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Abstract

Simulation and Emulation techniques are fundamental to aid the process of large-scale protocol design and network operations.
However, the results from these techniques are often view with a great deal of skepticism from the networking community. Crit-
icisms come in two flavors: (i) the study presents isolated and potentially random feature interactions, and (ii) the parameters
used in the study may not be representative of real-world conditions. The first issue (random isolated results) can be addressed
by large-scale experiment design techniques that extract maximum information and confidence from a minimum number of
carefully designed experiments. Such techniques can be used to find “good” results fast to guide either incremental protocol
design or operational parameter tuning. The second issue (representativeness) is more problematic and relates to formulating
benchmarks that to the greatest possible extent characterize the structure of the system under study. In this paper, we explore
both cases , i.e. large-scale experiment design and black-box optimization (i.e. large-dimensional parameter state space search)
using a realistic network topology with bandwidth and delay metrics to analyze convergence of network route paths in the
Open Shortest Path First (OSPFv2) protocol. By using the Recursive Random Search (RRS) approach to design of experi-
ments, we find: (i) that the number of simulation experiments is reduced by an order of magnitude when compared to
full-factorial design approach, (ii) it allowed the elimination of unnecessary parameters, and (iii) it enabled the rapid
understanding of key parameter interactions. From this design of experiment approach, we were able to abstract away large
portions of the OSPF model which resulted in a execution time improvement of 100 fold.

1 Introduction

Performance analysis techniques are fundamental to the process of protocol design and network operations [1, 2, 3]. The
high-level motivation of these techniques is simple: to gain varying degrees of qualitative and quantitative understanding of
the behavior of a system under-test. A number of specific lower-level objectives include: validation of protocol design and
performance for a wide range of parameter values (parameter sensitivity), understanding of protocol stability and dynamics,
and studying feature interactions between protocols. Broadly, we may summarize the objective as a quest for general invariant
relationships between network parameters and protocol dynamics [1, 2, 4].

Systematic design-of-experiments [1, 5] is a well studied area of statistics and performance analysis offering guidance
in this aspect. A survey of relevant papers in the networking field suggests that such systematic techniques (e.g.: factorial
designs, large-scale search) have not been used in the protocol design process or network operations process except possibly by
measurement specialists. This ad-hoc approach to organizing simulation or testbed experiments has worked when we design and
examine a small number of features, network scenarios and parameter settings. However, this method is likely to be untenable
as we design newer protocols that will rapidly be deployed on a large-scale, or have to deal with a combinatorial explosion of
feature interactions in large operational inter-networks. This point has also been made in a related context by Floyd and Paxson
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[2], where they pinpoint three reasons why it is hard to simulate large networks: scale, heterogeneity and rapid change. The
need for scalable simulation and meta-simulation tools is implicit in Floyd [3]’s statement: “...we can’t simulate networks of
that size (global Internet). And even if we could scale, we would not have the proper tools to interpret the results effectively...”

Beyond mere scaling of simulation platforms, our next need is meta-simulation capabilities, i.e. large-scale experiment
design. Statistical experiment design considers the system-under-test as a black-box that transforms input parameters to output
metrics. The goal of experiment design is to maximally characterize the black-box with the minimum number of experiments.
Another goal is robust characterization, i.e., one that is minimally affected by external sources of variability and uncontrollable
parameters, and can be specified at a level of confidence. Beyond characterization, the methodology aims to optimize the
system, i.e. allows one to find the appropriate input parameter vector that elicits the best output response. The underlying
premise of experiment design is that each experiment (e.g.: a simulation run) has a non-negligible cost.

While regression models for small dimensional parameter spaces can be built using simple factorial methods [1, 5], these
methods do not ramp up to large-scale situations. Usually as the size of a model is increased in either space or number of
parameters, the modeler typically retreats to a sub-goal of characterization, and instead focus on optimization alone (a.k.a.
black-box optimization). As a result, we replace detailed regression-like characterization with heuristic search methods. In
this class of methods, a variety of “exploration” techniques are used to find regions of interest. For example, hill climbing is
used to find the local extrema [6]. Many heuristic search algorithms have been proposed such as multi-start hill-climbing[7],
genetic algorithms[8] and simulated annealing[9]. While these techniques tend toward the global optima in the limit, they do
not have the property of finding good results quickly, i.e. they lack early-stage efficiency. We have recently proposed an efficient
search algorithm (called Recursive Random Search [10]) for efficient large-dimensional heuristic parameter optimization. This
approach thus far has yield very positive results in finding “good” global minima with few simulation runs.

