Simulation study of World Wide Web traffic over the ATM
ABR service

Bobby Vandalore, Shivkumar Kalyanaraman, Raj Jain, Rohit Goyal, and Sonia Fahmy
The Ohio State University, 2015 Neil Ave, DL 395, Columbus, OH 43210-1277, USA

ABSTRACT

Asynchronous transfer mode (ATM) is the technology chosen for implementing the Broadband Integrated Services
Digital Network (B-ISDN). The performance of Internet protocols over ATM is an extremely important research
area. As web traffic forms a major portion of the Internet traffic, we model world wide web (WWW) servers and
clients running over an ATM network using the available bit rate (ABR) service. The WWW servers are modeled
using a variant of the SPECweb96' benchmark, while the WWW clients are based on a model proposed in [2]. The
traffic generated is typically bursty, having active and idle transmission periods. A timeout occurs after a certain idle
interval. During idle periods, the underlying TCP congestion windows remain large until the timer expires. When
the application becomes active again, these large windows may be used to send data in a burst. This raises the
possibility of large queues at the switches, if the source rates are not controlled by ABR. We study this problem and
show that ABR scales well to a large number of bursty TCP sources in the system.

Keywords: ATM, WWW model, TCP/IP, ABR service

1. INTRODUCTION

ATM is a high speed, connection-oriented, cell switching technology. It uses small fixed-size packets (also called cells)
to transport its traffic. It is designed to provide an integrated service for supporting audio, video and data traffic.
ATM provides multiple categories of service to support different quality of service (QoS) requirements. The current
set of service categories specified are: the constant bit rate (CBR), real-time variable bit rate (rt-VBR), non-real
time variable bit rate (nrt-VBR), available bit rate (ABR), and unspecified bit rate (UBR). The CBR service is
aimed at transporting voice and synchronous data applications. The VBR, (rt- and nrt-) services provide support for
video and audio applications which do not require isochronous transfer. The ABR service transports data traffic. It
guarantees a minimum cell rate (MCR) allocation and uses closed-loop feedback to control source rates. Cell loss
is small in ABR, though ABR does not give bounded cell loss guarantees. UBR provides “best-effort” delivery for
data applications and does not give any guarantees.

The ATM technology is already being used in the backbone of the Internet and many campus backbones. The
transport control protocol/internet protocol (TCP/IP) suite of protocols are the most important protocols of the
Internet. The performance of TCP/IP over ATM has been addressed in [3-5].

As large ATM networks are built, it is important to study the performance of real-world applications like the
World Wide Web over ATM. Such applications typically have low average bandwidth demands from the network,
but desire good response time when they become active. It is interesting from the traffic management perspective to
study the aggregate effect of hundreds of such applications browsing or down-loading large documents over an ATM
backbone. This study focuses on the performance of WWW traffic over the ATM ABR service.

Section 2 gives an overview of the TCP congestion control algorithm, the congestion control mechanism in the
ATM ABR service, and the ERICA+ algorithm. Section 3 discusses the issues involved in transporting WWW
traffic over ATM. Section 4 discusses the implications of using the HTTP/1.1 standard and presents the WWW
server model and the WWW client model used in this study. Section 5 explains the simulation configurations, and
section 6 gives the TCP/IP and the ERICA+ parameter values used in the simulations. Section 7 discusses the
simulation results. Finally, section 8 provides a summary of the paper.

Proceedings of SPIE Symposium on Voice, Video and Data Communications, Vol. 3530, Conference on Performance and Control of
Network Systems II, Boston, MA November 1998, pp. 415-422. ©SPIE.
Further author information:
Tel: (614) 688-4482; Fax: (614) 292-2911; E-mail: {vandalor, jain}@cis.ohio-state.edu; WWW: http://www.cis.ohio-state.edu/ ~ jain/

2. CONGESTION CONTROL

In this section, we give a brief overview of TCP congestion control, the ABR flow control mechanism, and the
ERICA+ rate allocation algorithm.

