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Abstract— This paper generalizes the TCP Vegas congestion avoidance
mechanism and proposes a model to useaccumulation, buffered packets
of a flow inside network routers, as a congestion measure on which a
family of congestion control schemes can be derived. We call this model
accumulation-based congestion control (ACC). We use a fluid analysis to de-
fine accumulation and develop a general control algorithm which includes
a setof control policies with the proportional fairness and global stability.
The ACC model serves as a reference for packet network implementations.
We show that TCP Vegas is one possible scheme which fits into the ACC
model. It is well known that Vegas suffers from round trip propagation de-
lay estimation error and reverse path queuing delay. We therefore design
a new scheme called Monaco which, with two FIFO queues at each router,
solves these problems by employing anout-of-band receiver-basedaccumu-
lation estimation. Analysis and simulation comparisons between Vegas and
Monaco demonstrate the effectiveness of the Monaco accumulation estima-
tor. We use ns-2 simulation and Linux kernel v2.2.18 implementation exper-
iments to show that the static and dynamic performance of Monaco matches
the theoretic results. Several key issues regarding the ACC model in gen-
eral, such as the scalability of router buffer requirement and its possible
solutions, are discussed.

I. I NTRODUCTION

Much research has been conducted toward achieving stable,
efficient and fair operation of packet-switching networks. TCP
congestion control [8] is an end-to-end mechanism which has
been critical for the stability of the Internet. It detects network
congestion by inferring packet loss assumed to be caused only
by congestion. As an alternative TCP implementation, Vegas [4]
uses another measure called backlog, the estimated number of
buffered packets inside network routers along the path, to detect
network congestion.

Unfortunately Vegas has technical problems inherent to its
backlog estimator. There has been a substantial body of work on
these issues. For instance, Mo et al [16] (and references therein)
pointed out Vegas’ drawbacks of estimating round trip propaga-
tion delay incorrectly and possible persistent congestion. Low
and Peterson [14] developed an optimization model for Vegas
and suggested to improve Vegas performance by using an active
queue management mechanism [1]. But none of them provides
a solution to estimate backlog unbiasedly in case of round trip
propagation delay estimation error or reverse path congestion.

In this paper, we develop a systematic model to generalize the
Vegas congestion avoidance mechanism and offer a solution to
the above problems. Formally, we define in the fluid model the
backlog (hereafter we callaccumulation) as a time-shifted, dis-
tributed sum of the queue contributions of a flow at a sequence
of FIFO routers. We show that flow rates can be controlled by
controlling the accumulations in a distributed manner. We study
a family of closed-loop congestion control schemes based upon
accumulation estimation, instead of depending on packet loss

for congestion detection.
In Section II we first develop the key concepts and propose

a general control algorithm which is globally stable and steers
the network to the equilibrium for this accumulation-based con-
gestion control (ACC) model. A range of traditional algorithms
including additive-increase/additive-decrease [5] [4] and other
algorithms [15] can be used in the ACC model. Detailed proofs
of the fairness and stability are given in the technical report [18].

Within the ACC model a family of different schemes make
choices in each of the ACC components and put together the en-
tire scheme. We describe two packet network example schemes
in Section III. We demonstrate that the TCP Vegas [4] conges-
tion avoidance mechanism attempts to estimate accumulation,
and fits into the ACC family. But Vegas often fails because it
cannot provide an unbiased accumulation estimation. Then we
develop a new scheme called Monaco that emulates the ACC
fluid model in a better way. Particularly, Monaco solves the
above problems of Vegas by employing anout-of-band receiver-
basedaccumulation estimation. In Section IV we use simula-
tions to show the static and dynamic performance of the Monaco
scheme, which is also validated by a set of experiments based on
a Monaco implementation in Linux kernel v2.2.18. We conclude
this paper by suggesting future research issues in Section V.

II. FLUID MODEL

In this section we describe the ACC model. We define the
accumulation concept using a bit-by-bit fluid model and use ac-
cumulation to control network congestion. We develop a general
control algorithm of global stability for each flow to achieve its
target accumulation.