The key focus here is a case study in the application of this meta-simulation technique to examine OSPFv2 convergence
times during network link failures. This study includes OSPF optimizations for sub-second convergence, adapted from [11].
Here, convergence is defined to be time at which all routers in the network have a synchronized routing table or put another
way, a consistent view of the routing tables is shared by all routers. We explore the cases , i.e. large-scale experiment design
and black-box optimization (i.e. large-dimensional parameter state space search) using realistic topologies with bandwidth and
delay metrics to analyze convergence of network route paths in the Open Shortest Path First (OSPFv2) protocol.

By using Recursive Random Search (RRS) approach to design of experiments, we find: (i) that the number of
simulation experiments that must be run is reduced by an order of magnitude when compared to full-factorial design
approach, (ii) it allowed the elimination of unnecessary parameters, and (iii) it enabled the rapid understanding of key
parameter interactions. From this design of experiment approach, we were able to abstract away large portions of the OSPF
model that result in a 100 fold improvement in simulation execution time.

In the next section we describe the term meta-simulation and it’s relation to design of experiments. Then in Section 3, we
present the OSPFv2 model, and the environment in which we generated our results. In Section 4, we explain how Recursive
Random Search allows us to generate more detailed results with fewer experiments. In the final sections, we detail the results
of our experiment designs and what we have learned from them.

2 Meta-Simulation: Large-Scale Experiment Design and Analysis

The purpose of the large-scale experiment design area of our research is to systematically formulate and organize multiple sim-
ulation experiments in the quest of the general invariant relationships between parameters and protocol performance response.
To this end, we being the discussion with an overview of full-factorial design of experiments.

2.1 Overview of Full-Factorial Design of Experiments

Design of Experiments or ”experiment design” is a well known branch of performance analysis, specifically, a sub branch of
statistics [1, 5]. It has been used extensively in areas such as agriculture, industrial process design and quality control [5] , and
has been introduced to the area of practical computer and network systems design by Jain [1]. Statistical experiment design
views the system-under-test as a black-box that transforms input parameters to output metrics. The goal of experiment design is
to maximally characterize (i.e. obtain maximum information about) the black-box with the minimum number of experiments.
Another goal is robust characterization, i.e., one that is minimally affected by external sources of variability and uncontrollable
parameters, and can be specified at a level of confidence.

The underlying premise of experiment design is that each experiment has a non-negligible cost. Simple designs like ”best-
guess” or ”one-factor-at-a-time” designs are less favored in complex situations since they do not provide information about the
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Figure 1: The benchmark Schwefel function as the response surface for a parameter space.

interactions between parameters. Designs like full-factorial and fractional factorial (also called orthogonal designs), appropri-
ately subjected to replication, randomization and blocking are preferred [1, 5]. The usual end-goal of formulating regression
models is to observe the effects of both individual parameters and parameter interactions [1, 5]. Techniques like blocking and
analysis of covariance are used to explicitly handle measurable, but uncontrollable (a.k.a. ”nuisance”) factors. Transforms on
data (e.g., Box-Cox power-law family of transformations) can effectively aid in producing a family of non-linear regression
models and stabilizing the variance of the response [1, 5].

The next step beyond characterization (i.e. developing input-output regression models) is optimization, i.e. to determine
the region in the important factors that leads to best-possible response. The output (i.e. response) in general will have an
unknown surface topology, also known as ”response surface” 1. The approach typically used involves quickly traversing the
surface sequentially (by using lower-order models built with fractional factorial experiments) to reach interesting areas where
more detailed (higher-order) characterization is done.

As well known, one of the significant drawbacks of the full-factorial approach is the exponential in the number of experi-
ments that must be run as a function of the number of data points per parameter. To vastly reduce the number, search algorithms
must be used, such as RRS.

