by
milliseconds) in the Internet. This shows that pricing intervals should be 2-3
seconds for most cases in the Internet, which is not possible to deploy over
low speed modems. This result itself means that deployment of congestion-
sensitive pricing over the Internet is highly challenging. As the link speeds
are getting higher and RTTs are getting smaller, it becomes harder to deploy
congestion-sensitive prices.

The results obviously show that there will be need for intermediate middle-
ware components (i.e. intermediaries) between individual users and ISPs, when
ISPs deploy congestion-sensitive pricing for their service. These middle-ware
components will be expected to lower price fluctuations such that price changes
will be possible implement over low speed modems. This scenario suggests
that congestion-sensitive prices can be implemented among ISPs to control
congestion, but there has to be middle-ware components which can handle
the transition of the congestion-sensitive prices to the individual customers
in a smooth way. Alternatively, instead of using congestion-sensitive pricing
directly for the purpose of congestion control, it can be used to improve fairness
of an underlying congestion control mechanism. This way it will be possible to
control congestion at small time-scale, while maintaining human involvement
to pricing at large time-scale. We believe that the second approach is more
realistic way of implementing congestion-sensitive pricing over the Internet.

Another key implementation problem for congestion pricing is that current
Internet access is point-to-anywhere. It is not possible to obtain information
about the exit points of the traffic. However, it is not possible to determine

4 Note that this number is specific to our simulation setup. Different numbers could
be obtained for different simulation setups. We attempted to create a simplistic but
most representative simulation setup.
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congestion information and prices without coordinating entry and exit points
of the traffic. So, this particular aspect implies that it is highly challenging to
implement congestion pricing at individual user to ISP level. But, if an ISP has
enough control over the entry and exit points, then it is possible. Alternatively,
if ISPs of the current Internet collaborate on providing information about the
entry and exit points to each other, then again it will be possible.

Future work should include complex modeling of the dynamics of congestion-
sensitive pricing by relaxing some of the assumptions. For example, a model
without fixed arrival rate assumption would represent the behavior of the sys-
tem more appropriately. Also, better budget models are needed in the model.

Another important issue to explore is how much congestion control can be
achieved with exactly what level of correlation between prices and congestion
measures. In this particular modeling work we assumed that the correlation
value is a direct representation of the level of congestion control that was
achieved. Although we supported this idea by providing the match between
the correlation and the coefficient of variation in Section 3.2, this issue needs
more investigation.

References

[1] R. Cocchi, S. Shenker, D. Estrin, L. Zhang, Pricing in computer networks:
Motivation, formulation and example, IEEE/ACM Transactions on Networking
1 (1993) 614-627.

[2] J. K. MacKie-Mason, H. R. Varian, Pricing the congestible network resources,
IEEE Journal on Selected Areas of Communications 13 (1995) 1141-1149.

[3] D. Clark, Internet cost allocation and pricing, Eds McKnight and Bailey, MIT
Press, 1997.

[4] A. Gupta, D. O. Stahl, A. B. Whinston, Priority pricing of Integrated Services
networks, Eds McKnight and Bailey, MIT Press, 1997.

[5] F. P. Kelly, A. K. Maulloo, D. K. H. Tan, Rate control in communication
networks: Shadow prices, proportional fairness and stability, Journal of
Operations Research Society 49 (1998) 237-252.

[6] J. K. MacKie-Mason, H. R. Varian, Pricing the Internet, Kahin, Brian and
Keller, James, 1993.

[7] J. K. MacKie-Mason, L. Murphy, J. Murphy, Responsive pricing in the Internet,
Eds McKnight and Bailey, MIT Press, 1997.

[8] X. Wang, H. Schulzrinne, Pricing network resources for adaptive applications in
a Differentiated Services network, in: Proceedings of Conference on Computer
Communications (INFOCOM), 2001.

18



[9] X. Wang, H. Schulzrinne, RNAP: A resource negotiation and pricing protocol,
in: International Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV), 1999, pp. 77-93.

[10] X. Wang, H. Schulzrinne, An integrated resource negotiation, pricing, and QoS
adaptation framework for multimedia applications, IEEE Journal on Selected
Areas of Communications 18 (12) (2000) 2514-2529.

