Proceedings of the 2003 Winter Simulation Conference

S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice, eds.

ROSS.NET: OPTIMISTIC PARALLEL SIMULATION FRAMEWORK FOR
LARGE-SCALE INTERNET MODELS

David Bauer
Garrett Yaun
Christopher D. Carothers

Murat Yuksel
Shivkumar Kalyanaraman

Electrical and Computer Systems Engineering Department

Computer Science Department
Rensselaer Polytechnic Institute
110 8th Street
Troy, NY 12180, U.S.A.

ABSTRACT

ROSS.Net brings together the four major areas of net-
working research: network modeling, simulation, mea-
surement and protocol design. ROSS.Net is a tool for
computing large scale design of experiments through
components such as a discrete-event simulation engine,
default and extensible model designs, and a state of
the art XML interface. ROSS.Net reads in predefined
descriptions of network topologies and traffic scenar-
ios which allows for in-depth analysis and insight into
emerging feature interactions, cascading failures and
protocol stability in a variety of situations. Developers
will be able to design and implement their own pro-
tocol designs, network topologies and modeling scenar-
ios, as well as implement existing platforms within the
ROSS.Net platform. Also using ROSS.Net, designers
are able to create experiments with varying levels of
granularity, allowing for the highest-degree of scalabil-
ity.

1 INTRODUCTION

Fundamental to the process of network protocol de-
sign and operations are a variety of performance anal-
ysis techniques (Jain 1991; Floyd and Paxson 2001).
These techniques have been used by researchers in a
variety of different contexts: analytic models (e.g.,
TCP models (Padhye et al. 2000), self-similar mod-
els (Leland et al. 1994), topology models (Tangmu-
narunkit et al. 2002)), simulation platforms (e.g.,
ns-2 (Breslau et al. 2000), SSFNet <www.ssfnet.
org>, and GloMoSim <pcl.cs.ucla.edu/projects/
glomosim>), prototyping platforms (e.g., MIT Click
Router toolkit (Kohler et al. 2000), XORP (Handley et
al. 2002)), tools for systematic design of experiments
and exploring parameter state spaces (e.g., Recursive
Random Search (Ye and Kalyanaraman 2003), STRESS
(Helmy et al. 2000)), experimental emulation platforms
(e.g., Emulab (White et al. 2002)), real-world over-
lay deployment platforms (e.g., Planetlab (Peterson et

Rensselaer Polytechnic Institute
110 8th Street
Troy, NY 12180, U.S.A.

al. 2002)), and real-world measurement and data-sets
(e.g.,<www.cadia.org>).

The high-level motivation behind the use of these
tools is simple: to gain varying degrees of qualita-
tive and quantitative understanding of the behavior of
the system-under-test. This high-level purpose trans-
lates into a number of specific lower-level objectives:
validation of protocol design and performance for a
wide range of parameter values (parameter sensitiv-
ity), understanding of protocol stability and dynamics,
and studying feature interactions between protocols.
Broadly, we may summarize the objective as a quest
for general invariant relationships between network pa-
rameters and protocol dynamics (Jain 1991; Floyd and
Paxson 2001; Floyd and Kohler 2002).

If we already have so many tools, it is natural to ask,
why are more sophisticated tools required? In their
paper (Floyd and Paxson 2001), Sally Floyd and Vern
Paxson pinpoint a number of reasons why simulating
the Internet (or a significant representative fraction of
it) is difficult. They point to three reasons: scale, het-
erogeneity and rapid change.

To enable these capabilities requires a number of
innovations across the fronts of modeling, simulation
engine design and design of experiments (DOE). On
the modeling and simulation front, ROSS.Net enables,
(i) optimistic parallel simulation engine (called ROSS
which stands for Rensselaer’s Optimistic Simulation
System) which leverages memory-efficient reversible
computation instead of using traditional state-saving to
support rollback recovery (ii) systemic memory-efficient
methodology for model construction using a combina-
tion of library interfaces to key data structures and al-
gorithms, and (iii) measurement. These high-level ob-
jectives are translated into an integrated XML-based
configuration and libraries platform that make it pos-
sible for a researcher to combine topology, parameter
configuration information and to selectively compose a
set of experiments that execute space and time efficient
models resulting in accurate answers to the questions



Bauer, Yaun, Carothers, Yuksel and Kalyanaraman

posed by the model designer.