2.2 Overview of The RRS Algorithm

The key idea behind RRS is to maintain the initial efficiency of random sampling by “restarting” it before its efficiency becomes
low. However, unlike the other methods, such as hill climbing, random sampling cannot be restarted by simply selecting a new

1An example response surface is shown in Figure 1
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starting point. Instead we accomplish the “restart” of random sampling by changing its sample space. We perform random
sampling for a number of times, then move or resize the sample space according to the previous samples and start another
random sampling in the new sample space. Given a black-box objective function, a desired optimization process should start
with inspecting macroscopic features of the objective function, and then look further into microscopic features in selected
promising areas. The search process of RRS algorithm is fully consistent with this idea. In the beginning of the search, RRS
performs sampling from the whole parameter space and thus examines the overall structure of the objective function. With the
search continuing and the sample space gradually shrinking, the search gets more and more details of the objective function
until it finally converges to a local optimum.

A stochastic search algorithm usually comprises two elements: exploration and exploitation. Exploration examines the
macroscopic features of the objective function and aims to identify promising areas in the parameter space, while exploitation
focuses on the microscopic features and attempts to exploit local information to improve the solution quickly. Various search
techniques can be used for these two purposes. Since macroscopic features are hard to characterized, unbiased search tech-
niques, such as random search and random walk, are often used for exploration. Some algorithms also try to build a simple
model to characterize the macroscopic features of the objective function and perform exploration based on this model. How-
ever, to choose an appropriate model for a certain problem is very difficult and requires extensive a priori knowledge. Local
search methods are the most commonly used techniques for exploitation, and hence exploitation is also called local phase
in many literature. Accordingly, exploration is also known as global phase. Derivative-based local search methods, such as
quasi-Newton method[12] and deepest descent[13], are very efficient for differentiable objective functions, however, they are
not suitable for many practical problem because of its sensitivity to noise and restriction on the differentiability of objective
functions[14]. Direct search methods, such as Nelder-Mead simplex method[15] and pattern search[16], do not exploit the
derivative of objective functions and are more suitable for the concerned problems.

The RRS algorithm uses random sampling for exploration and recursive random sampling for exploitation. Ideally it should
only execute the exploitation procedure in promising areas. However, it is difficult to determine which areas are more promising
and should be exploited. Many algorithms, such as multistart, do not differentiate areas and hence may waste time in trivial
areas.

For the algorithmic details and implementation of RRS we refer the interested reader to [28].

3 The OSPFv2 Design of Experiments

The goal of our design of experiments was to understand the factors determining the amount of wall-clock time required for a
network of routers to detect and propagate a link state failure. Our experiment is a simulation of a network of Internet routers
all operating the OSPFv2 protocol as described in [22]. For an example router network, we selected the AT&T network, as
described by Rocketfuel data [23]. This network description was determined by using various network probing techniques (i.e,
traceroute). The AT&T network is challenging because of it’s size and complexity.

3.1 OSPFv2

OSPFv2 is a link-state routing protocol designed to be run internal to a single Autonomous System. Each OSPFv2 router
maintains an identical database describing the internal network’s topology (i.e. an Autonomous System (AS)). From this
database, a routing table is calculated by constructing a shortest-path tree. OSPFv2 recalculates routes quickly in the face of
topological changes, utilizing a minimum of routing protocol traffic. OSPFv2 is classified as an Interior Gateway Protocol
(IGP). This means that it distributes routing information between routers belonging to a single Autonomous System. An
example of an Autonomous System is the AT&T network, which is AS number 7018. Routing between ASs is handled by an
external protocol, such as Border Gateway Protocol (BGP) [24].

The OSPFv2 protocol is based on link-state or shortest-path-first (SPF) technology. In a link-state routing protocol, each
router maintains a database describing the Autonomous System’s topology. This database is referred to as the link-state
database. Each participating router has an identical database. Each individual piece of this database is a particular router’s
local state (e.g., the router’s usable interfaces and reachable neighbors). The router distributes its local state throughout the
Autonomous System via flooding. All routers run the exact same algorithm, in parallel. From the link-state database, each
router constructs a tree of shortest paths with itself as the root. This shortest-path tree gives the route to each destination in
the Autonomous System [22]. OSPFv2 routers employ the HELLO protocol for establishing and maintaining communications
with adjacent routers. Adjacencies are established between two routers when a HELLO protocol packet is received by one of
the two routers connected by a link. HELLO packets are then sent at regular intervals between adjacent routers. Upon receiving
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Figure 2: AT&T Network Topology from the Rocketfuel data bank.

a HELLO packet from a neighboring router, an inactivity timer is set for that router. If another HELLO packet is not received
from that router before the timer expires, then the adjacency is broken and that router should no longer be used to route IP
packets.