2.1. TCP Congestion Control

TCP provides a reliable, connection-oriented service. TCP connections provide window-based end-to-end flow control.
The receiver’s window (rcvwnd) is enforced by the receiver as a measure of its buffering capacity. The congestion
window (cwnd) is used at the sender as a measure of the available capacity of the network. The sender cannot send
more than the minimum of rcvwnd and cwnd. The TCP congestion control scheme® consists of the “slow start” and
“congestion avoidance” phases. In the “slow start” phase, cwnd is initialized to one TCP segment. The cwnd is
incremented by one segment for each acknowledgment received, so the cwnd doubles every round trip. The cwnd can
reach up to ssthresh (initialized to 64K bytes).

In the “congestion avoidance” phase, the cwnd is incremented by 1/cwnd for every segment acknowledged. If an
acknowledgment is not received by the timeout period, the segment is considered to be lost, and “slow-start” phase
is entered. The cwnd is set to one, and ssthresh is set to maz(2, min(cwnd/2, rcvwnd)). Figure 1 shows the different
phases of the TCP congestion control mechanism. It has been shown that TCP/IP performance can be improved
with the fast retransmit and recovery’ and selective acknowledgments® options.

CWND 1

CWND/2

TIME
) 74 a C ' tion
Slow Wait for Slow Onges
Start Start Avoidance

Timeout

Timeout

Figure 1. TCP CWND vs Time

2.2. ABR Flow Control

The ABR service uses closed-loop feedback control to advise the sources about the rate at which they should be
transmitting data. The switches monitor their load, compute the available bandwidth and divide it fairly among
the competing sources. The feedback from the switches to the sources is sent in Resource Management (RM) cells
which are sent periodically (one RM cell after every Nrm — 1 data cells®) by the sources and turned around by the
destinations (see figure 2).

The RM cells traveling in the forward direction are called forward RM cells (FRMs) while those returning from
the destination to the source are called backward RM cells (BRMs). When a source receives a BRM cell, it computes
its allowed cell rate (ACR).

Forward

Rbf Cell Data Cell
‘/“'
oOmo
> i >
Source W 4 Destination
+ — -
Switch Switch
Backward
RM Cell

Figure 2. RM cell path

2.3. The ERICA+ Switch Algorithm

The ERICA+ switch algorithm operates at each output port of a switch. The switch periodically monitors the load
on each link and determines a load factor, the available ABR capacity, and the number of currently active VCs. The
measurement, period is called the “averaging interval”. The measurements are used to calculate the feedback rate
which is indicated in the BRM cells. Measurements are performed in the forward direction, while feedback is given
in the reverse direction. ERICA+ uses a queue control function to drain queues at the switch by varying the target
rate dynamically. The complete description of the ERICA+ algorithm is given in [10].

3. WWW TRAFFIC OVER ATM

The WWW application sets up TCP connections for its data transfers.!! The WWW application differs from a large
file transfer application in that, while the latter looks like an infinite or persistent application to TCP, the former
appears as a bursty application with active and idle transmission periods. The effect of this on traffic management
is described below.

TCP increases its congestion window as it receives acknowledgments for segments correctly received by the
destination. If the application (such as file transfer or WWW server/client) has data to send, it transmits the data.
Otherwise, the window remains open until either the application has data to send or TCP times out. The timer
set by TCP’s round trip time (RTT) estimation algorithm. The timer can go off for two reasons: (i) retransmission
timeout: if an acknowledgment is not received within the timeout period, (ii) idle timeout: if there is no activity
at the source for a given amount of time. The timeout period is at least as much as the timer granularity, which is
typically 100-500 milliseconds. If the timer goes off, TCP reduces the congestion window to one segment, and rises
exponentially (slow start phase) once the source becomes active again.