Scaling the simulation platform is just one dimen-
sion of our research. Recall that, beyond mere scal-
ing of simulation platforms, we need capabilities to ad-
dress the remaining two issues: heterogeneity and rapid
change. Heterogeneity means more than just having
support for multiple protocol models (e.g., ns-2) we ur-
gently need large-scale experiment design capabilities
that are integrated with the simulation and models to
create an overarching test bed platform. This platform
has the ability to help in the organization of multiple
simulation experiments in the quest of the general in-
variant relationships between parameters and protocol
response. Floyd (Floyd 2001) sums the state-of affairs
by saying: “...we can’t simulate networks of that size
(global Internet). And even if we could scale, we would
not have the proper tools to interpret the results ef-
fectively...” To address this need, we have developed a
large-scale experiment design platform called ROSS.Net
that allows us to characterize and optimize protocol re-
sponse. In general the protocol response is a function of
a large vector of parameters, i.e. is a response surface
in a large-dimensional parameter space. The result of
this work includes a unified search and optimization
framework with demonstrated ability to pose mean-
ingful large-scale design questions and provide “good”
characterizations rapidly.

There are many problems that only occur when at-
tempting large scale simulation, including visualization,
abstraction and analyzing the results. There is a differ-
ence between simulation and emulation. In emulation,
we strive to recreate a real world situation. In simu-
lation, we are allowed to make abstractions and gener-
alizations. These abstractions are critical to the per-
formance of the simulation engines. These abstractions
can lead to high performance models, but at the same
time yielding results that do not answer the network-
ing questions being investigated. It is important that
simulation systems provide a mechanism by which the
appropriate level of abstraction can be achieved which
maximizes simulator performance for the questions be-
ing asked. Large scale simulation systems must provide
a way of collecting data and analyzing the results in
a meaningful way. The experiment designer must be
able to characterize each component of the system sep-
arately, and be able to analyze the growth patterns, see
the effect of topology and protocols, and find and pre-
dict clusters. They need to be able to correlate topology
and traffic characteristics to protocol, queuing and rout-
ing statistics. ROSS.Net allows experiment designers to
do just that.

2 ROSS.NET BIG PICTURE

Unlike conventional network simulators where simple,
flat models are simulated, ROSS.Net brings together
the four major areas of networking research: network
modeling, simulation, measurement and protocol de-
sign. The big picture is shown in Figure 1-a. Using
a state of the art XML interface, ROSS.Net is able to
read in predefined descriptions of network topologies
and traffic scenarios which allows for the first time in-
depth analysis and insight into emerging feature inter-
actions, cascading failures and protocol stability in a
variety of situations.

Developers are be able to design and implement their
own protocol designs, network topologies and model-
ing scenarios, as well as implement existing platforms
within the ROSS.Net platform. And using ROSS.Net,
designers are be able to create experiments with vary-
ing levels of abstraction, allowing for the highest-degree
of scalability. As a practical example, a designer could
put together a ROSS.Net simulation which would com-
bine real network topology data, such as an autonomous
system with several hierarchical levels, including areas,
subnets, gateways, stand-alone systems or endpoints,
in addition to lower level elements such as bridges,
switches and repeaters. On top of the topology, a traffic
generating scenario could also be specified for each of
the machines as appropriate. ROSS.Net would then
be able to run the design in a multitude of varying
conditions, computing statistical measurements, high-
lighting scalability issues, as well as pin-pointing net-
work trends expected or otherwise. Figures 2-a and
2-b shows the structure of modeling and simulation of
ROSS.Net. ROSS.Net basically constructs a shell on
top of the ROSS simulation engine.

3 ROSS.NET FRAMEWORK

The ROSS.Net framework consists of several elements,
including a discrete-event, optimistic parallel simula-
tion engine ROSS (Carothers, Bauer, and Pearce 2002),
a collection of protocol libraries and the overarching
ROSS.Net simulation model, XML schema for describ-
ing models, and design of experiments tool called DOT.
Where possible, ROSS.Net borrows from best use prac-
tices seen in other simulation systems. ROSS.Net adds
to those features new design elements which have been
missing and allows for the first time experimental design
and analysis at a high level, incorporating techniques
from the areas of simulation, modeling, and measure-
ment.

The design of experiments tool (DOT) allows for in-
vestigators to specify the type and duration of the ex-
periment being designed. Once described, the DOT



Bauer, Yaun, Carothers,

Testbeds
(e.g. EmuLab,
PlanetLab)

XML Interface

Protocol
parameters

Protocol
Design
Community

ROSS.Net
(Simulation &
Meta-Simulation)

Modeling
Community

topology
models, etc.

XML Interface

Traffic models,
Experiment Design

Protocol
metrics

XML Interface

Real topology
data, traffic and
router stats, etc.