All of these aspects are modeled. However, multiple areas within a single OSPF domain is not currently modeled. In
the experiments presented here, we configure OSPF to be a single large area. This was done because there is an interest in
determining where OSPF ceases to execute in an efficient manner. This was a sub-goal of our experimentation.

3.2 AT&T Network Topology

For our network topology we selected the AT&T network. Figure 2 shows the core AT&T network topology which contains
11964 router nodes and 7491 links. Internet topologies like the AT&T network are interesting from a modeling prospective
because of their sparseness and power-law structure [23]. This structure allows for a greater range of convergence times
compared to fully connected networks. The OSPFv2 update packets require multiple hops in order to reach the outer edges of
the network.

In performing a breadth-first-search of the AT&T topology, there are eight distinct levels. A number of routers were not
directly reachable and thus were removed. Those routers are likely connected by transit routes. In total there are 3371 backbone
routers and at the successive levels there are 8593 routers. The 4 ms delay that was chosen for the backbone core routers was
in-line with the delays that Rocketfuel had associated with the Telstra topology backbone. An order of magnitude higher delay
was selected for all lower level routers.

The bandwidth and delay for the AT&T topology is as follows:

� Levels 0 and 1 routers: 155 Mb/sec and 4 ms delay

� Levels 2 and 3 routers: 45 Mb/sec and 4 ms delay

� Levels 4 and 5 routers: 1.5 Mb/sec and 10 ms delay

� Levels 6 and 7 routers: 0.5 Mb/sec and 10 ms delay
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Input Parameter Minimum Value Maximum Value

Hello Interval (seconds) 0.5 10.0
Hello Inactivity Interval (seconds) 1.5 8.0
ACK Timer Interval (seconds) 0.5 10.0
Maximum Transmission Unit (bytes) 500 1500
SPF Computation Interval (seconds) 0.5 10.0

Table 1: Random Recursive Search Input Plane.

Our experiments focused on the convergence time metric. We defined convergence to be the time at which all routers on
the network have received an update corresponding to a link status change, and have recomputed their forwarding tables. In
order to clearly state convergence intervals, in our simulations we have only a single link state failure per simulation and all of
the OSPFv2 routers were started in a converged state. We defined the input plane to this experiment design to be composed of
the HELLO interval, HELLO inactivity interval, SPF computation interval, ACK interval and maximum transmission unit. The
response plane is the convergence time from the link state failure.

The goal for our design of experiments was to adapt some of the convergence optimizations in [11] for the IS-IS protocol
to the OSPFv2 RFC [22] protocol. IS-IS is a link state protocol for Cisco routers. Suggestions for lowering convergence times
were: to queue HELLO packets in front of data packets, use a modern shortest-path-first (SPF) algorithm, and to give a higher
priority to link state packet (LSP) propagation over SPF computation. We took the following steps to adapt the optimizations.

We did not model the data plane in our OSPFv2 routers so that HELLO packets would always be at the front of the queue.
It is still possible for other control plane packets to queue in front of the HELLO packets. To facilitate a higher priority
for link state propagation over SPF computation, we remove the LSP propagation timer from the OSPFv2 protocol. Now,
LSP propagation will always occur immediately, and the SPF computations will always occur later. In addition, modern SPF
computations would only add a small amount of time to overall convergence interval. We modeled this by adding in the amount
of time stated by [11] for a topology of our size.

4 Recursive Random Search Results

As previously discussed, Recursive Random Search (RRS) is a heuristic search algorithm for black-box optimization problems.
This algorithm is specifically designed to optimize dynamic network protocol parameterizations with an emphasis on obtaining
”good” solutions within a limited time frame. RRS does not attempt to find a full optimization of the parameter space. The
RRS algorithm maintains the high efficiency property of random sampling by constantly restarting random sampling but with
adjusted parameter spaces. Because it shares this property with random sampling, it is also highly robust to the effect of
random noises in the objective function. It also performs efficiently when handling an objective function that contains negligible
parameters.

