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ABSTRACT
The parameter configuration of a network protocol can be
formulated as a black-box optimization problem with net-
work simulation evaluating the performance of the black-
box, i.e., the network. This paper proposes a unified search
framework (USF) to handle such large-scale black-box op-
timization problems. The framework is designed to pro-
vides a general platform on which tailored optimization al-
gorithms can be constructed easily for various types of prob-
lems. Therefore, it can be applied to the configuration of
different network protocols. In the USF, various samplers
are provided as basic building blocks and each of them im-
plements a certain search technique. For a specific problem,
a selection of samplers can be used to construct an appro-
priate search algorithm. These samplers are run in parallel
and coordinated with various type of memories which selec-
tively store the samples generated by samplers. The USF
also include a resource management mechanism, which can
manage parallel computing devices, for example, a network
of workstations, and allocate the available computing re-
sources to samplers according to the predefined allocation
strategy. The benchmark tests are presented in this paper
to demonstrate the flexibility and advantages of the USF.

1. INTRODUCTION
Today’s Internet operates on many complicated network

protocols. The configuration of the network protocols is
widely considered a black art and is normally performed
based on network administrators’ experience, trial and er-
ror, etc.. These manual methods are often error-prone and
not scalable to large complex networks. Like many engi-
neering problems, the configuration of network protocols can
also be formulated as a black-box optimization problem. An
on-line simulation system has been proposed in[1] to tackle
this problem with such a black-box optimization approach.
As shown in Figure 1, the on-line simulation system contin-
uously monitors network conditions and provides network
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models for simulation. With network simulation to evaluate
the performance of a certain configuration, the optimization
can be performed to search for a good configuration under
current network conditions.
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Figure 1: On-line simulation framework for network

protocol optimization

Optimization problems often arises in practice and they
can be formulated as (assume minimization): given a real-
valued objective function f : R

n → R, find a global mini-
mum,

x
∗ = arg min

x∈D

f(x) (1)

where D is the parameter space, usually a compact set in
R

n. The objective function in practice is often non-linear
and may have multiple local optima. Furthermore, a pri-
ori knowledge about the objective function is usually very
limited and such problems are termed as “black-box” opti-
mization. That is, the mathematical formula of the objec-
tive function is unknown and the function value can only be
evaluated with computer simulation or other indirect ways.

A large number of optimization algorithms have been pro-
posed to solve black-box optimization problems, such as,
controlled random search[2], genetic algorithm[3] and sim-
ulated annealing[4]. These algorithms have been demon-
strated to be successful in many applications to practical
problems. However, no analytical conclusion has been made
on which optimization algorithm is the most efficient. Fur-
thermore, there has been no consistent empirical report in
this aspect. No Free Lunch (NFL) Theorem[5] has mathe-
matically proved that the average performance of any opti-
mization algorithm is the same over all possible problems.
Note that NFL only implies that there is no general appli-
cable optimization algorithm. However, for a specific class



of problems, an optimization algorithm may perform more
efficiently than another if it performs better in exploiting
the intrinsic structural properties of the underlying prob-
lem. Since one single optimization technique is often insuffi-
cient to handle complex practical problems, different search
techniques have been combined in practice for better perfor-
mance, for example, combining local search techniques with
GA, simulated annealing, or controlled random search[6, 7,
8], or combining GA with simulated annealing[9]. In fact,
any optimization algorithm is just a combination of simple
search techniques. For example, multistart local search is
composed of random sampling and local search. The task of
an optimization algorithm is just to coordinate these tech-
niques to achieve the best performance.

With the increasing availability of parallel computing de-
vices, such as, parallel computers or computer farms com-
posed of a network of workstations, the general solution for
practical optimization problems also needs a resource man-
age mechanism to fully utilize these resources. This is very
important for practical optimization problems where the ob-
jective is to make the most use of a certain supply of com-
puting resources for the maximum efficiency. In fact, the
existence of optimization algorithms is due to the limit of
available computing resources. If we had an infinite supply
of computing resources which can evaluate any number of
samples at one time, there would be no need for optimiza-
tion algorithms. A brutal enumeration method will find the
exact global optimum. Therefore, from a practical point of
view, the task of an optimization algorithm is just to allo-
cate the limited computing resources among the underlying
search techniques appropriately such that the desired effi-
ciency can be achieved.