Measurement
Community

(a) ROSS.Net and Other Major Experimentation Areas

Yuksel and Kalyanaraman

ROSS.Net

Desing-Of-experiment
Tool (DOT)
(i.e. RRS, USF)

Input
Parameters

Y

Output
Metrics
>

ROSS

(b) Layered Architecture of ROSS.Net

Figure 1: ROSS.Net Big Picture

configures and executes the ROSS.Net core with the
specified XML input data descriptors, simulator en-
gine performance parameters, and protocol dependent
parameters and executes a search algorithm such as
random recursive search (Ye and Kalyanaraman 2003).
Many executions might be needed in order to complete
the DOT picture before complex analysis and valida-
tion can be completed. ROSS.Net can then generate
reports and graphs based on the semantic content of
the experiment as well as validate the experiment re-
sults.

At the heart of ROSS.Net is Rensselaer’s Optimistic
Simulation System or ROSS. ROSS demonstrated that
stable, highly efficient execution using only a small con-
stant more memory than required by the sequential sim-
ulation is possible. Running on top of ROSS is the
ROSS.Net simulation. The ROSS.Net simulation pulls
together all of the model modules into one cohesive
structure and gives them access to ROSS.Net network
simulation components such as global data structures
represent the network topology, and a connection li-
brary for traffic scenarios as well as provides certain
functionality such as a per node default IP layer for
support of routing and queuing in cases where this is
not provided by the sub-model directly. The ROSS.Net
model also contains the XML interfaces for the input
and output streams associated with the DOT.

3.1 ROSS

ROSS is an optimistic parallel simulation engine that is
targeted for low event granularity models. ROSS’ API
is based on a message-passing interface. LPs commu-
nicate strictly by exchanging timestamped event mes-

sages as direct reading and writing of LP state is pro-
hibited. In addition, an efficient timer interface is pro-
vided for the purpose of network protocol modeling, as
well as a reversible abstract data structure and memory
management library. ROSS has already been used to
develop models of IP-multi-casting, TCP, UDP, BGP4
and OSPFv2 as well as modeling of wireless and sen-
sor networks. It’s ability to model millions of net-
work nodes has already been demonstrated conclusively
(Yaun, Carothers, and Kalyanaraman 2003).

Reverse computation is the process of being able to
undo operations that are speculatively executed out of
order. When an out of order event is found in the sys-
tem, events are “rolled back”, or reverse computed. The
key advantage of an optimistic approach is that it op-
erates independent of the underlying network topology.
Thus, it continues to exploit all the available parallelism
even during dynamic changes in topology. Previously
the caveat has been that state-saving overheads domi-
nate the computation costs resulting in little or no in-
crease in performance as compared to sequential model
execution (Carothers, Perumalla and Fujimoto 1999).
To address this problem, a new approach called reverse
computation for realizing the undo operation of the
state space is being used. With reverse computation,
the roll back mechanism in the optimistic simulator is
realized not by classic state-saving, but by literally al-
lowing to the greatest possible extent events to execute
backward. Thus, as models are developed for parallel
execution, both the forward and reverse execution code
must be written.



Bauer, Yaun, Carothers, Yuksel and Kalyanaraman

User-defined Reversible
Data Structures

User models

(BGE, OSPF, TCP, UDP, IP,
queuing, Touting, etc) User-defined XML

Modeling Specification

User-defined XML
Network Topologies

ROSS.Net Reversible
Data Structures

ROSS.Net models
(BGP, OSPFv2, TCP Reno, UDP,
IP, quening, routing, clc)

ROSS.Net XML
Modeling Specification

ROSS.Net XML Network
Topologies

‘ ROSS

(a) Subscription Structure of ROSS.Net Models

Protocol Detail Enabler

Network Simulation
Protocol Stack

ROSS.Net /

Layer N protocols

Layer N-1 protocols

cowaoa

Layer 1 protocols

Layer 0 protocols 0

ility Facto

Partial A » Detailed
Simulation Scalabilty Bar Y Simulation
(Large Scale) (Small Scale)

(b) Multi-Abstraction Paradigm of ROSS.Net

Figure 2: ROSS.Net Modeling and Simulation Concepts

3.2 EXAMPLE EXPERIMENT

As an example of the types of experiments that can
be performed with ROSS.Net, we summarize our re-
cent performance study using the AT&T topology as
part of an overall large-scale TCP model simulation
(Yaun, Carothers, and Kalyanaraman 2003). This net-
work topology obtained from the Rocketfuel website
(Spring, Mahajan and Wetherall 2002). As shown in
Figure 3, the core US AT&T network topology con-
tains 13,173 router nodes and 38,164 links. What makes
Internet topologies like the AT&T network both inter-
esting and challenging from a modeling prospective is
the spareness and power-law structure (Spring, Maha-
jan and Wetherall 2002). In the case of AT&T, there
are less than 3 links on average. However, at the su-
per core there is a high-degree connectivity. Typically,
an Internet service provider’s super core will be config-
ured as a fully connected mesh. Consequently, back-
bone routers will have up to 67 connections to other
routers, some of which are other backbone or super core
routers and other links to region core routers. Once at
the region core level, the number of links per router re-
duces and thus the connectivity between other region
cores is spare. Most of the connectivity is dedicated to
connecting local points of presence (PoPs).