A. Accumulation

Consider an ordered sequence of FIFO nodesfR1; : : : ; RJg
along the path of aunidirectionalflow i in Figure 1(a). The flow
comes into the ingress nodeR1 and, after passing some interme-
diate nodesR2; : : : ; RJ�1, goes out from the egress nodeRJ

1.
At time t in any nodeRj (1 � j � J), flow i’s input rate is
�ij(t), output rate�ij(t). The propagation delay from nodeRj

to nodeRj+1 is dj .
We define the arrival curveAij(t) of a flow i at a nodeRj

as the number of bits from that flow which have cumulatively

1In practiceR1/RJ can be mapped as source/destination to form end-to-end
control loop or ingress/egress edge router to form edge-to-edge control loop.
Here we focus on the ACC model itself. We’ll discuss architectural issues in a
separate paper.
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arrived at the node up to timet, and similarly the service curve
Sij(t) as flowi’s bits cumulatively serviced at nodeRj , drawn
in Figure 1(c). For any FIFO nodeRj , bothAij(t) andSij(t)
are continuous2 and non-decreasing functions. If there is no
packet loss, then at any timet, by definition, flowi’s buffered
bits qij(t) in nodeRj is the difference betweenAij(t) and
Sij(t), as shown in Figure 1(c):

qij(t) = Aij(t)� Sij(t): (1)

We compute the change of flowi’s queued bits at nodeRj

�qij(t) = qij(t+�t)� qij(t)

= [Aij(t+�t)� Aij(t)]� [Sij(t+�t)� Sij(t)]

= [�ij(t;�t)� �ij(t;�t)]��t

= Iij(t;�t)�Oij(t;�t) (2)

where Iij(t;�t) and Oij(t;�t) are incoming and outgoing
bits of flow i at nodeRj during the time interval [t; t + �t];
�ij(t;�t) and�ij(t;�t) are the correspondent average input
and output rates, respectively.

Now consider the flow’s queuing behavior at asequenceof
FIFO nodes. Reasonably, suppose data link layer transmission
could be modelled as a line, then flowi’s input rate�i;j+1(t) at
a nodeRj+1 is a delayed version of its output rate�ij(t) at the
upstream neighbor nodeRj , namely

�ij(t� dj) = �i;j+1(t): (3)

Define flow i’s accumulation as a time-shifted, distributed
sum of the queued bitsin all nodes along its path from the ingress
nodeR1 to the egress nodeRJ , i.e.,

ai(t) =

JX
j=1

qij(t�

J�1X
k=j

dk) (4)

which is shown as the solid slant line in Figure 1(b). Note this
definition includes only those bits backlogged inside the node
buffers, not those stored on transmission links. Using it as a ref-
erence we provide an unbiased accumulation estimator in Sec-
tion III-B.1. We define flowi’s ingress and egress rates as those
at the ingress and egress nodes, respectively:

�i(t) = �i1(t)

�i(t) = �iJ (t): (5)

2Strictly this is true if we accept that a bit is infinitely small.

Using Equations (2)–(5), we calculate flowi’s accumulation
change as follows:

�ai(t) = ai(t+�t)� ai(t)

=

JX
j=1

�qij(t�

J�1X
k=j

dk)

= [�i(t� dfi ;�t)� �i(t;�t)]��t

= Ii(t� dfi ;�t)�Oi(t;�t) (6)

wheredfi =
PJ�1

j=1 dj is the forward direction propagation de-
lay of flow i from nodeR1 all the way down to nodeRJ . Sim-
ilar to Equation (2),Ii(t � dfi ;�t) andOi(t;�t) are flow i’s
bits coming into and going out of network during twodiffer-
ent time intervals but both of length�t; while �i(t � dfi ;�t)
and�i(t;�t) are the correspondent average ingress and egress
rates. The result, illustrated in Figure 1(b), shows the change of
a flow’s accumulation on its path is only related to its input and
output at the ingress and egress nodes. Further, this means it is
possible to control accumulation at only the ingress and egress
nodes.

For one FIFO node, it’s straight-forward to control flow rates
by controlling the number of queued packets [6], since packets
buffered decide service received if the scheduling discipline is
FIFO. Due to the similarity of Equations (2) and (6), for a se-
quence of FIFO nodes, we aim tocontrol flow rates by control-
ling the accumulations, i.e., keeping a steady state accumulation
for each flowinside network. Note Equations (2) and (6) have
a significant difference of the propagation delaydfi , which is a
constant as long as flowi’s route is fixed.