For the recursive random search algorithm we chose a wide range of input parameters, as shown in Table 1. We allowed
RRS to search for 250 experiment runs, specifying a desired confidence level of 99%. RRS generated a convergence minimum
after only 7 executions of 4.07 seconds. We fitted a linear regression model to our data using a tool called R [25], and generated
the co-efficients shown in Table 2. After analyzing the variance on the inputs, we found the parameters that had the greatest
impact on the model to be the HELLO packet interval, HELLO inactivity timer, and the SPF computation interval.

After considering the simulation model, we realized that the HELLO polling interval is set to be the HELLO packet interval
multiplied by the HELLO inactivity interval. These two parameters are have an impact on convergence because they determine
the time to detect a link state failure. The other factor of convergence time is the time to propagate the link state failure to the
remainder of the routers in the network. The update propagation time is defined by flooding packets throughout the network.
The router which detects the failure informs all remaining neighbors, who notify their neighbors, and so on, until eventually
all routers in the network have received the update. The propagation delay on the updates is bounded by the amount of time it
takes for the update to travel across the diameter of the network. Recall also from our definition of convergence that each router
must have also recomputed their forwarding tables. So the convergence time is compounded by either how long it takes for the
final router to update it’s table, or by the longest SPF computation interval.

After analyzing the variance we fitted a new linear regression model to the SPF computation interval and the cross between
the HELLO packet interval and the HELLO inactivity interval, as shown in Table 4. This regression produced an adjusted
R-squared value of 98%. In order to verify the accuracy and correctness in our model we created a scatter plot of the errors
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Residuals

Min 1Q Median 3Q Max
-15.7286 -1.0311 0.1805 1.4811 11.5511

Coefficients

Estimate Std. Error t value
��������� 	
� �

(Intercept) -19.838684 1.547959 -12.816 ��
��������
HELLO Packet Interval 4.426648 0.121561 36.415 ��
��������
HELLO Inactivity Interval 4.507337 0.169302 26.623 ��
��������
ACK Interval 0.089194 0.113251 0.788 0.432
MTU -0.001568 0.001146 -1.368 0.173
SPF Computation Interval 0.717926 0.121500 5.909 1.16e-08

Residual standard error: 4.17 on 243 degrees of freedom
Multiple R-Squared: 0.912, Adjusted R-squared: 0.9102
F-statistic: 503.5 on 5 and 243 DF, p-value: � 2.2e-16

Table 2: RRS Linear Regression Model Output generated by R.
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Figure 3: RRS Linear Regression Model Scatter and Q-Q Plots.

versus predicted responses. The scatter plot did not show any trends in the data. The next step in our verification was to create
a quantile-quantile plot of the residual errors. We observe a linear relationship between sample error and theoretical. From
Figure 3, the linear model assumptions of normality appear to be valid.

In order to gain more detail about the interesting parts of the design, we re-executed the model a second time with only
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Input Parameter Minimum Value Maximum Value

HELLO Packet Interval (seconds) 0.5 10.0
HELLO Inactivity Timer (seconds) 1.5 8.0

Table 3: Re-parameterized Random Recursive Search Input Plane

Residuals

Min 1Q Median 3Q Max
-18.6508 -0.6173 0.23916 0.5768 5.3645

Coefficients

Estimate Std. Error t value
������� � 	
� �

(Intercept) -0.31820 0.54756 -0.581 0.5617
HELLO packet Interval -0.19646 0.11229 -1.750 0.0814
HELLO Inactivity Interval 0.13986 0.13361 1.047 0.2962
SPF Computation Interval 1.0743 0.2125 5.055 5.27e-06
HELLO interval � HELLO inactivity 0.92009 0.02436 37.773 ��
 �������

Residual standard error: 1.915 on 245 degrees of freedom
Multiple R-Squared: 0.9853, Adjusted R-squared: 0.9851
F-statistic: 5466 on 3 and 245 DF, p-value: � 2.2e-16

Table 4: Re-parameterized Linear Regression Model Output generated by R

Input Parameter Minimum Value Maximum Value

HELLO Packet Interval (seconds) 0.03 1.0
HELLO Inactivity Interval (seconds) 1.5 2.0

Table 5: Re-scaled Random Recursive Search Input Plane

those input parameters. Specifically, we used only the HELLO packet interval, and the HELLO inactivity interval in the same
ranges as shown in Table 3. Again, we allowed RRS to search for 250 iterations and with a confidence interval of 99%. This
experiment generated a convergence minimum after only 129 executions of 0.93 seconds.