In performing a breath-first-search of the AT&T
topology, there are distinct eight levels. At the back-
bone, there are 414 routers. At each successive level
yields the following router count : 4,861, 5,021, 1,117,

118, 58, 6 and at the final level there are 5 nodes. There
were a number of routers not directly reachable from
within this network. Those routers are most likely tran-
sit routers going strictly between autonomous systems
(AS). With the transit routers removed, our AT&T net-
work scenario has 11,670 routers. Link weights are
derived based on the relative bandwidth of the link
in comparison to other available links. In this con-
figuration, routing is keep static, however we do have
dynamic routing currently working on a light-weight
OSPF model in which we plan to integrate with our
TCP model in the very near future.

The bandwidth ranged from almost 10 Gb/sec at the
top-level down to 70 Kb/sec at the lower levels. The
buffer size and link delay ranged from 12 MB and be-
tween 10ms to 30ms delay at the top-level to 5 KB
buffer size and 5ms of delay at the lower layers of
the network. This configuration was scaled to both a
medium case with 96,500 LPs (end hosts plus routers)
and a large case with 266,160 LPs. In each configu-
ration, half of the end hosts establish a TCP session
to a randomly selected receiving host. We observe this
configuration is almost pathological for a parallel net-
work simulation because the amount of remote network
traffic will be much greater than is typical in practice.
Our goal is to demonstrate simulator efficiency under
high-stress workloads for realistic topologies.

We observed over 99% efficiency for our parallel runs.
However, despite the efficiency, the speedup results were



Bauer, Yaun, Carothers, Yuksel and Kalyanaraman

| Eile Edit ¥iew Search Go Bookmarks Tasks Help

% |& hitpfwwnii o5 washington.edu/researchinetworking/rocketfuelfinteractive/7018us. himl

ack | Fomward | Reload Slop

|
=] 28 Search | Fﬁ - |
o

Figure 3: AT&T Network Topology (AS 7118) from the Rocketfuel Data Bank for the Continental U.S.A.

marginal but encouraging. Our best case speedup as
1.25 for the medium configuration and 1.29 for the large
configuration. The platform used in this performance
study was a dual Hyper-threaded 2.8 GHz Pentium
4 Xeon processors, which multiplexes two instruction
streams or threads per processor. We attribute the dis-
parity between efficiency and end speedup to the enor-
mous amount of remote messages sent between instruc-
tion streams/processors. The AT&T network topology
for a round-robin LP to processor mapping results in
almost 80% of the all processed events being remotely
schedule. We hypothesize that behavior on the part
of the model reduces memory locality and results in
much higher cache miss rates. Consequently, all in-
struction streams are spending more time stalled wait-
ing for memory requests to be satisfied. With a better
load distribution, we believe the speedup results will
be much higher and potentially scale to larger proces-
sor configurations. The memory requirements for the
AT&T scenario were 269 MB for the medium size net-
work and 328 MB for the large size network, yielding
a per TCP connection overhead of 2.8 KB and 1.3 KB
respectively.

4 LARGE-SCALE EXPERIMENT DESIGN
AND ANALYSIS

Scaling the simulation platform is just one dimension
of our research. Recall that, beyond mere scaling of
simulation platforms, we need capabilities to address
the issues of heterogeneity and rapid change in simu-
lating large networks to extract and interpret mean-
ingful performance data. “Heterogeneity” means more
than just having support for multiple protocol mod-
els (e.g., ns-2): we urgently need experiment design or
“meta-simulation” capabilities that are integrated with
the simulation and models to create an overarching test
bed platform (see Figure 1-b). The purpose of the
large-scale experiment design piece of our research is
to systematically formulate and organize multiple sim-
ulation experiments in the quest of the general invariant
relationships between parameters and protocol perfor-
mance response.