B. Queuing and Optimization Analysis

To facilitate better understanding of using accumulation as
the steering parameter for congestion control, in [18] we pro-
vide physically a simple queuing analysis and mathematically
an optimization theory to demonstrate thesteady statepicture by
leveraging results from [9] [13] [15]. It turns out that, by using
accumulation as a steering parameter to control flow rates, the
network is actually doing a nonlinear optimization which steers
the network to an equilibrium of proportionally fair bandwidth
allocation.

C. Control Algorithm

In the ACC model we use accumulation to measure network
congestion as well as to probe available bandwidth. If accumu-
lation is low, we increase congestion window; otherwise, we de-
crease it to drain accumulation. Specifically, we try to maintain
a constant target accumulationa�i for each flowi by applying a
general ACC control algorithm:

_wi(t) = �� � f(ai(t)� a�i ) (7)

wherewi(t); ai(t) anda�i are respectively the congestion win-
dow size, instantaneous accumulation and target accumulation
value of flow i, f(�) is a strictly increasing function with a
unique root 0 (i.e., onlyf(0) = 0) and� > 0.
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Obviously Equation (7) includes asetof algorithms. The rea-
son we present a general algorithm here is thatall instance algo-
rithms which fit into Equation (7) share a common steady state
property of proportional fairness, as shown in the next subsec-
tion.

By choosing differentf functions, we instantiate the above
general algorithm into a set of control policies including the
well-known additive-increase-additive-decrease (AIAD) policy
[5] popularized by TCP Vegas [4], an algorithm proposed by Mo
and Walrand [15], and another proportional control policy.

D. Properties

For any flow control algorithm, major theoretic concerns are
its stability, fairness and queue bound. Stability is to guarantee
equilibrium operation of the algorithm. Fairness, e.g., max-min
[3] and proportional fairness [9], determines the allocation of
network bandwidth among competing flows. Queue bound pro-
vides an upper limit on the router buffer requirement, which is
important for real deployment. We prove in Appendix that

Proposition 1: The flow control algorithm given by Equation
(7) is globally stable and weighted proportionally fair.

Even we keep a finite accumulation inside network for every
flow, the steady state queue at a node scales up to the number
of flows passing that bottleneck. In practice, we need to provide
more buffers to avoid packet loss and make the control algorithm
robust to such loss (see Section III-B). Another way to alleviate
this problem is to control aggregate flow, instead of individual
source-destination flow. More details on buffer size scalability
are discussed in Section V.

Interestingly, as Proposition 1 states, different ACC control
policies can achieve the same fairness property, as long as they
fit into Equation (7). Thus to achieve a particular steady state
performance, we have the freedom to choose from a set of con-
trol policies. In this sense, we regardACC flow control as a two-
step issue of setting a target steady state allocation (fairness)
and then designing a control policy (stability and dynamics) to
achieve that allocation.

III. ACC SCHEMES

In this section we instantiate the ACC fluid model into two
example schemes for packet-switching networks. Firstly we
show that TCP Vegas [4] tries to estimate accumulation and fits
into the ACC model. Unfortunately Vegas often fails to provide
an unbiased accumulation estimation. Then we design a new
scheme called Monaco which solves the estimation problems of
Vegas. Monaco also improves the congestion response by uti-
lizing the value of estimated accumulation, unlike Vegas’ AIAD
policy which is possibly slow in reacting a sudden change in
demands or network capacity. By comparing Monaco and Ve-
gas via analysis and simulation we reach two observations: It is
effective to employ 1) areceiver-basedmechanism and, 2) the
measurement offorward path queuing delay, instead of round

trip queuing delay as in Vegas, to estimate accumulation unbi-
asedly. The scheme design is guided by the following goals:

Goal 1: Stability: The scheme should converge to an equilib-
rium in a reasonably dynamic environment with changing de-
mands or capacity;
Goal 2: Proportional Fairness: Given enough buffers, the
scheme must achieve proportional fairness and operate without
packet loss at the steady state;
Goal 3: High Utilization: When a path is presented with suf-
ficient demand, the scheme should converge around full utiliza-
tion of the path’s resources;
Goal 4: Avoidance of Persistent Loss: If the queue should
grow to the point of loss due to underprovisioned buffers, the
scheme must back off to avoid persistent loss.

A. Vegas

Vegas [4] was proposed as an alternative TCP implementa-
tion. It includes several modifications over TCP Reno [8]. How-
ever, we focus only on its congestion avoidance mechanism,
which fits well as an example ACC scheme.