Based on the above ideas, this paper proposes a Unified
Search Framework as a general solution to black-box op-
timization problems. Basically, the USF includes various
simple search techniques, such as random sampling and pat-
tern search, as basic building blocks. For a practical prob-
lem, a selection of building blocks are combined and run
in parallel. USF includes a resource allocation and man-
agement mechanism to allocate computing resource among
the search techniques and fully utilize available computing
resource. The resource management of USF is based on
the assumption that function evaluation consumes most of
resource in optimization, and compared with this, the con-
sumption of other operations can be ignored. The resource
management of USF is scalable in heterogeneous comput-
ing environment while traditional parallel optimization algo-
rithms are designed to exploit a specific parallel computing
infrastructure.

The rest of the paper is organized as follows: Section2
describes the Unified Search Framework and its major com-
ponents. Section3 presents the benchmark tests and demon-
strates the flexibility and advantages provided by USF. Fi-
nally, Section4 concludes this paper and discuss further re-
search directions.

2. THE UNIFIED SEARCH FRAMEWORK
The basic structure of Unified Search Framework is shown

in Figure 2. Two basic components in USF are: sampler
and memory. In USF, any algorithm is established upon
these two type of components. A sampler implements a cer-
tain search technique, such as, random sampling and pat-
tern search, and a memory is used to store sampling points
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Figure 2: The Unified Search Framework

which are generated by a sampler and may be used in the fu-
ture optimization process. For one specific problem, we can
choose a few types of samplers and combine them together
with the help of various types of memory for the most effi-
cient optimization. Another important component of USF
is its computing resource management. In one USF type op-
timization algorithm, the samplers are run in parallel with
assigned allocations of computing resources. The comput-
ing resource management will maintain the resource usage
of each samplers to its allocation.

Samplers in USF implement various search technique. For
a specific problem, appropriate samplers should be chosen
and combined based on the features of the problem. It is
very important to include an proper selection of samplers
which best exploit the structures of the underlying objective
function. To achieve this, the underlying features of the
objective function have to be carefully investigated.

Memory selectively stores the sampling points output by
samplers and these samples can be used by other samplers
in later optimization process. The concept of memory is
first proposed in tabu search algorithm[10], where memory
is used to prevent the revisit of the sampling points already
examined. Basically, any optimization algorithm can take
advantage of memory to improve the efficiency. Memory
plays a more important role in USF than in tabu search. In
USF, samplers are run independently in parallel. To coordi-
nately with each other, they have to be coupled with various
types of memories.

One example algorithm is shown in Figure 3. As shown in
the figure, the algorithm is composed of two samplers: ran-
dom sampling and pattern search. The samples generated
by random sampling are put into a “drop-head” memory,
which drops the oldest samples when the memory reaches its
capacity. Pattern search uses these samples as the starting
points to perform local search. Therefore, it basically im-
plements a multi-start pattern search algorithm. In this al-
gorithm, random sampling and pattern search are executed
independently in parallel and their cooperation is achieved
by the help of drop-head memory. Besides the drop-head
memory used in the example, many other types of mem-
ory can be used. For example, we can use a memory which
stores only the best few samples or the samples which sat-
isfy a certain criterion, say, better than a certain threshold.
The choice of of memories may affect the optimization effi-
ciency substantially and should be carefully made based on
the features of the underlying problem.

With samplers and memories as building blocks, most of
traditional optimization algorithm can be composed in the
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USF. For example, a genetic algorithm can be formed by
combining random sampling, cross-over and mutation op-
erators with a certain memory implementing the selection
mechanism. Furthermore, it is easy to build an optimiza-
tion algorithm which is specifically tailed for a certain prob-
lem. The algorithms implemented in USF have an addi-
tional advantage, i.e., the samplers are performed in parallel
to take full advantage of available computing resources and
the coordination between samplers can be easily controlled
by adjusting memory types and resource allocations. We
will show in the tests that these flexibility can improve the
optimization efficiency significantly.