Design of Experiments or “experiment design” is a
well known branch of performance analysis, specifi-
cally, a sub branch of statistics (Jain 1991; Montgomery
2001). It has been used extensively in areas like agri-
culture, industrial process design and quality control
(Montgomery 2001), and has been introduced to the
area of practical computer and network systems design



Bauer, Yaun, Carothers, Yuksel and Kalyanaraman

by Raj Jain (Jain 1991). Statistical experiment design
views the system-under-test as a black-box that trans-
forms input parameters to output metrics. The goal of
experiment design is to maximally characterize (i.e., ob-
tain maximum information about) the black-box with
the minimum number of experiments. Another goal
is robust characterization, i.e., one that is minimally
affected by external sources of variability and uncon-
trollable parameters, and can be specified at a level of
confidence.

The underlying premise of experiment design is that
each experiment (e.g., a simulation run, an Emulab or
Planetlab test run) has a non-negligible cost. Simple
designs like “best-guess” or “one-factor-at-a-time” de-
signs are less favored in complex situations since they
do not provide information about the interactions be-
tween parameters. Designs like full-factorial and frac-
tional factorial (also called orthogonal designs), appro-
priately subjected to replication, randomization and
blocking are preferred (Jain 1991; Montgomery 2001).
The usual end-goal of formulating regression models is
to observe the effects of both individual parameters and
parameter interactions (Jain 1991; Montgomery 2001).
Techniques like blocking and analysis of covariance are
used to explicitly handle measurable, but uncontrol-
lable (a.k.a., “nuisance”) factors. Transforms on data
(e.g., Box-Cox power-law family of transformations)
can effectively aid in producing a family of non-linear
regression models and stabilizing the variance of the
response (Jain 1991; Montgomery 2001).

The next step beyond characterization (i.e., devel-
oping input-output regression models) is to determine
the region in the important factors that leads to best-
possible response. The output or response in general
will have an unknown surface topology, also known as
“response surface”. The approach typically used in-
volves quickly traversing the surface sequentially (by
using lower-order models built with fractional facto-
rial experiments) to reach interesting areas where more
detailed (higher-order) characterization is done. Well-
known small-polynomial order response-surface meth-
ods include central composite design (CCD) (efficient
fitting of second order models), Box-Behnken designs
(Montgomery 2001). Robust parameter designs (RPDs)
for finding settings for controllable variables that mini-
mized the variability transmitted to the response from
uncontrolled (or noise) variables have been proposed
by Taguchi (Taguchi 1986), that have been credited for
triggering a quality-control revolution in the 1980s-90s
(Montgomery 2001).

Taguchi’s RPDs use highly fractionated factorial de-
signs and other fractional designs obtained from orthog-
onal arrays.

5 XML MODELING

There are typically two main data inputs for any given
model: topology and a traffic scenario. Several systems
have designed excellent approaches to describing some
or all of these inputs, but what is lacking is an abstract
way in which network models are described so that they
can be used across multiple simulation systems. Addi-
tionally, little or no work has been done on abstractly
validating these inputs or, describing the results of the
simulations. Even when work is done on describing the
inputs and outputs to a simulation, it is invariably tied
to a particular simulation system and cannot be re-used
or verified in another system without a great amount
of effort.

Extensible Markup Language (XML) is a simple, very
flexible text format derived from SGML. Originally de-
signed to meet the challenges of large-scale electronic
publishing, XML is also playing an increasingly impor-
tant role in the exchange of a wide variety of data on
the Web and elsewhere (<www.w3c.org/XML/>). XML
is one of the fastest growing modern technologies which
was designed primarily to make data application in-
dependent much as the Java programming language
attempts to make applications platform independent.
Our goal for using XML is to make the modeling data
transparent to the simulation engine. In addition to
using XML for modeling, in the future we intend to
use XML interfaces to online components of the system
(e.g., PlanetLab, Emulab in both the control and data
plane; as well as interactive user interfaces, e.g., SNMP,
RMON).

We use model data from real networks and are still
able to capture minute trends resulting from proto-
col changes, policy changes and/or parameter changes.
XML allows us to find and clarify these results by de-
signing experiments which can be tightly controlled in
the large-scale. XML allows us to view scenarios and
topologies as simply variables in the parameter space of
a design of experiments and to treat those parameters
as though they were a black box.