The Vegas estimator for accumulation was originally called
“backlog”, a term we use interchangeably in this paper. For
each flow, the Vegas estimator takes as input an estimate of its
round trip propagation delay, hereafter calledrttp (or basertt in
[4] [16]). Vegas then estimates the backlog as

âV = (
cwnd

rttp
�

cwnd

rtt
)� rttp (8)

=
cwnd

rtt
� rttq (9)

wherecwnd=rtt is the average sending rate during that round
trip time (RTT) andrttq = rtt � rttp is the round trip queuing
delay. According to Little’s Law,̂aV is the backlogged pack-
ets inside bottleneck routers. Ifrttp is accurately available and
there is no reverse path queuing delay, thenâV provides an un-
biased estimation for accumulation.

Vegas estimates therttp as the minimum RTT measured so
far. So, if the queues drain often, it is likely that each control
loop will eventually obtain a sample that reflects therttp. The
Vegas estimator is used to adjust its congestion window size,
cwnd, so that̂aV approaches a target range of"1 to "2 packets.
More accurately stated, the sender adjustscwnd using:

cwnd(n+ 1) =

�
cwnd(n) + 1 if âV < "1
cwnd(n)� 1 if âV > "2

(10)

where"1 and"2 are set to 1 and 3 packets, respectively. Vegas
has several well-known problems when there existsrttp esti-
mation errors or reverse path congestion, violating goals listed
above.

B. Monaco

Monaco emulates the accumulation defined by Equation (4)
and implements a receiver-based out-of-band measurement. It
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is immune to issues such asrttp sensitivities and reverse path
congestion and robust to control and data packet losses. We
describe firstly the Monaco accumulation estimator and then its
congestion response policy.

B.1 Monaco: Congestion Estimation Protocol

According to its definition, accumulation of a flow is the sum
of its queued bits at a sequence of FIFO routers, including both
ingress and egress nodes as well as intermediate routers. We
aim to eliminate the computation at intermediate routers to keep
them simple. Actually it is impossible forall nodesRj (1 � j �

J) to compute synchronously their queuesqij(t �
PJ�1

k=j dk)
since no common clock is maintained.

To estimate accumulation without explicit computation at in-
termediate routers, Monaco generates a pair of back-to-back
control packets once per RTT at the ingress node as shown in
Figure 2. One control packet is sent out-of-band (OB) and the
other in-band (IB). The OB control packet skips queues in the in-
termediate routers by passing through a separate dedicated high
priority queue. Assuming the OB queues to be minimal as only
other OB control packets share them, such packets experience
only the forward propagation delaydfi . The IB control packet
goes along with regular data packets and reaches the egress node
after experiencing the current queueing delay in the network.
The time interval between the OB and IB control packets mea-
sured at the egress node is a sample of the current forward trip
queuing time (fttq). Considering a network with enough buffers
where there is no packet loss, if flow rates at all routers do not
change dramatically, then by Little’s Law, the number of data
packet arrivals at the egress node after the OB control packet,
but before the IB control packet equals the accumulation. In
Figure 2, the dashed lines cut by the forward direction OB con-
trol packet are those data packets, with each cut happening in
the routerRj at timet �

PJ�1

k=j dk; 8j 2 f1; :::; Jg. Also ob-
serve in the figure that we can measurertt at both ingress and
egress nodes andrttp at the egress node.

In a real packet network there are some constraints which
might introduce systematic accumulation estimation errors. For
instance, beyond propagation and queuing delays, a packet also
experiences switching and transmission delays not considered in
the fluid model. But since both OB and IB control packets are
of the same size (32 bytes) and sent out back-to-back from the
ingress node, their switching and transmission delays cancel out.

Another aspect is non-preemptive packet forwarding. When an
OB control packet arrives at a router, it has to wait if there is
another packet being serviced. So the delay experienced by the
OB control packet is generally not constant and larger than the
propagation delaydfi , so the measured time intervalfttq seems
less than its true value. But as shown in Figure 2, if we justcount
the number̂aM of data packet arrivals in that interval, we can at
least alleviate the effect of noises included in the time interval
fttq, as long as priority queue and FIFO properties are true.

Besides, we need to consider the effect of traffic burstiness.
When we have a congestion window sizecwnd, we also com-
pute a rate based RTT estimation:rate = cwnd=rtt. We use
this rate value to smooth incoming traffic and thus alleviate the
effect of burstiness.