On the other hand, if the application remains idle for a period smaller than the timeout, the window is still open
when the source becomes active again. If acknowledgments (corresponding to the data sent) are received within this
idle interval, the window size further increases. Since no new data is sent during the idle interval, the usable window
size is large. The large window maybe used by the application to send a large burst of traffic.

When TCP transporting such a WWW application is transferred over ATM, the burst of data is simply transferred
to the NIC (network interface card). Assuming that each TCP connection is carried over a separate ABR virtual
circuit (VC), the data burst is sent into the ATM network at the VC’s allowed cell rate (ACR). Since this VC has
been idle for a period shorter than the TCP timeout (typically 500 ms for ATM LANs and WANSs), it is an ACR
retaining VC. Source End System (SES) Rule 5° specifies that the ACR of such a VC be reduced to ICR (initial cell
rate) if the idle period is greater than parameter ADTF (ACR decrease time-out factor), which defaults to 500 ms.
With this default value of ADTF, and the behavior of the TCP application, the ACR is not reduced to ICR. This
situation can be potentially harmful to the switches if ACRs are high and sources simultaneously send data after
their idle periods.

Observe that a persistent application using TCP over ABR does not send data in such sudden bursts. As discussed
in our previous work,'2 the aggregate TCP load at most doubles every round trip time (since two packets are inserted

Table 1. Class, Files sizes and Frequency of Access

| Class | File Sizes | Frequency of Access |
Class 0 0 - 1KB 20%
Class1 | 1KB - 10KB 28%
Class 2 | 10KB — 100KB 40%
Class 3 | 100KB - 1MB 11.2%
Class 4 | 1MB - 10MB 0.8%

into the network for every packet transmitted, in the worst case). Bursty TCP applications may cause the aggregate
load to more than double in a round trip time.

In this paper, we show that such worst case scenarios are avoided in practice due to the nature of WWW
applications and the ABR closed-loop feedback mechanism. In other words, ABR scales well to support a large
number of bursty WWW sources running over TCP.

4. THE WWW SYSTEM MODEL

The world wide web uses the Hypertext Transfer Protocol (HT'TP), which uses traditional TCP/IP for communication
between the WWW clients and the WWW servers.!® Modeling of the WWW traffic is a difficult task since the
nature of traffic is changing due to the development of new HTTP standards, new WWW servers, WWW clients,
and changes in user behavior. In this section, we outline our model and the inherent assumptions.

4.1. Implications of the HTTP /1.1 standard

The main difference between the latest version of the HyperText Transfer Protocol, HTTP/1.1,'1 and earlier versions
is the use of persistent TCP connections as the default behavior for all HT'TP connections. In other words, a new
TCP connection is not set up for each HTTP request. The HTTP client and the HTTP server assume that the TCP
connection is persistent until a Close request is sent in the HT'TP Connection header field.

Another important difference between HTTP /1.1 and earlier versions is that the HTTP client can make multiple
requests without waiting for responses from the server (called pipelining). The earlier models were closed-loop in the
sense that each request needed a response before the next request could be sent.

4.2. WWW Server Model

We model our WWW servers as infinite servers getting file requests from WWW clients. The model is an extension
of that specified in the SPECweb96 benchmark.! The file requests fall into five classes (Class 0 through Class 4)
which are shown in table 1.

There are nine discrete sizes in each class (e.g., 1 KB, 2 KB, up to 9 KB, then 10 KB, 20 KB, through 90 KB,
etc). We assume that the accesses within a class are evenly distributed. The model of discrete sizes in each class is
based on the SPECweb96 benchmark.! The key differences from the SPEC model are: (i) the assumptions of an
infinite server, and (ii) a new distribution of file sizes, which allows us to model file sizes larger than those in the
SPEC benchmark.

Specifically, the average file size in our distribution is approximately 120 KB, compared to an average file size of
about 15 KB in SPECweb96. Our distribution introduces an extra class of file sizes (1 MB - 10 MB) which models the
down-loading of large software distributions, and off-line browsing search results. We justify the weight assignments
for the various classes in the next subsection.