6 ROSS.NET MODEL

The ROSS.Net models which come with the distri-
bution include default models for protocols such as
TCP, UDP, OSPFv2, BGP4 etc. Each protocol defines
an XML descriptor for the protocol for configuration
and validation. These models were generated by the
ROSS.Net team at RPI and have been optimized using
complex abstraction techniques where appropriate, and
conform to the RFC specifications. New models may be
designed and included by the user for protocol develop-
ment and testing purposes by extending the existing



Bauer, Yaun, Carothers, Yuksel and Kalyanaraman

models or by providing complete model implementa-
tions. Further, models may be generated and tested in
the isolated environment of ROSS, and then ported sim-
ply and quickly to the ROSS.Net API. The ROSS.Net
APT is based on the message passing API available in
ROSS. ROSS.Net is a fully modular and extensible sys-
tem making it simple for users to generate models in
most languages with a C language interface and incor-
porate them into the overall ROSS.Net structure. Users
simply need to setup their module within the ROSS.Net
system and provide an XML parser for any user-defined
XML descriptors used by their model.

ROSS.Net also provides a simple API to model de-
velopers for the use of ROSS timer events, and memory
buffers. Models should use these functions as they have
been designed to be as efficient as possible within the
ROSS memory usage paradigm. They also aid in the
quick development of models because they provide com-
mon functionality through an abstract API.

ROSS.Net parses the XML modeling specification
and generates the necessary global data structure repre-
senting the network topology and connection database
for use by all models through the use of access func-
tions public in the ROSS.Net API. The global data
structure and connection database, with their associ-
ated API functions provide a high level approach to
accessing the input data and allow models to be able to
efficiently compute necessary constructs such as routing
tables and connection streams.

All discrete-event engines define some form of enti-
ties or logical processes (LPs) which describe the state
of the processes in the system. LPs must be mapped to
the model in some way that minimizes remote message
passing between processing elements which require mu-
tual exclusion devices. ROSS.Net uses the XML model
descriptor to complete this mapping for the user and
conforms to the OSI/ISO model for networking lay-
ers. A typical model description includes a node on the
network, and the protocol layers that it is expected to
simulate. By analyzing the links between the network
nodes, ROSS.Net is able to determine a mapping of
network nodes to LPs automatically for the user, which
reduces the number of remote messages being passed.
An assumption we make is that network nodes with
high degrees of connectivity will have a higher number
of events being passed to them. ROSS.Net also maps
the protocol layers onto the LPs in such a way that
muxing/demuxing of packet streams is handled auto-
matically by a stream port number.

To further maximize the capabilities of discrete-event
message passing, ROSS.Net handles internally the map-
ping of protocol layers to the OSI/ISO layering model
within each LP. This allows each modeled layer to act
completely independently of each other. ROSS.Net

handles the details of event allocation and message
passing between layers. Events passed between lay-
ers are not directly sent through the ROSS core, but
rather handed directly through the following layer for
processing. By not passing the event through the ROSS
core, ROSS.Net is able to simulate much higher levels
of packet passing than in a conventional discrete-event
simulator. The only control given to each model when
sending events is whether the event should be propa-
gated up or down through the protocol stack. Because
the models act completely independently of each other,
protocol designers are free to design their models in
the maximum number of configurations. For example,
running OSPF over IP would be a typical model rep-
resenting current Internet behavior, but OSPF could
be tested over TCP without any consideration in the
OSPF model. Each protocol becomes a building block
where there are no limits on how they are placed to-
gether.

ROSS.Net also provides a default IP layer for models
which do not specify an IP layer. This facilitates con-
structs such as multi-homed TCP hosts, where the TCP
modeler is not concerned with the routing decision mak-
ing. The ROSS.Net default IP layer has several con-
figurable options, including queue usage, routing and
demuxing of datagram streams. The experiment de-
signer can choose from within the DOT interface what
types of queuing mechanisms should be used for each
class of network node, and then the IP layer for those
nodes are automatically configured within ROSS.Net.
Conversely, the experiment design chosen in the DOT
may prescribe which types of queuing mechanism, if
any, are needed in order to collect the relevant data
for the experiment. In this way, the modeler no longer
needs to choose each and every configuration option,
and ensure their correctness, but can instead rely on
high level experiment design to choose appropriate val-
ues and configurations for them. Decision making at
the DOT level also helps to select the appropriate level
of detail to collect during the simulation execution(s),
thereby maximizing the simulation performance.