In practice, both data and control packets maybe lost because
of inadequate router buffer size or too many competing flows.
To enhance the robustness of Monaco estimator when data pack-
ets are lost, the IB control packet, identified by a control packet
sequence number, carries a byte count of the number of data
bytes sent during that period. If the egress node receives fewer
bytes than were transmitted, then packet loss is detected. The
forward OB control packet carries the same control packet se-
quence number as the associated IB control packet. Monaco
sends congestion feedback on the reverse OB control packet, in
which there is one additional piece of information: congestion
feedback, i.e., a flag denoting whether the congestion window
cwnd should increase, decrease, or decrease-due-to-loss. The
subsequent pair of forward control packets is generated after the
arrival of the reverse OB control packet at the ingress node.

If either control packet is lost, then the ingress node times out
and sends a new pair of control packets with a larger sequence
number. The timer for control packet retransmission is similar
to that of TCP [8]. These routine reliability enhancements are
similar to the Congestion Manager protocol [2].

B.2 Monaco: Congestion Response Protocol

As already noted, we use accumulation to measure network
congestion and to probe available bandwidth. We keep accumu-
lation constant for every flow by increasing/decreasing its con-
gestion window when the accumulation is lower/higher than the
target value.

For Monaco we choose a window-based instead of rate-
based control policy because the former is more conservative
and rate is hard to accurately measure in practice. Since pure
window-based control policy might introduce burstiness we use
rate-modulated windowcontrol to smooth incoming traffic into
packet networks by employing a token bucket shaper with a rate
value ofcwnd/rtt.

We provide below the Monaco’s proportional control:

cwnd(n+ 1) = cwnd(n)� � � (âM � a�) (11)

whereâM is the Monaco accumulation estimation,a�, set to 3
packets, is a target accumulation in the path akin to"1 and"2
used by Vegas,� is set to 0.5, andcwnd(n) is the congestion
window value at a control periodn.

Monaco improves Vegas’ control policy by utilizing the value
of accumulation estimation fedback by the reverse OB control
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packet, instead of regarding it as a binary information (i.e., “how
congested”, instead of “congested or not”). If the congestion
feedback is decrease-due-to-loss, Monaco halves the congestion
window size as in TCP Reno.

C. Comparisons between Vegas and Monaco

Vegas and Monaco aim to accurately estimate accumulation,
assuming different support from network routers. Ifrttp can
be obtained precisely and there is no reverse path congestion,
then by Little’s law, both of them give unbiased accumulation
estimation on average. But in practice Vegas often has severe
problems in achieving this objective; Monaco solves known es-
timation problems.

Vegas estimator operates atsenderside. According to Equa-
tion (8) it actually calculates:

âV =
cwnd

rtt
� ( rtt� rttp ) (12)

=
cwnd

rtt
� ( tfq + tbq ) (13)

wheretfq andtbq are forward and reverse direction queuing de-
lays, respectively. The above equations imply that Vegas may
suffer from two problems: 1) By Equation (13), if there ex-
ists reverse direction queuing delay (because of reverse direc-
tion flows), i.e.,tbq > 0, then Vegas overestimates accumulation.
This leads to underutilization and is hard to handle because there
is no control over reverse direction flows. To show this effect we
use a simple dumb-bell topology with the bottleneck of 45Mbps
forward direction bandwidth shared by 7 forward direction flows
and 7 reverse flows. We change the bottleneck’s reverse direc-
tion bandwidth from 5Mbps to 45Mbps. As shown in [18], Ve-
gas utilization is only 10%� 60%. 2) By Equation (12), ifrttp
is overestimated, then Vegas underestimates accumulation. This
leads to extra steady queue in bottlenecks or even persistent con-
gestion. Results for a single bottleneck of 10Mbps bandwidth
and 12ms delay which is used by one flow employing Vegas and
Vegas-k show that Vegas operates with very low utilization of
less than 10% and Vegas-k operates with queue increase until
loss occurs (see [18]).

Due to the above problems, Vegas falls short of qualifying as
an effective ACC scheme, because we expect to achieve conges-
tion control by maintaining constant accumulation for each flow
at thesteady state! In such a case, the sum of accumulations
would lead to a non-zero steady state queue which is not likely
to drain, and hence dynamicrttp estimation would be impos-
sible with in-band control packets. In summary, the sensitivity
issues with Vegas point to afundamentalproblem with the in-
band techniques for accumulation estimation.