2.1 Computing Resources Model and Man-
agement Mechanism

As mentioned before, the computing resource manage-
ment of USF is based upon the assumption that function
evaluation consumes most of computing resources while the
consumption of the other operations can hence be ignored.
Furthermore, we also assume each function evaluation con-
sume the same amount of computing resources. Therefore,
the resource allocation in USF is performed based on the
number of function evaluations. In other words, we calcu-
late the resource usage of each sampler by the number of
function evaluations which has been executed. Note that
these assumptions are valid for most of practical optimiza-
tion problems where function evaluations are usually per-
formed with complicated computer simulations. In fact, the
number of function evaluations have been widely used in
optimization literature as the approximate measure for the
computing effort of one optimization algorithm consumes in
benchmark tests. In the following, we describe the details
of this resource management mechanism.

The resources management of USF is illustrated in Fig-
ure 4. The computing resources can be composed of multi-
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Figure 4: Resource allocation mechanism

processor parallel computers or a network of workstations.
On each computing device, an agent is run to manage the
device and communicate with the resource manager of USF.
Whenever an agent finds that the managed computing de-

vice is free, it requests an experiment, i.e., function evalua-
tion, from the manager. Each sampler maintains an exper-
iment queue. Whenever the sampler generates a sample, it
puts it into the queue for function evaluation. When the
queue is full, the sampler will stop generating new samples
until the queue becomes available again. When receiving a
request from an agent, the resource manager will then ex-
amine the experiment queues of all running samplers and
choose one to return according to the resource allocation
rule.

To allocate computing resources among the samplers, the
manager maintains a resource allocation table which defines
the percentage of computing resources that each sampler can
use. For example, Figure 5 shows a resource allocation table
among 3 samplers: This table indicates that Sampler 1 may

Sampler 1 50%
Sampler 2 20%
Sampler 3 30%

Figure 5: An example resource allocation table

use 50% of resources, Sampler 2 20% and Sampler 3 30%.
The resource allocation table should be decided based on the
features of the underlying problem and can be adaptively
adjusted during the optimization process to maximize the
efficiency.

The manager also maintains another table which records
the actual resource usage for each sampler and is initial-
ized to be the same as the allocation table in the beginning.
Whenever the manager receives a experiment request from
computing resources, it will check those samplers with non-
empty experiment queues, and choose the one with the max-
imum unused allocation in the usage table. After sending
the selected experiment to computing resources, the man-
ager updates the usage table by subtracting the chosen item
by 1 and then adding each item in the usage table (includ-
ing those with empty queues) by its corresponding allocation
percentage. One example of this procedure is shown as in
Figure 6. As shown in the example, the usage table is first
initialized as the allocation table. Suppose the experiment
queues of all samplers are not empty, sampler 1 is first cho-
sen to send its experiment for evaluation since it has the
maximum allocation. Then the usage of sampler 1 is sub-
tracted by 1 as shown in table (b) and the usage of each
sampler is added by its allocation as shown in table (c). Af-
ter this, sampler 3 will be chosen next time since now it has
the maximum value in the usage table.

By using the above method, the computing resources can
be distributed among the samplers in accordance with the
resources allocation table. The resource allocation table
provides us with the flexibility to adjust the coordination
between samplers running in parallel and achieve the best
efficiency. In fact, many sequential optimization algorithms
use certain mechanisms to adjust the computing resource
allocation between search techniques. For example, in sim-
ulated annealing[4], the “temperature” parameter is used
to control the balance between random walk and hillclimb-
ing. With the high temperature in the beginning, random
walk runs more frequently and hence uses more resources.
With the temperature cooling down, hillclimbing gets more
and more computing resources. In genetic algorithm, simi-
lar control parameters also exists, such as, crossover rate or
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Figure 6: An example of resource allocation operation