In this series of experiments, a sub-second range for the convergence interval is observed. Figure 4 shows that the HELLO
packet interval and the HELLO inactivity interval form a plane with one corner tilting downward toward the smaller values.
This low corner is anchored by the best convergence result given by RRS. We report a clustering effect occurring on the graph,
which is attributed to the RRS algorithm centering upon a given input. It appears that RRS was successful in isolating the
HELLO packet interval and the HELLO inactivity interval at the low end of their ranges.

The initial goal of our design was to determine if we could adapt some of Jacobsen’s ideas to the OSPFv2 protocol and
achieve convergence times on the order of magnitude in the tens of milli-seconds. Having isolated the effective parameters of
the simulation model, we being to see points in the sub-second range. So we re-scaled the experiment into the range of the
input values that generated those results. We noticed that the HELLO packet interval was in the range suggested by Jacobsen.
We reduced the range for the input parameters as shown in Table 5 and Figure 5 shows the results of this experiment. All of the
convergence values are below a second, and the best values are in range of tens of milli-seconds.

5 OSPF Model Critical Path Analysis

Berry and Jefferson [26], developed a technique called Critical Path Analysis to determine the optimal parallel simulation
execution time. Armed with the results from RRS, we apply this technique here to examine what the critical path for OSPF
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Re-parameterized Recursive Random Search
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Figure 4: Re-parametrized Random Recursive Search.

convergence within the context of our model.
After examining the results from our designs, we observed that the two main components of convergence are detection

and propagation. Detection is simply the amount of time that elapses between a link state change and the time at which
the inactivity timer fires. The second component, propagation is determined by the longest path the link state update travels
through the network. The longest path is not immediately determined by the number of hops between the originating router
and the final router to receive the update. It is possible for an update to take many hops over high-speed links and still not be
on the longest path. Conversely, it is possible to take only a small number of hops over very low speed links and be on the
longest path. Realizing that these two factors have the highest impact on convergence time, we observed that to accurately
model convergence in any network, only the set of nodes which encompass the longest path through the network require
simulation. This observation has been used on other OSPF optimizations [27].

We simulated the AT&T network which contained almost 12,000 routers. The model was instrumented so that each router
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Re-scaled Recursive Random Search
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Figure 5: Re-scaled Random Recursive Search.

would keep track of which routers they received link state updates from. Once the update reached the final router in the network,
we then backtracked this path to find the longest path in the network.

In order to validate the modeling optimization, we computed a full factorial design of the VSNL, India topology. This
topology contained only 291 routers, which allowed us to compare the optimization to the full model simulation results. Table
5 shows the results of ten of those experiments runs. The optimization results generated exactly the same output for the
optimization as we would have received had we modeled the entire topology.

Simulations on the full AT&T network required anywhere from one half hour to initialize to several hours depending on
whether the routing tables need o be computed. In addition to the time required to initialize the simulation, execution time took
on average one second of wall clock time to simulate one second of simulated time. In other words, to simulate an hour of
OSPFv2 traffic required almost one hour of real time.

After determining this optimization, we computed the longest paths through the AT&T network for each of the updates

10



Validation of Optimization using the VSNL (India) Network Topology

Experiment HELLO Interval HELLO Inactivity ACK MTU SPF Non-optimized Optimized

1 0.5 1.5 0.5 500 0.5 0.895151 0.895151
2 0.5 4.75 0.5 500 0.5 2.707651 2.707651
3 0.5 8 5.25 1000 10 13.520151 13.520151
4 5.25 1.5 0.5 1000 5.25 9.207651 9.207651
5 5.25 4.75 5.25 1000 0.5 23.488901 23.488901
6 5.25 1.5 10 1000 10 13.957651 13.957651
7 5.25 8 10 1500 10 46.770151 46.770151
8 10 4.75 5.25 1000 0.5 44.270151 44.270151
9 10 4.75 0.5 500 5.25 49.020151 49.020151
10 10 4.75 10 1500 10 53.770151 53.770151

Input Parameter Minimum Value Maximum Value

Hello Interval (seconds) 0.05 10.0
Hello Inactivity Interval (seconds) 1.05 8.0
ACK Timer Interval (seconds) 0.5 5.0
Maximum Transmission Unit (bytes) 500 1500
SPF Computation Interval (seconds) 0.5 5.0

Table 6: Full Factorial Model Input Plane.

generated from a single link failure. These paths we 11 and 12 hops long respectively, and the paths only varied at a single
node. This means that in order to simulate the entire AT&T network for convergence times only required actually simulating
13 total routers. Obviously, this reduced the time required to run the simulation to the order of seconds. At this stage, the
simulation requires a second or so to initialize, and on an average execution was complete in 0.0006 seconds. The simulation
results we presented in this paper required 12,000 events to generate the convergence times in a simulation of 100 seconds.