Monaco solves both problems. Monaco estimator operates at
receiverside and thus excludes the effect of reverse path con-
gestion. By counting the data packets arriving between in- and
out-of-band control packets, Monaco does not explicitly need to
estimate the forward direction propagation delaydfi . (Actually
the out-of-band control packets provide implicitly this value.)
More specifically, since Monaco implements a rate-paced win-
dow control algorithm to smooth out incoming traffic, the time

difference between the in- and out-of-band control packets gives
a sample of the current forward direction queuing delayfttq. By
Little’s law, the number of data packets arriving during this time
period is the backlogged packets along the path. Using out-of-
band control packet also makes Monaco adaptive to re-routing
since it is sent every RTT. Simulation results in [18] show that,
after a brief transient period, Monaco operates at around 100%
utilization with no packet loss. So it’s immune torttp estimation
inaccuracy and reverse path congestion.

The above comparisons between Vegas (including Vegas-k)
and Monaco suggest two important observations on how to es-
timate accumulation unbiasedly: 1) The key is to measurefor-
ward direction queuing delay(via out-of- and in-band control
packets in Monaco), instead of round trip queuing delay (as in
Vegas); And consequently, 2) it’s better to measure accumula-
tion at thereceiver side, otherwise it’s difficult to get rid of the
effect of reverse path queuing delay which is hardly under for-
ward direction congestion control.

IV. SIMULATION AND IMPLEMENTATION EXPERIMENTS

In the last section we have shown that Monaco performs bet-
ter than Vegas, so we focus on evaluating Monaco scheme by
ns-2 simulation and Linux implementation in this section. Our
experiments illustrate:

A) Dynamic behavior such as convergence of throughput, in-
stantaneous link utilization and queue length in Section IV-A.
We use a single bottleneck topology with heterogeneous RTTs
for tens of flows periodically entering and leaving.

B) Steady state performance such as fairness, throughput, and
throughput variance in Section IV-B. We use a linear topology
of multiple congested links shared by a set of flows passing dif-
ferent number of bottlenecks.

In all simulation experiments we use ns-2 simulator [17] and
set data packet size as 1000 bytes and target accumulation 3000
bytes. We also implement the Monaco scheme in Linux OS (ker-
nel version 2.2.18) based on the Click configurable router [10].
Experimental results from implementation match with those of
simulations. In brief, in combination with Section III-C, this
section shows that the Monaco scheme satisfies all the goals out-
lined in Section III.

A. Single Bottleneck with Dynamic Demands

Firstly we consider a single 30Mbps bottleneck with 2ms
propagation delay shared by 3 sets of flows using the Monaco
scheme. The topology is shown in Figure 3(a). Set 1 has 10
flows starting at 0s and stopping at 30s; Set 2 has 5 flows start-
ing at 10s and stopping at 40s; Set 3 has 5 flows starting at 20s
and stopping at 50s. Each source-destination pair is connected
to the bottleneck via a 10Mbps 1ms link. The one-way prop-
agation delays for the 3 sets of flows are 4ms, 9ms and 14ms,
respectively. We simulate for 50s. We performed two simula-
tions, one with enough buffer provided for the bottleneck, the
other with underprovisioned buffer.

In the first simulation, the bottleneck router has enough buffer
of 90 packets, as shown in Figure 3(d), there is no packet loss.
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We randomly pick one flow from each set and draw its indi-
vidual throughput in Figure 3(c). We observe that from 0s to
30s, the throughput is about 3Mbps, since only 10 flows are ac-
tive; When the 5 flows from set 2 jump in at 10s, the throughput
drops to 2Mbps, as we have 15 active flows. Similarly, when the
final 5 flows from set 3 enter at 20s, the throughput changes to
1.5Mbps. Then at 30s, the 10 flows of set 1 stop, the through-
put increases to 3Mbps. At 40s, the 5 flows of set 2 leave, only
the 5 flows of set 3 are in the system with throughput of about
6Mbps. The congestion window dynamics is similar as shown in
Figure 3(e). Bottleneck queue length is depicted in Figure 3(d)
where incoming flows build up a steady queue and flows leave
with queue decrease, on average 3 packets for each flow. This
matches the target accumulation specified as a control param-
eter. During the simulation bottleneck utilization always stays
around 100%, except two soon-recovered drops during abrupt
demand changes at 30s and 40s as seen in Figure 3(b). From
this simulation, we validate that Monaco demonstrates a stable
behavior under a dynamic and heterogeneous environment and
keeps a steady queue inside bottleneck.