[11] N. Semret, R. R.-F. Liao, A. T. Campbell, A. A. Lazar, Pricing, provisioning
and peering: Dynamic markets for differentiated Internet services and
implications for network interconnections, IEEE Journal on Selected Areas of
Communications 18 (12) (2000) 2499-2513.

[12] N. Semret, R. R.-F. Liao, A. T. Campbell, A. A. Lazar, Market pricing of
differentiated Internet services, in: Proceedings of IEEE/IFIP International
Workshop on Qualityof Service (IWQoS), 1999, pp. 184-193.

[13] A. Orda, N. Shimkin, Incentive pricing in multi-class communication networks,
in: Proceedings of Conference on Computer Communications (INFOCOM),
1997.

[14] M. Yuksel, S. Kalyanaraman, A strategy for implementing Smart Market pricing
scheme on diff-serv, in: Proceedings of Communication Quality and Reliability
Symposium part of GLOBECOM, 2002.

[15] R. J. Edell, P. P. Varaiya, Providing Internet access: What we learnt from the
INDEX trial, Tech. Rep. 99-010W, University of California, Berkeley (1999).

[16] A. M. Odlyzko, The economics of the Internet: Utility, utilization, pricing, and
quality of service, Tech. rep., AT & T Research Lab (1998).

[17] A. M. Odlyzko, Internet pricing and history of communications, Tech. rep., AT
& T Research Lab (2000).

[18] S. H. Low, D. E. Lapsley, Optimization flow control — I: Basic algorithm and
convergence, IEEE/ACM Transactions on Networking 7 (6) (1999) 861-875.

[19] L. Kleinrock, Queueing Systems, Volume I: Theory, John Wiley and Sons, 1975.
[20] D. G. Childers, Probability and Random Processes, McGraw Hill, Inc., 1997.
[21] S. B. et. al, An architecture for Differentiated Services, IETF RFC 2475 .

[22] R. Singh, M. Yuksel, S. Kalyanaraman, T. Ravichandran, A comparative
evaluation of Internet pricing models: Smart market and dynamic capacity
contracting, in: Proceedings of Workshop on Information Technologies and
Systems (WITS), 2000.

[23] M. Yuksel, S. Kalyanaraman, Distributed Dynamic Capacity Contracting: A
congestion pricing framework for diff-serv, in: Proceedings of International
Conference on Management of Multimedia Networks and Services (MMNS),
2002.

19



[24] M. Yuksel, S. Kalyanaraman, Distributed Dynamic Capacity Contracting: An
overlay congestion pricing framework, To appear in Journal of Computer
Communications special issue on Internet Pricing and Charging (2003).

[25] UCB/LBLN/VINT network simulator - ns (version 2), http://www-
mash.cs.berkeley.edu/ns (1997).

[26] J. L. Devore, Probability and Statistics for Engineeting and the Sciences,
Brooks/Cole Publishing Company, 1995.

[27] M. E. Crovella, A. Bestavros, Self-similarity in World Wide Web traffic:
Evidence and possible causes formulation and example, IEEE/ACM
Transactions on Networking 5 (6) (1997) 835-846.

5 APPENDIX: Approximating Ratios of Complete or Incomplete
Continuous Gamma Functions

5.1 The Gamma Function and Problem Definition

Gamma function has two versions: complete, incomplete [26]. Complete and
incomplete continuous Gamma functions are respectively as follows:

I(z) = / e~ 1dt (32)
t=0
(z,y) = / et dt (33)
t=y

Discrete version of the complete Gamma function is a simple factorial:

[(z) = (z—1)! (34)
Let f be the function being integrated in the continuous Gamma functions,
le.:

flt,x) = e 't* ! (35)
Figure 8 shows plot of the function f(¢,z) for various values of z. Notice that
the Gamma function is nothing but the area under the curve of f(¢, z). Figures

9 illustrates the difference between complete and incomplete Gamma functions
in terms of area under the curve of f(¢,z). The area A+ B corresponds to the
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Fig. 8. The function f(¢,z) for various values of z.

f(t,x) 4

Fig. 9. Visualization of complete and incomplete Gamma functions: The area B is
I'(z,y), and the area A+ B is I'(z).

complete Gamma function I'(z), and A corresponds to the incomplete Gamma
function I'(z, y).