mutation rate.
Another advantage of the above resource allocation mech-

anism is that if a sampler can not use all of its allocation, the
surplus resources will be consumed by other samplers whose
allocation does not meet their needs. Some samplers may
not generate enough samples to use up its allocation. For
example, a local search sampler has to wait for the results
of previous samples to generate new samples. Therefore,
its experiment queue may become empty during the waiting
period. Since the allocation mechanism in USF only exam-
ines the items with non-empty queues, its allocation will be
used by other samplers. By such “borrowing mechanism”,
the full utilization of the available computing resource can
be achieved. For example, a random sampling sampler with
a very small allocation, say 0.0001%, can be always used
to take up all the surplus resources. Since its allocation is
very small, it will hardly affect other samplers’ operation
and only come to execution when other samplers could not
fully utilize the available resources.

2.2 Parallel Optimization Strategy
One design objective of USF is to fully utilize available

computing resources. To achieve this, All samplers in USF
are run in parallel and their function evaluations are dis-
tributed to computing resources based on their allocation.
As mentioned before, some search technique, especially lo-
cal search methods, such as, hillclimbing, may not be able
to fully use its allocated resources. For these techniques,
a certain parallel optimization strategy has to be used for
full resource utilization. Many parallel optimization algo-
rithms has been proposed[11, 12]. The parallel strategies
used in these algorithm can be classified into the following
three categories:

Problem partition divides the parameter space of the orig-
inal problem into many small areas and performs op-
timization on each of these sub-spaces in parallel. The
disadvantage of this strategy is that since each area
is allocated with equal shares of computing resources,
it may waste resources on many trivial areas which is
very unlikely to have the global optimum.

Multi-path is a method used to parallelize multi-start lo-
cal search methods. Basically, this strategy just per-
forms multiple local searches with different starting
points in parallel.

Algorithm parallelization is to parallelize a sequential
algorithm by careful changing its design. This method
is specific to a certain search technique and hence is not
generally applicable to other techniques. Furthermore,
its parallelity is normally constrained by the inherent
limit of the algorithm and not scalable with available
computing resources.

In USF, two mechanisms have been used to achieve the
complete resource utilization. One is the “borrowing mecha-
nism” described in the previous section, i.e., when one sam-
pler cannot use up its allocation, the surplus can be tem-
porarily used by other samplers. For example, one simple
method to take advantage of all computing resources is to
include random sampling with a very low resource alloca-
tion, which will use up the resources left by other samplers.
In addition, USF use multi-path method described as above
to automatically increase parallelity of search techniques. In
USF, resource manager keeps track of the demand and sup-
ply of computing resources. When resource manager finds
that the demand of a sampler is always less than its allo-
cation, i.e., its experiment queue is always empty, it will
increase the number of this type of samplers and run these
samplers in parallel to use up its allocation. Note that in
USF, the number of “multi-path” is decided by available
computing resources instead of a predefined level in tradi-
tional multi-path methods.

3. TESTS OF UNIFIED SEARCH FRAME-
WORK

In this section, we use benchmark tests to demonstrate
the flexibility of USF in handling various situations. Each
test is repeated for 50 times and the average is taken as the
final result.

3.1 Effect of Memory Types
One of the main advantage of USF is that it provides

various building blocks and can be easily used to built an
optimization algorithm by combining appropriate building
blocks. Furthermore, the coordination of these samplers can
be achieved with various types of memories. The tests in
this section will demonstrate that using appropriate types of
memory can greatly improve the optimization performance.
Memory is used in USF to store previous samples and cou-
ple samplers together. Various memories can be used for
different problems. The tests in this section have examined
two types of memory used:

• Drop-head, which drops the oldest samples when its
capacity is reached.

• Drop-worst, which drops the worst samples when its
capacity is reached.