Using this optimized model, we are now able to compare full-factorial experiment approach to RRS.

6 Analysis and Comparison of RRS to Full Factorial

In the previous section we showed how meta-simulation can reduce the amount of time to acquire meaningful results from our
models by employing algorithms such as Recursive Random Search. Using RRS, we were able to generate all of our results
in only 750 experiments, or simulation executions. However, RRS had not sampled a large area of the state space, so how
confident can we be in the results?

We computed a full factorial model in order to validate the results we gained. We used the same 5 input parameters as in
the RRS experiments, and 7 levels as shown in Table 6. In Table 7, we fitted a linear regression model to the data and found
that the same three input parameters had the most effect on the model. The full factorial model produced an adjusted R-squared
value of 85%. We were confident that RRS was properly modeling the same parameter space as we would have explored had
we done a more detailed full factorial. Plotting the same two most effective parameters as we modeled in RRS, the scatter plot
did not show any trends in the data, as shown in Figure 6. The final step in our verification was to create a quantile-quantile
plot of the residual errors. We observed a linear relationship between sample error and theoretical. From Figure 6, the linear
model assumptions of normality appear to be valid for the full factorial model.

This full factorial design generated 16,807 experiment runs, 20 times more than the RRS design, and yielded less infor-
mation in the areas that we were interested in studying. Figure 7 illustrates the amount of detail generated by RRS versus the
Full Factorial design for convergence times in the sub-second range. RRS also generate a ”good” value for the convergence
time 0.11 seconds, which was within 7% of the Full Factorial design best value. While we could have generated a full factorial
design using the final RRS input parameter ranges, we would not have had the benefit of the knowing that was in fact the area of
interest, beyond our ability to analyze the system. In fact, we purposely chose the full factorial design presented here because
we wanted to be certain about the nature of the system. It was necessary to explore a large range in order to validate our results
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Figure 6: Full Factorial Design Scatter and Q-Q Plots.

Residuals

Min 1Q Median 3Q Max
-16.567 -4.262 0.523 3.762 15.306

Coefficients

Estimate Std. Error t value
��������� 	
� �

(Intercept) -2.132e+01 2.472e-01 -86.26 ��
��������
HELLO Packet Interval 3.844e+00 1.626e-02 236.49 ��
�� �����
HELLO Inactivity Interval 4.690e+00 2.376e-02 197.41 � 
 � �����
ACK Interval -1.528e-17 1.626e-02 -9.40e-16 1
MTU -1.335e-19 1.544e-04 -8.64e-16 1
SPF Computation Interval 9.796e-01 1.626e-02 60.26 � 
 � �����

Residual standard error: 6.674 on 16801 degrees of freedom
Multiple R-Squared: 0.8543, Adjusted R-squared: 0.8543
F-statistic: 1.971e+04 on 5 and 16801 DF, p-value: � 2.2e-16

Table 7: Full Factorial Model Output generated by R.

in the RRS design.
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Figure 7: Full Factorial Design vs Random Recursive Search. The x-axis is convergence time (CT) and the y-axis is inactivity
time interval.

7 Conclusions

In this paper, we demonstrate the efficacy of the Recursive Random Search (RRS) technique when applied to large-scale meta-
simulation of OSPF routing networks. We found that:
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1. the number of simulation experiments is reduced by an order of magnitude when compared to full-factorial design
approach,

2. this approach enabled the rapid elimination of unnecessary parameters, and

3. RRS enabled the rapid understanding of key parameter interactions.

By using RRS we made the interesting observation that when modeling only OSPF control-plane dynamics we were able to
shrink the number nodes down to that subset that was only needed for determining convergence times. This reduction resulted
in models that execute 100 times faster than their full topology counterparts.

In the future, we plan to leverage our experience here to examine potential optimization to the OSPF protocol that may
decrease convergence times over what has been previously reported.
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