Given the above information, we want to approximate ratio:

P,y A
[(z) A+B

5.2 Approximation Methodology

The intuition behind our approximations is the similarity of shape of f(¢, x) to
triangle. Observe from Figure 8 that as the parameter x gets larger the shape
of f(t,z) is more triangular. We use this similarity in approximating the ratio
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Fig. 10. Three possible cases for approximation of ratio I'(z,y)/T'(z).

in (36). Figure 10-a shows an example triangle being matched to the f(t,z)
function. In that example we approximate the ratio of (36) as:

_ [(z,y) A Al

[a¥)

I(z) A+B A+B

Notice that the function f(¢,x)’s maxima is the point at t =z — 1, i.e. f(z —
1,z). Just to ease notation, let ¢, = x — 1 and g(¢t) = f(t,z). Also, let’s
call the smaller piece of the triangle between t = 0 and ¢t = x — 1 as left-
piece triangle, and the other piece of it as right-piece triangle. So, the left-
piece triangle will have coordinates: (0,0), (0,%,), (tm,9(tm)). For the right-
piece triangle, we can consider various coordinates depending how well we
want to approximate. Actually, the problem is to identify where should the
hypotenus of the right-piece triangle intersect with f(¢,z). Since the shape
of f(t,x) gets similar to an equi-sided triangle as z gets larger, we choose
to select this intersection point at ¢ = 2¢,, = 2(z — 1), which will resemble
it more to an equi-sided triangle. With this consideration, we can calculate
the coordinates of the right-piece triangle by simple geometry rules: (0, t,,),

(tma g(tm))a (tm(g(tm) - g(ztm))/(g(tm) - g(2tm))7 0)

Since we know the function f(¢,z), we now can calculate areas A’ and B'.
However, this is dependent on whether y resides on the left of the right of
tm = x — 1. So, we need to consider three cases:

22



5.2.1 Case:y=x—1

This case is shown in Figure 10-a. Calculations of the triangular areas in the
figure will be as follows:

2
tmg(2tm)
,_ (tm+ g2f%0) 9(t)
2

So, the ratio R for this case will be:

g(tm) - Q(th)

= 3 () — 29(2t)

5.2.2 Casell:y<x—1

This case is shown in Figure 10-b. Calculations of the triangular areas in the
figure will be as follows:

pova

2

tmg(2tm)
B (2tm + g ) 9tm) gz
2 2

where z; = yg(t;,)/tm- So, the ratio R for this case will be:

_ y2 g(tm) B g(2tm)

e = gt = 9(2tm)

5.2.8 CaseIlll: y>x—1

This case is shown in Figure 10-c. Calculations of the triangular areas in the
figure will be as follows:

tmg(2tm)
A= (2tm + genfSBh5) 9m) g2

2 2

_ Y=
2

where zo = ¢g(2t,,). So, the ratio R for this case will be:

BI

Ra = 2tmg(tm)2 - (tm - y)g(tm)g(2tm) + yg(th)Q
’ tmg () (29(tm) — 9(24))
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5.2.4 Integration of All Cases

In order to calculate the ratio R = I'(z,y)/I'(z), we need to know if y is
equal to, less than, or greater than z — 1 as presented in the previous sections
corresponding to each case.

We can put together an integrated formula for R by considering probability
of each case happening. Let p; be the probability of being y equal to x-1 (i.e.
Case I), po be the probability of being y less than x-1 (i.e. Case II). Then, an
integrated formula for R will be:

R=piRy +psRo+ (1 —p1 —p2)Rs (37)

Since p; and po will depend on distribution of y, the integrated approximation
of R will change significantly based on that distribution. In modeling of the
correlation between prices and congestion measures, in Section 2.1.2, we used
the integrated formula by calculating the probabilities p; and ps based on the
Possion distribution of the traffic.

Also note that in this particular appendix we only provided methodology for
approximating the ratio I'(z,y)/I'(z). It is possible to use the ideas in this
appendix for approximating other possible ratios of Gamma functions, such

as I'(z,41)/T (2, 92), T(y)/T(z).
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