ROSS.Net provides a generic, compressed packet for
event transmissions. The ROSS.Net packet is intended
to simplify some of the packet details commonly found
in different protocols. The ROSS.Net packet header
contains information accessible to all model layers such
as the source and destination address and the stream
port number as well as some layer information such
as direction the packet is currently taking through the
layer stack. ROSS.Net models use this packet as the fi-
nal envelope for message passing within the ROSS core.
All protocol messages are packed into the ROSS.Net
packet and transmitted to the appropriate destination.
The ROSS.Net LP then provides each layer with both



Bauer, Yaun, Carothers, Yuksel and Kalyanaraman

the ROSS.Net packet, as well as the encapsulated model
header and data information. This not only reduces the
event size being sent through the system, but enables
the different model layers to act independently of each
other. In the downstream transmission, the FTP proto-
col model only receives and understands how to handle
FTP protocol packets. An underlying TCP protocol
model only receives the application layer packet size
and a pointer to the meta-data. The TCP layer decides
how to appropriately send the meta-data, and generates
several smaller TCP packets which ROSS.Net hands to
the underlying IP layer for transmission to the next LP
in the routing table. The FTP layer does not explicitly
call a TCP provided send function, nor does the TCP
layer call an explicit IP layer send function. ROSS.Net
simply hands the data either up or down between the
layers. The combination of the layers determine the LPs
complexity of work. Several components may be con-
nected together within an LP to form the overall logical
process, and ROSS.Net manages the interactions be-
tween them through the use of the abstract ROSS.Net
packet.

7 CONCLUSIONS

ROSS.Net brings together the four major areas of net-
working research: network modeling, simulation, mea-
surement and protocol design. ROSS.Net is a tool for
computing large scale design of experiments through
components such as a discrete-event simulation engine,
default and extensible model designs, and a state of
the art XML interface. Developers will be able to de-
sign and implement their own protocol designs, network
topologies and modeling scenarios, as well as implement
existing platforms within the ROSS.Net platform.

In the future we will develop online interfaces be-
tween ROSS.Net and live SNMP and RMON. Work has
already been completed on SNMP XML interfaces, so
connecting to these live sources should be relatively sim-
ple. We also intend to develop interfaces to emulation
platforms such as PlanetLab and Emulab.

REFERENCES

Breslau, L., D. Estrin, K. Fall, S. Floyd, J. Heide-
mann, A. Helmy, P. Huang, S. McCanne, K. Varad-
han, Y. Xu, and H. Yu. 2000. Advances in network
simulation. IEEE Computer 3(10): 59-67.

Carothers, C. D., Bauer, D., and S. Pearce, 2002. Ross:
a high-performance, low memory, modular time warp
system. Journal of Parallel and Distributed Comput-
ing 62: 1648-1669.

Carothers, C. D., K. S. Perumalla, and R. M. Fujimoto.
1999. Efficient optimistic parallel simulations using

reverse computation. ACM Transactions on Modeling
and Computer Simulation 9(3): 224-253.

Floyd, S. 2001. Simulation is crucial. IEEE Spectrum
38(1): sidebar article.

Floyd, S., and E. Kohler. 2003. Internet research
needs better models. In First Workshop on Hot Top-
ics in Networks (HotNets-I), Special Issue of ACM
SIGCOMM Computer Communication Review 33(1):
29-34.

Floyd, S., and V. Paxson. 2001. Difficulties in simulat-
ing the internet. IEEE/ACM Transactions on Net-
working 9(4): 392-403.

Handley, M., O. Hodson, and E. Kohler. 2003. XORP:
open platforms for network research. In First Work-
shop on Hot Topics in Networks (HotNets-I), Special
Issue of ACM SIGCOMM Computer Communication
Review 33(1): 53-58.

Jain, R. 1991. The art of computer systems performance
analysis: techniques for experimental design, mea-
surement, simulation, and modeling. Wiley - Inter-
science.

Kohler, E., R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. 2000. The click modular router. ACM
Transactions on Computer Systems 18(3): 263-297.

Leland, W., M. Taqqu, W. Willinger, and D. Wilson.
1994. On the self-similar nature of ethernet traffic.
IEEE/ACM Transactions on Networking 2(1): 1-15.

Montgomery, D. C. 2001. Design and analysis of exper-
iments. John Wiley and Sons.

Padhye, J., V. Firoiu, D. Towsley, and J. Kurose. 2000.
Modeling tcp reno performance: A simple model and
its empirical validation. IEEE/ACM Transactions on
Networking 8(2): 133-145.

Peterson, L., T. Anderson, D. Culler, and T. Roscoe.
2002. A blueprint for introducing disruptive technol-
ogy into the internet. In First Workshop on Hot Top-
ics in Networks (HotNets-I). Special Issue of ACM
SIGCOMM Computer Communication Review 33(1):
59-64.

Sikdar, B., S. Kalyanaraman, and K. S. Vastola. 2001.
An integrated model for the latency and steady state
throughput of tcp connections. Performance Evalua-
tion 46: 139-154.

Spring, N., R. Mahajan, and D. Wetherall. 2002. Mea-
suring isp topologies with rocketfuel. In Proceed-
ings of the 2002 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer
Communications (SIGCOMM), 133-145.