4.3. WWW Client model

The HTTP model proposed in? describes an empirical model of WWW clients based on observations in a LAN
environment. Specifically, a typical client is observed to make, on the average, four HTTP GET requests for a single
document. Multiple requests are needed to fetch in-line images, if any. With the introduction of JAVA scripts in
web pages, additional accesses maybe required to fetch the scripts. Therefore, we use five as the average number of
HTTP GET requests. The caching effects at the clients are ignored.

HTTP/1.1 uses persistent TCP connections and sends multiple requests without waiting for the results of the
earlier requests (open-loop mode). But, the open-loop mode is not used for the first request because the additional
requests have to be made based on the results of the first response.

Typically, the first HTTP request from an HTTP client accesses the index page (plain text), which is of size 1
KB or less. Since every fifth request is expected to be an index page access, we assign a weight of 20% (= 1/5) for
the file size range of 1 KB or less.

Additional requests may require larger responses, as modeled by our distribution of file sizes at servers, taking
into consideration the possibility of larger file sizes in the future.

We also model a time lag between batches of requests (presumably for the same document), which corresponds
to the time taken by the user to request a new document, as a constant, 10 seconds. While this may be too short a
time for a human user to make decisions, it also factors in the possibility of off-line browsing where the inter-batch
time is much shorter.

We do not attempt to model user behavior across different servers. The main purpose of using this simplistic
model is to approximate the small loads offered by individual web connections, and to study the effects of aggregation
of such small loads on the network.

5. THE K-N CLIENT-SERVER CONFIGURATION

The K-N Client-Server configuration shown in figure 3 has a single bottleneck link (LINK1) shared by the N Web
servers and K clients per server or a total of N x K clients). Each client (e.g., a netscape browser) sets up a TCP
connection which goes through an ATM VC on a separate NIC. The VC goes through the switch (SW1) to the NIC
corresponding to its server. Every server has a NIC card connected to it. Therefore there are N NICs, one for each
of the N servers. The ATM VCs from the clients reach the server through the server NIC and a separate TCP entity.
Hence, there are K TCP entities corresponding to the K clients per server. In our simulations, K = 15, and N = 1,
2, 5, 10. All link lengths are 1000 kms. The bottleneck link (LINK1) speed is 45.0 Mbps, modeling a T3 link, while
the remaining link speeds are 155.52 Mbps.

Client 1 JI'CFP Il_iNIC 1 /TC_‘P
I 1 /
\TCP 5

F

Server 1

Client K HIC P k_II\IIC I

/
+
+
[

- - -

= 1 = A 22

- - - - - -

F

Client 1 [ICP IlﬂNIC 1 /TC.‘P

Tal Faerver T-

Client K[TCP k—INIC (& \TC_‘P H

Figure 3. K-N Client-Server configuration

We define feedback delay as sum of the time required for feedback from the bottleneck switch to reach the source
and the delay for the new load to be sensed at the switch. In our configuration, the feedback delay is 10 ms, which
corresponds to 3680 cells at 155.52 Mbps. The round trip time is 30 ms, which corresponds to 11040 cells.

6. TCP AND ERICA+ PARAMETERS

We use a TCP maximum segment size (MSS) of 512 bytes. The window scaling option is used to obtain larger
window sizes for our simulations. For our WAN simulations, we use a window of 16 x 64 KB or 1024 KB, which
is greater than the product of the round trip time (RTT) and the bandwidth, yielding 454,875 bytes at 121.3 Mbps
TCP payload rate (defined below) when the RTT is 30 ms.