In the second simulation, the bottleneck router buffer is un-
derprovisioned. As shown in [18], the queue length grows to
the limit of the whole buffer size, and there is a correspondent
packet loss leading to halving of the congestion window. Conse-
quently, throughput is more oscillating, but the bottleneck is still
fully utilized. From this simulation, we see that without enough
buffer, Monaco shows a degraded behavior under dynamically
changing demands.

B. Multiple Bottlenecks

Now we show the steady state performance of Monaco when
flow traverses more than one bottleneck. We use a linear topol-
ogy with multiple congested links depicted in Figure 4(a). We
did a set of simulation experiments by changing the number of

bottlenecksN from 2 to 9. There are 3 “long” flows passing all
bottlenecks and a set of “short” flows each using only one bot-
tleneck. Every link has 100Mbps capacity and 4ms delay. The
long flows have very different RTTs. We simulated under only
one condition with enough buffer provided for the routers. As
already shown in the last subsection, if buffer is not enough, the
Monaco scheme degrades. For the buffer requirement scalabil-
ity problem, we discuss further in the next section.

As illustrated in Figure 4(b), the throughput curve for each
individual long flow is located right around the theoretic one
of 100=(3 + N)Mbps. So each long flow gets roughly its fair
share, for all cases ofN = 2; 3; :::; 9 bottlenecks. The differ-
ence of throughput between the 3 long flows is measured by the
Coefficient of Variance (C.O.V.) of their throughput, depicted in
Figure 4(d), which is about 5%� 10%. The bottleneck utiliza-
tion forR0� R1 link is shown in Figure 4(c), which is always
100% during the whole simulation of 60s.

We also did a set of experiments using our Linux implemen-
tation of Monaco. Here we show one with dynamic demands.
We have 2 bottlenecks each of 1Mbps capacity as drawn in Fig-
ure 4(e). During the 80s of experiment, we have 2 short flows
always active, one long flow coming in at 20s and going out
at 60s, and another long flow active from 40s to 80s. After a
brief transient period, each flow stabilizes at its proportionally
fair share, illustrated by Figure 4(f). For instance, the first long
flows’ throughput starts with 0.33Mbps (its fair share) at 20s
and changes to some 0.25Mbps at 40s when the second long
flow shows up. After that, the second long flow gets about its
fair share of 0.33Mbps.

These simulation and implementation experiments demon-
strate that, with enough buffer provisioned, Monaco achieves a
proportionally fair bandwidth allocation in a multiple bottleneck
case, validating our theoretic results.
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Fig. 4. Monaco Fairness via ns-2 Simulation (a-d) and Linux Implementation (e,f)

V. SUMMARY AND FUTURE WORK

In this paper we generalize TCP Vegas and develop a general
congestion control model using accumulation which is buffered
packets of a flow inside network routers as a measure to detect
and control network congestion. The main contributions of this
paper are:

� a mathematically defined, physically meaningful concept of
backlogged packets – accumulation as a measure of network
congestion;

� a model of accumulation-based congestion control with prov-
able global stability and proportional fairness based on which a
family of schemes could be derived;

� a comparison between Vegas and Monaco to show that
Monaco’s receiver-based out-of-band accumulation measure-
ment solves Vegas’ well-known estimation problems;

� a Monaco scheme implemented as a packet network protocol
which estimates accumulation unbiasedly and utilizes this value
in a non-binary manner to control congestion.

One critical question that remains is the scalability of the
router buffer requirement which is proportional to the number of
flows passing that router. Since the ACC model can be mapped
end-to-end or edge-to-edge (though we focus on the model itself
and don’t elaborate the architecture issues in this paper), one
way to alleviate this problem is to control aggregate flow in an
edge-to-edge manner, instead of end-to-end for each micro-flow
of source-destination pair. A possibly better solution to keep
buffer size bounded is to use an appropriate queue management
mechanism such as virtual queuing [12]. Further, by keeping
different accumulation for different flows, it’s possible to pro-
vide service differentiation [7]. These issues are being explored
in our ongoing research.
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