Taguchi, G. 1986. Introduction to quality engineering.
Asian Productivity Organization, UNIPUB, White
Plains, NY.

Tangmunarunkit, H., R. Govindan, S. Jamin,
S. Shenker, and W. Willinger. 2002. Network topol-
ogy generators — structural vs. degree-based. In Pro-



Bauer, Yaun, Carothers, Yuksel and Kalyanaraman

ceedings of the 2002 Conference on Applications,
Technologies, Architectures, and Protocols for Com-
puter Communications (SIGCOMM), 147-159.

White, B., J. Lepreau, L. Stoller, R. Ricci, S. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. 2002. An integrated experimental en-
vironment for distributed systems and networks. In
Proc. of the Fifth Symposium on Operating Systems
Design and Implementation (OSDI), 255-270.

Willinger, W., R. Govindan, S. Jamin, V. Paxson, and
S. Shenker. 2002. Scaling phenomena in the internet:
critically examining criticality. Proceedings of the Na-
tional Acadamy of Sciences of the United States of
America 99(1): 2573-2580.

Yaun, G., C. D. Carothers, and S. Kalyanaraman. 2003.
Large-scale tcp models using optimistic parallel simu-
lation. To appear in the Proceedings of the 17" Work-
shop on Parallel and Distributed Simulation.

Ye, T., and S. Kalyanaraman. 2003. A recursive ran-
dom search algorithm for large-scale network param-
eter configuration. To appear in the Proceedings of
the 2003 ACM SIGMETRICS Conference.

ACKNOWLEDGMENTS

This research is supported by an NSF CAREER Award
CCR-0133488, the DARPA Network Modeling and
Simulation program, contract #F30602-00-2-0537 and
a AT&T University Relations Program Grant.

AUTHOR BIOGRAPHIES

DAVID BAUER is currently a completing his PhD
in computer science at Rensselaer Polytechnic Institute.
While pursuing his PhD at RPI, he has designed and
developed ROSS and ROSS.Net in addition to other
commercial distributed systems. At GE/CRD he devel-
oped a design of experiments tool for use in the research
and development of mercury consumption in fluorescent
bulbs. While At the MapInfo Corp. Mr. Bauer devel-
oped software for the coordination and configuration of
multiple XML and Java servers. His research interests
include parallel and distributed systems and network
simulation with a focus on performance optimizations.
His email address is <bauerd@cs.rpi.edu>.

GARRETT YAUN is a Ph.D. student in the Depart-
ment of Computer Science at Rensselaer Polytechnic In-
stitute. His recent research in efficient TCP models for
optimistic parallel simulation won best paper at PADS
2003. Garrett’s research interests include parallel and
distributed systems, networking and modeling and sim-
ulation. His email address is <yaung@cs.rpi.edu>

CHRISTOPHER CAROTHERS is an assistant
professor in the Computer Science Department at Rens-
selaer Polytechnic Institute. He received the PhD, MS,
and BS from Georgia Institute of Technology in 1997,
1996, and 1991, respectively. Prior to joining RPI,
he was a research scientist at the Georgia Institute of
Technology. As a PhD student, he interned twice with
Bellcore, where he worked on wireless network models.
In 1996, he interned at MITRE Corporation, where he
was part of the DoD High Level Architecture develop-
ment team. His research interests include parallel and
distributed systems, simulation, and networking. His
email address is <chrisc@cs.rpi.edu>.

MURAT YUKSEL is currently a Post-Doctoral Re-
search Associate at ECSE Department of Rensselaer
Polytechnic Institute (RPI), Troy, NY. He received a
BS degree from Computer Engineering Department of
Ege University, Izmir, Turkey in 1996. He received MS
and PhD degrees from Computer Science Department
of RPI in 1999 and 2002 respectively. His research in-
terests are as network pricing, routing in wireless net-
works, large-scale network simulation, networking with
free-space optics and performance analysis. His email
address is <yuksem@ecse.rpi.edu>.

SHIVKUMAR KALYANARAMAN is an Asso-
ciate Professor at the Department of Electrical, Com-
puter and Systems Engineering at Rensselaer Polytech-
nic Institute in Troy, NY. He received a B.Tech degree
from the Indian Institute of Technology, Madras, India
in July 1993, followed by M.S. and Ph.D. degrees in
Computer and Information Sciences at the Ohio State
University in 1994 and 1997 respectively. His research is
in topics such as congestion control architectures, qual-
ity of service, and free-space optical networking. His
email address is <shivkumar@ecse.rpi.edu>.