TCP data is encapsulated over ATM as follows. First, a set of headers and trailers are added to every TCP
segment. We have 20 bytes of TCP header, 20 bytes of IP header, 8 bytes for the RFC1577 LLC/SNAP encapsulation,
and 8 bytes of AAL5 (ATM adaptation layer) information, a total of 56 bytes. Hence, every MSS of 512 bytes becomes
568 bytes of payload for transmission over ATM. This payload with padding requires 12 ATM cells of 48 data bytes
each. The maximum throughput of TCP over raw ATM is (512 bytes/(12 cells x 53 bytes/cell)) = 80.5%. Further,
in ABR, we send FRM cells once every Nrm — 1 (31) cells. Hence, the maximum throughput is 31/32 x 0.805 =
78% of ABR capacity. For example, when the ABR capacity is 45 Mbps, the maximum TCP payload rate is 35.1
Mbps. Note that higher efficiency can be achieved by using larger MSS values.

We are interested in comparative efficiency, so we normalize our efficiency measurements. We define efficiency to
be the ratio of the TCP throughput achieved to the maximum throughput possible. As defined above, the maximum
throughput possible is 0.78 x the mean ABR capacity.

In our simulations, we have not used the fast retransmit and recovery and selective acknowledgment options of
TCP/IP. Since there is no loss, these mechanisms are not exercised.

The ERICA+ algorithm!© uses five parameters. The algorithm measures the load and number of active sources
over successive averaging intervals and tries to achieve 100% utilization with queuing delay equal to a target value.
The averaging intervals end either after a specified period of time, or after a specified number of cells has been
received, whichever happens first. In our simulations, the values used are 500 ABR input cells or 5 ms. The other
parameters are used to define a function which scales the ABR capacity in order to achieve the desired queuing delay
goals. These include a target queuing delay, T0, set to 500 microseconds, two curve parameters (a = 1.15 and b =
1.05), and a factor which limits the amount of ABR capacity allocated to drain the queues (queue drain limit factor,
QDLF = 0.5).

7. SIMULATION RESULTS

In our simulations, we use 15 clients per server (K=15). The number of servers in the system is varied from one to
fifteen. Given the average file size of 120 KB, five requests per batch, and a constant inter-batch time of 10 seconds,
the average load generated per client is 0.48 Mbps. With N servers (and K=15 clients per server), the expected load
on the system is 7.2 x N Mbps. As we vary N from 1 to 15, the expected load varies from 7.2 Mbps to 72 Mbps over
a bottleneck link of speed 45 Mbps.

The simulation results are presented in table 2.

Observe that the maximum switch queue (which corresponds to the buffer requirement at the bottleneck switch)
initially increases linearly as a function of input load (i.e., number of servers; see rows 1 through 5). The efficiency
also increases linearly as a function of load in this range. The efficiency value is high (greater than 85%), and the
variation in efficiency is due to use of random numbers (used for generating client requests) in the simulation.

However, as the average load on the network exceeds the bottleneck link capacity (N = 7,...,15), the buffer re-
quirements do not increase correspondingly. In other words, the mazximum gqueue stabilizes under overload conditions
due to ABR feedback while the efficiency remains high. This is explained as follows.

Initially, when the network is lightly loaded, switches allocate high rates to sources. Due to the bursty nature of
the WWW applications, and the use of persistent TCP connections, the sources may send bursts of cells into the
network (seen as queues at the bottleneck switch). This leads to a linear increase in maximum queue lengths for low
average loads. The maximum queue length is bounded by 3 x RTT delay cells.