Two samplers are used in the tests: random sampling and
pattern search and they are coupled together with a certain
memory just like the example shown in Figure 3. The opti-
mization algorithms obtained with the above memories are
tested on a benchmark function, i.e., 20-dimensional Rastri-
gin function. The convergence curves of two memory types
are shown in Figure 7. We can see that by using drop-worst



memory, the optimization efficiency can be improved sub-
stantially.
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3.2 Effect of Resource Allocation Strategy
In addition to memory, USF also provide a flexible re-

source allocation mechanism to adjust the coordination of
samplers. In this section, we will examine the effect of re-
source allocation strategy on the optimization efficiency. We
still use the same two samplers as before: random sampling
and pattern search, however, we vary the resource alloca-
tion between these two samplers in the tests. The results
are shown in Figure 8. The horizontal axis indicate the
resource allocation of random sampling. Given the alloca-
tion of random sampling, pattern search will take all the
remaining resources with multi-path strategy described be-
fore. For example, if random sampling gets 20% resources,
pattern search then gets 80%. The vertical axis indicates
the optimization result after 5000 function evaluations. As
we can see from the figure, the optimization efficiency varies
greatly with the resource allocations for the samplers. At
one extreme, allocating all computing resources to random
sampling is equivalent to a pure random sampling algorithm.
At the other extreme, allocation most of resources to pattern
search is equivalent to a simple multi-start pattern search
algorithm. Neither case can produce good efficiency in the
test. The best balance between two samplers is achieved at
a point between two extreme case. As shown in the figure,
allocating 60% resources to random sampling produces the
best efficiency.

3.3 Scalability of Parallel Optimizaiton
One important design objective of USF is to fully utilize

available computing resources. In this section, we examine
if the optimization efficiency can be improved by making
full use of computing resources. In the tests, we use the
algorithm described in Figure 3 with a network of work-
stations to optimize 20-dimensional Rastrigin function. We
vary the number of workstations in the tests and compare
the optimization performance of USF with different number
of workstations. To simulate the situation where function
evaluations are expensive, we did not code the benchmark
function directly into the optimization algorithm. Instead
we used a slow script language to evaluate the benchmark
function. The left plot in Figure 9 shows the optimization
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Figure 8: Effect of resource allocation on optimiza-

tion efficiency

results as a function of elapsed time for 1, 2, 4 and 8 work-
stations. We can see with increasing computing resources,
the optimization performance is improved accordingly. If we
specify a function value as the optimization objective, for
example, 480 in the left plot, we can see that the optimiza-
tion time required to achieve this objective is approximately
reduced proportionally with the number of workstations as
shown in the right plot. That is, the linear speed-up may
be achieved with the USF parallel optimization mechanism.
Note that the speed-up is dependent on the underlying prob-
lem and the selected search techniques. Although the linear
speed-up may not be alway be obtained, the advantage of
resource management mechanism in USF is its scalability,
i.e., it can always take full advantage of available computing
resource to improve the optimization efficiency.

4. CONCLUSION
This paper presented a Unified Search Framework(USF)

as a general solution for large-scale black-box optimization
problems. Specifically, it can be used to optimize the con-
figuration of various network protocols in an on-line simu-
lation system[1]. In the USF, an optimization algorithm is
considered to be an appropriate combination of search tech-
niques and the optimization algorithm achieves the desired
efficiency by properly coordinating these techniques and al-
locating the limited available computing resources among
them. The USF includes various types of search techniques
as the building blocks and use memories to couple these
techniques together and hence obtain an optimization al-
gorithm tailored for a specific problem. In addition, the
USF comprises a scalable resource management mechanism
to allocate available computing resource among search tech-
niques and take full advantage of these resources.

The Unified Search Framework provides a flexible plat-
form to construct optimization algorithms for various prac-
tical optimization problems. To achieve the best efficiency,
appropriate search techniques should be first chosen. In ad-
dition, the coordination among these techniques should also
be carefully adjusted based on the features of the under-
lying problem. This can be achieved in USF by adjusting
resource allocation of these techniques and selecting memory
types coupling these techniques. To make the correct selec-
tion and adjustment, the features of the problem have to be
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Figure 9: Scalability of parallel optimization in USF

carefully examined. Currently, this step has to be performed
manually based on the practitioner’s experience or trial and
error. To automate this process, the correspondence be-
tween search techniques and suitable structures has to be
established first. Basically, we need to know how to iden-
tify these structures and how they affect the coordination of
search techniques. These issues are still open problems and
will be investigated in our future work.
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