Table 2. Effect Number of Servers on Efficiency and Maximum Queue length

Sources ABR Metrics
Number of Max Switch Q Total TCP Efficiency
servers (cells) Throughput | (% of Max
throughput)
1 3677 (0.33xRTT Delay) 6.11 Mbps 17.4%
2 6154 (0.56xRTT Delay) | 14.16 Mbps 40.3%
3 7533 (0.68xRTT Delay) | 21.11 Mbps 60.1%
4 10217 (0.93xRTT Delay) | 28.46 Mbps 81.1%
5 14057 (1.27xRTT Delay) | 34.08 Mbps 97.1%
6 16342 (1.48xRTT Delay) | 34.28 Mbps 97.6%
7 13846 (1.25xRTT Delay) | 34.05 Mbps 97.0%
8 19399 (1.76xRTT Delay) | 34.05 Mbps 97.0%
9 23471 (2.13xRTT Delay) | 33.04 Mbps 94.1%
10 17269 (1.56xRTT Delay) | 32.72 Mbps 93.2%
11 17134 (1.55xRTT Delay) | 33.02 Mbps 94.1%
12 17956 (1.63xRTT Delay) | 32.60 Mbps 92.9%
13 27011 (2.45xRTT Delay) | 32.45 Mbps 92.4%
14 17652 (1.60xRTT Delay) | 30.03 Mbps 85.6%
15 16268 (1.47xRTT Delay) | 30.10 Mbps 85.8%

However, as the average load on the bottleneck switch increases, the switch allocates lower rates to the contending
sources. Now, even if the WWW applications send bursts of cells, they are not admitted into the ATM network
since the source rate allocations are low. The low rate allocations limit the sudden load seen by the network under
overload conditions with bursty TCP sources.

8. SUMMARY

In this paper, we have investigated the performance of ABR when bursty applications like WWW clients and servers
using TCP run over ATM networks. The problem with such applications is that they might utilize the large TCP
congestion windows to send bursts of data on the underlying ATM network, resulting in large queues. Though
the burst sizes (captured by file size distributions) used by these applications may be large, the average rate per
connection is small. Hence, it takes a large number of connections to load the network. However, as the load on the
network increases, the ABR switch algorithm controls the source rates to low values, and restricts the burstiness in
load seen by the network. As a result, the maximum queue lengths in the network are bounded while the efficiency
remains high. Hence, ABR responds to load increases and scales well to realistic workloads.

ACKNOWLEDGMENTS
This research was sponsored in part by NSF Grant/Contract #NCR-9628438.

REFERENCES

1. SPEC benchmark organization, An Ezplanation of the
http://www.specbench.org/osg/web96 /webpaper.html.

2. B. Mah, “An Empirical Model of HTTP Network Traffic,” in Proc. of IEEE INFOCOM’97, April 1997.

3. H. Li, K. Y. Siu, H. T. Tzeng, C. Ikeda, and H. Suzuki, “TCP over ABR and UBR Services in ATM,” in Proc.
IPCCC’96, March 1996.

4. A. Romanov and S. Floyd, “Dynamics of TCP traffic over ATM Networks,” IEEE JSAC , 1995.

5. R. Goyal, R. Jain, S. Kalyanaraman, S. Fahmy, and B. Vandalore, “Improving the Performance of TCP over
the ATM-UBR service,” To appear in Computer Communications , 1998.

SPECweb96 Benchmark,

~N O

10.

11.

12.

13.

V. Jacobson, “Congestion Avoidance and Control,” in Proc. of the SIGCOMM’88, pp. 314-32, August 1988.
W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms,” Internet
RFC 2001 , January 1997.

M. Mathis, J. Madhavi, S. Floyd, and A. Romanow, “Tcp selective acknowledgment options,” Internet RFC
2018 , 1997.

S. S. Sathaye, ATM Forum Traffic Management Specification Version 4.0,
ftp:/ /ftp.atmforum.com/pub/approved-specs/af-tm-0056.0000.pdf, 1996.

S. Kalyanaraman, R. Jain, R. Goyal, S. Fahmy, and B. Vandalore, “The ERICA Switch Algorithm for ABR
Traffic Management in ATM Networks,” Submitted to IEEE/ACM Transactions on Networking , November
1997.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee, “Hypertext Transfer Protocol - HTTP/1.1,”
Internet RFC 2068 , 1997.

S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, and S. Kim, “Performance and Buffering Requirements of
Internet Protocols over ATM ABR and UBR Services,” in IEEE Communications Magazine, June 1998.

T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext Transfer Protocol - HT'TP/1.0,” Internet RFC 1945 ,
May 1996.

